toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Javier Marin; David Vazquez; David Geronimo; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Learning Appearance in Virtual Scenarios for Pedestrian Detection Type Conference Article
  Year 2010 Publication 23rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 137–144  
  Keywords Pedestrian Detection; Domain Adaptation  
  Abstract Detecting pedestrians in images is a key functionality to avoid vehicle-to-pedestrian collisions. The most promising detectors rely on appearance-based pedestrian classifiers trained with labelled samples. This paper addresses the following question: can a pedestrian appearance model learnt in virtual scenarios work successfully for pedestrian detection in real images? (Fig. 1). Our experiments suggest a positive answer, which is a new and relevant conclusion for research in pedestrian detection. More specifically, we record training sequences in virtual scenarios and then appearance-based pedestrian classifiers are learnt using HOG and linear SVM. We test such classifiers in a publicly available dataset provided by Daimler AG for pedestrian detection benchmarking. This dataset contains real world images acquired from a moving car. The obtained result is compared with the one given by a classifier learnt using samples coming from real images. The comparison reveals that, although virtual samples were not specially selected, both virtual and real based training give rise to classifiers of similar performance.  
  Address San Francisco; CA; USA; June 2010  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title Learning Appearance in Virtual Scenarios for Pedestrian Detection  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4244-6984-0 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ MVG2010 Serial 1304  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: