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Abstract

Detecting pedestrians in images is a key functionality to

avoid vehicle-to-pedestrian collisions. The most promis-

ing detectors rely on appearance-based pedestrian classi-

fiers trained with labelled samples. This paper addresses

the following question: can a pedestrian appearance model

learnt in virtual scenarios work successfully for pedestrian

detection in real images? (Fig. 1). Our experiments sug-

gest a positive answer, which is a new and relevant con-

clusion for research in pedestrian detection. More specifi-

cally, we record training sequences in virtual scenarios and

then appearance-based pedestrian classifiers are learnt us-

ing HOG and linear SVM. We test such classifiers in a pub-

licly available dataset provided by Daimler AG for pedes-

trian detection benchmarking. This dataset contains real

world images acquired from a moving car. The obtained

result is compared with the one given by a classifier learnt

using samples coming from real images. The comparison

reveals that, although virtual samples were not specially

selected, both virtual and real based training give rise to

classifiers of similar performance.

1. Introduction

Advanced driver assistance systems (ADAS) aim to im-

prove traffic safety by providing warnings and performing

counteractive measures in dangerous situations. Pedestrian

protection systems are specialized in vehicle-to-pedestrian

collisions. They consist in vehicles equipped with a for-

ward facing image acquisition and processing system able

to detect pedestrians on the road. Accordingly, research

on image-based pedestrian detection for this task has been

a very relevant topic for the Computer Vision community

[8, 10, 11]. The challenge lies in the fact that pedestrians are

very difficult to detect: they are articulated and imaged from

a mobile platform in cluttered scenarios and present high

variability in clothes, pose, distance to the camera, back-

ground and outdoor illumination. Moreover, the nature of

the addressed application requires real-time and a demand-

ing tradeoff between misdetections and false alarms.

Figure 1. Can a pedestrian appearance model learnt in virtual sce-

narios work successfully for pedestrian detection in real images?

The most promising pedestrian detectors rely on

appearance-based pedestrian classifiers learnt from labelled

samples, i.e., examples (pedestrians) and counterexamples

(background). Having sufficient variability in the sets of ex-

amples and counterexamples is decisive to train classifiers

able to generalize properly [2]. Unfortunately, obtaining the

desired variability in such sets is not easy for pedestrian de-

tection since we cannot control the real world while record-

ing video sequences. We can hypothesize that larger train-

ing sets are likely to have higher variability, which seems

to be confirmed by the fact that classification performance

tends to increase with the size of the training sets in gen-

eral [12] and for some pedestrian classifiers [14]. However,

while increasing the number of counterexamples is auto-

matic and effective (e.g., bootstrapping or cascade methods

can be applied to gather false positives and retrain), having a
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Figure 2. Virtual image with corresponding automatically gener-

ated pixel-wise groundtruth for pedestrians.

large number of labelled examples is expensive in the sense

that many video sequences must be recorded on-board and a

large amount of manual intervention is required. Moreover,

just subjectively adding more examples does not guarantee

higher variability, i.e., it can happen that we are just adding

pedestrians too similar to the ones we already had.

In order to face this problem, Broggi et al. [3] use synthe-

sized examples for pedestrian detection in far infrared im-

ages, i.e., images capturing relative temperature. In particu-

lar, a rough 3D pedestrian model encoding the morphology

of a person is captured from different poses and viewpoints.

The background is just roughly modelled since it is mainly

dark in the used images. Each combination of pose and

viewpoint constitute a kind of grayscale template of human

relative temperature. Then, instead of following a learning-

by-examples approach to obtain a single model (classifier),

a set of templates is used by a posterior pedestrian detection

process based on template matching. However, the authors

admit poor results, since it is difficult to handle variability

due to different clothes, person size, more complex back-

ground and, in addition, computational time increases with

the number of templates to be considered.

Enzweiler et al. [7] enlarge the set of examples by

transforming the shape of pedestrians (labelled in real

images) as well as the texture of pedestrians and back-

ground. The pedestrian classifier is learnt by using a

discriminative approach (NNs with LRFs and Haar fea-

tures with SVM are tested). Since these transformations

encode a generative model, the overall approach is seen

as a generative-discriminative learning paradigm. The

generative-discriminative cycle is iterated several times in

a way that new synthesized examples are added in each it-

eration by following a probabilistic selective sampling to

avoid redundancy in the training set. The reported results

show that this procedure provides classifiers of the same

performance than when increasing the number of training

examples with new manually labelled ones. However, the

authors show that much of the improvement comes from

enlarging the training set by applying jittering to the pedes-

trian examples as well as by introducing more counterex-

amples. Notice that jittering does not involve synthesizing

pedestrians since it only requires shifting them inside their

framing window, i.e., it is introduced to gain certain de-

gree of shift invariance in the learnt classifiers. Besides, for

applying the different proposed transformations the over-

all pedestrian silhouette must be traced, which requires a

manual labelling much more labour intensive than standard

bounding box framing of pedestrians. Examples mirroring

is also used in all cases to induce invariance against such a

geometrical transformation. Certainly, jittering and mirror-

ing are recommendable for enlarging the training set.

The reviewed proposals are appealing because if we are

able to use a set of automatically generated samples for

learning, then we would have an easier control of its vari-

ability and cardinality, avoiding human labelling for the

learning phase (but not for testing). However, rather than

using rough morphological models or synthesized real ex-

amples, we propose to explore the synergies between mod-

ern Computer Graphics and Computer Vision in order to

close the circle: the Computer Graphics community has

modelled real world by building increasingly realistic vir-

tual worlds (e.g. video games). Thus, can we now learn

our models of interest in such virtual worlds and use them

successfully back in real world? In this paper we focus this

question on the visual appearance of pedestrians. In particu-

lar, we want to learn such appearance using virtual samples

in order to detect pedestrians in real images (Fig. 1).

The experiments we conduct here suggest a positive an-

swer to the previous question, which we think is a new

and relevant result for research in pedestrian detection. In

particular, we record training sequences in realistic virtual

cities (Fig. 2) and train appearance-based pedestrian clas-

sifiers using HOG and linear SVM, a baseline method for

building such classifiers that remains competitive for pedes-

trian detection in the ADAS context [6, 8]. We test such

classifiers in a dataset for pedestrian detection benchmark-

ing that was recently made publicly available by Daimler

AG [8]. The obtained results are evaluated in a per-image

basis and compared with the classifier obtained when us-

ing real samples for training. The comparison reveals that

virtual and real based training give rise to similar classi-

fiers. Furthermore, given that at this time we do not fine

tune virtual training sets, the obtained outcome opens the

possibility of a more custom design of these sets to obtain

better classifiers, e.g., following active learning approaches

as proposed in [7, 9]. In addition, virtual based training can

be also used for appearance-based pedestrian pose recovery

as it was done in [16, 1] (assuming human detection before

pose recovery).

The remainder of the paper is organized as follows. Sec-

tion 2 introduces the datasets used for training and testing.

Section 3 details the conducted experiments while Sect. 4

presents the results and corresponding analysis. Finally,

Sect. 5 summarizes the conclusions and future work.



Figure 3. Examples and counterexamples taken from real images (Daimler’s dataset) and from virtual ones.

2. Datasets

2.1. Real images

The lack of publicly available large datasets for pedes-

trian detection in the ADAS context has been a recurrent

problem for years [6, 8, 11]. For instance, INRIA dataset

[5] has been the most widely used for pedestrian detection.

However, it contains photographic pictures in which peo-

ple are mainly close to the camera and in focus. Moreover,

there are backgrounds that do not correspond to urban sce-

narios, which are the most interesting and difficult ones for

detecting pedestrians from a vehicle.

Fortunately, two more adapted datasets for the ADAS

context have recently been made publicly available. One

of them is presented by Caltech [6] and the other one by

Daimler AG [8]. In the future we plan to work with both,

but to start our study we decided to use the Daimler’s dataset

since it comes from one of the most relevant automotive

companies worldwide, thus, we can expect the images to

be quite representative for ADAS. Next, we summarize the

main characteristics of Daimler’s dataset. In fact, it consists

of a training set and a different testing set.

2.1.1 Training set

The images of this set are grayscale and were acquired at

different times of day and locations (Fig. 3).

Examples. The original training frames with pedestri-

ans are not publicly available, but cropped pedestrians are.

From 3915 manually labelled pedestrians, 15660 were ob-

tained by applying small vertical and horizontal random

shifts (i.e., jittering) and mirroring, and then put publicly

available. The size of each cropped example is 48× 96 pix-

els, which comes from the 24 × 72 pixels of the contained

pedestrian plus an additional margin of 12 pixels per side.

All the original labelled pedestrians are at least 72 pixels

high, thus, some of the samples come from downscaling

but none from upscaling. All the samples contain pedestri-

ans that are upright and not occluded.

Counterexamples. 6744 pedestrian-free frames were de-

livered. Their resolution is 640 × 480 pixels. Thus,

to gather cropped counterexamples these frames must be

sampled. Conceptually, the sampling process we use can

be thought as follows. We need counterexamples of the

same dimensions than the cropped pedestrian examples, i.e.,

48 × 96 pixels. Therefore, we can select windows of size

48ki×96ki pixels, where k is the scale step (1.2 in our case)

and i ∈ {0, 1, 2, ...}, provided that they are fully contained

in the image we are sampling. Then, we can downscale the

counterexamples by a factor ki using, for instance, bi-cubic

interpolation. In practice, we implement this sampling idea

by using a pyramid of the frame to be sampled and then by

cropping windows of size 48 × 96 pixels at each layer [4],

which is closely related to the scanning strategy used by the

final pedestrian detector (Sect. 3.1).

2.1.2 Testing set

The testing set consists in a sequence of 21790 grayscale

frames of 640×480 pixels. The sequence was acquired on-

board while driving during 27 minutes through urban sce-

narios. Moreover, this testing set does not overlap the train-

ing set. The testing set includes 56492 manually labelled

pedestrians. The labels contain also an additional informa-

tion indicating whether they are of mandatory detection or

not. Basically, the pedestrians labelled as non-mandatory

are those either occluded, not upright, or smaller than 72
pixels high. There are 2459 mandatory pedestrians in total.

Frames of the training set can be seen with overlayed results

in Sect. 4 (Fig. 5).

2.2. Virtual images

In order to obtain virtual images, the first step consists

in building virtual scenarios. We have done it by using the

video game Half-Life 2 [15]. This game allows to include



maps created with an editor named Hammer, as well as to

add modifications (a.k.a. mods).

We use Hammer to create realistic virtual cities with

roads, streets, buildings, traffic signs, vehicles, pedestrians,

different illumination conditions, etc. Once we start to play,

the pedestrians and vehicles move through the virtual city

but respecting physical laws (e.g., pedestrians do not float

and cannot be at the same place than other solid objects at

the same moment) as well as by following their artificial

intelligence (e.g., vehicles move on the road).

In order to acquire images in virtual scenarios we use

the mod created by the company ObjectVideo. Taylor et al.

[17] show the usefulness of such a mod for designing and

validating people tracking algorithms for video surveillance

(static camera). A relevant functionality consists in pro-

viding pixel-wise groundtruth for human targets (Fig. 2).

However, since the aim in [17] is to test algorithms under

controlled conditions, all the work is done with virtual sce-

narios, without considering real world images. Thus, the

work we present in this paper is not actually related to [17]

except for the use of the same Half-Life 2 mod.

In fact, we created an application to augment the func-

tionalities of such a mod with the possibility of moving a

virtual camera as if we were driving. In particular, in order

to drive through a virtual city we introduced a camera with

a given height as well as pitch, roll and yaw angles, and

then we move it keeping these parameters constant. The

only constraint that must be ensured is that these parame-

ters are compatible with a camera forward facing the road

from inside a vehicle, for instance, as if it were placed at the

rear view mirror behind the windshield. Finally, in order to

emulate the dataset of Daimler, we set the resolution of our

virtual camera to 640 × 480 pixels.

We created four virtual cities which, in fact, correspond

to a single one in terms of graphical primitives, i.e., we only

changed some building textures so that they look different

as well as the overall illumination to emulate different times

of day. In order to introduce pedestrians in these cities,

we use the 18 virtual people and 19 sets of clothes directly

available from Half-Life 2. Only 81 combinations person-

clothes are possible, so this is the number of different pedes-

trians available in our virtual scenarios. However, note that

since they are articulated moving models seen from a mov-

ing camera, each virtual pedestrian can be imaged with dif-

ferent poses and backgrounds. Figure 3 plots samples of

the virtual training set that we describe in the rest of this

section.

Examples. We recorded five video sequences by driv-

ing through the virtual cities. In total we obtained 26046

frames. The virtual car was driven without any preferred

plan of route. Along the way we captured images contain-

ing pedestrians in different poses and with different back-

grounds. Since we can obtain the groundtruth of the virtual

pedestrians automatically, we consider only those upright,

non-occluded, and with a height equal or larger than 72 pix-

els in the captured images (pedestrians taller than 72 pixels

require further down scaling as we will see) like in the train-

ing set of Daimler. This gives us 7973 pedestrians to con-

sider in order to construct the set of examples for training. It

is worth mentioning that for having automatically labelled

examples analogous to the manually labelled ones of Daim-

ler’s training set (i.e., with the torso centered with respect to

the horizontal axis), we cannot just take the bounding boxes

corresponding to the pixel-wise groundtruth. Instead, we

apply the following process to each virtual pedestrian:

1. For some pedestrian poses, the bounding box obtained

from the pixel-wise groundtruth is such that the torso

is not well centered in the horizontal axis, so we auto-

matically correct this. More specifically, we project the

pedestrian groundtruth into its horizontal axis. Then

we take the location of the maximum of the projection

as the horizontal center of the torso. Finally, we shift

the initial pixel-wise bounding box so that its horizon-

tal center matches the one of the torso.

2. Then, we modify the location of the sides of the

pedestrian bounding box preserving the previous re-

centering, but enforcing the same aspect ratio and pro-

portional background margins than the pedestrians in

the training set of Daimler (i.e., 24/72 and 12/72, re-

spectively). This is automatically achieved by simply

applying standard rule of proportionality.

3. The bounding box at this point can still be larger than

the canonical bounding box of the pedestrian examples

of Daimler’s training set, i.e., larger than 48 × 96 pix-

els. Thus, the final step consists in performing a down

scaling using bi-cubic interpolation.

Counterexamples. In order to collect the counterexam-

ples for training, we used the same four virtual cities than

for obtaining the examples, but now without pedestrians in-

side, i.e., we drove through these uninhabited cities to col-

lect pedestrian-free video sequences. We collect frames

from these sequences in a random manner but assuring a

minimum distance of 5 frames between any two selected

frames, which is a simple way to increase variability. In

fact, it is also possible to use pedestrian-free scenarios cre-

ated by Half-Life 2 sympathizers and made publicly avail-

able through the internet. Thus, we collected some more

frames from them to augment the number of counterexam-

ples in our training set. In total we have 2049 frames with-

out virtual pedestrians, so they can be sampled to gather vir-

tual counterexamples. The sampling process is, of course,

the same than the one previously described for Daimler

(Sect. 2.1.1).



Table 1. Training and testing settings for our experiments. Virtual datasets can be found at <www.cvc.uab.es/adas>.

Training Set Training process

Cropped pedestrians (jitter and mirroring included) 1st round: cropped pedestrians / cropped background Testing sets

& Background frames & Bootstrapping: additional cropped background

Daimler 15660 & 6744 15660 / 15560 & 15660 Full set: 21790 frames

Virtual 3200 & 2049 3200 / 15560 & 15660 Mandatory set: 974 frames

3. Experiment design

3.1. Pedestrian detector components

In order to detect pedestrians we need a pedestrian clas-

sifier learnt from the training set by using specific features

and a learning machine. With this classifier we scan a

given image looking for pedestrians. Since multiple detec-

tions can be produced by a single pedestrian, we also need a

mechanism to select the best detection. The procedures we

use for features extraction, machine learning, scanning the

images, as well as selecting the best detection from a cluster

of them, are the same no matter if the classifier was learnt

using virtual images or real ones (i.e., from Daimler). Let

us briefly review which are these components in our case.

Features and learning machine. The combination of the

histograms of oriented gradients (HOG) features and linear

SVM learning machine, proposed by Dalal et al. in [5], has

been proven as a competitive method to detect pedestrians

in the ADAS context [8]. Similar conclusions are also ob-

tained when using a large ADAS-inspired dataset for testing

in [6]. In fact, recent proposals that outperform HOG/linear-

SVM when using the INRIA dataset include both HOG and

linear SVM as core ingredients [18]. Thus, we think that

HOG/linear-SVM stands as a relevant baseline method for

learning pedestrian classifiers, so we use it in our experi-

ments. In particular, we follow the settings suggested in

[5] for both HOG and linear SVM, as it is also done in [8].

A minor difference comes from the fact that in Daimler’s

datasets the images are grayscale while the virtual images

are RGB. This issue is easily handled by just taking at each

pixel the gradient orientation corresponding to the maxi-

mum gradient magnitude among the RGB channels (as in

[5] for INRIA dataset).

Scanning strategy. As in [8] we use the widely extended

sliding window strategy implemented through a pyramid to

handle different detection scales [4]. We could consider

the sliding window parameters found in [8] as the best in

terms of pedestrian detection performance for the so-called

generic pedestrian detection case with Daimler’s testing set.

However, it turns out that a single experiment with such

parameters takes about a month with our current compu-

tational resources. As will be seen, since we run several

experiments we would need several months to obtain the

results. In short, the reason is that with such settings there

are much more windows and it is difficult to share HOG

features among different testing windows. Accordingly, at

this stage of our research we decided to follow the settings

proposed in [4].

Selecting the best detection. In order to group multiple

overlapped detections and (ideally) provide one single de-

tection per pedestrian we follow an iterative confidence- and

overlapping- based approach, i.e. a kind of non-maximum-

suppression. This technique, used by I. Laptev in [13], con-

sists of four basic steps: 1) create a new cluster with the de-

tection of highest confidence; 2) recompute the cluster with

the mean of the detections overlapping the new cluster; 3)

iterate to step 2 until the cluster position does not change;

4) delete the detections contained in the cluster and iterate

to 1 while there are detections.

Pedestrian detector. For us a pedestrian detector consists

of a pedestrian classifier, plus the above seen techniques of

sliding window and non-maximum-suppression. Therefore,

we are not considering tracking of pedestrians, but we think

this does not affect the aim of this paper.

3.2. Training

3.2.1 Training with Daimler dataset

We train the HOG/linear-SVM classifier with the 15660

provided examples and collect also 15560 counterexamples

by sampling the 6744 provided pedestrian-free images as

explained in Sect. 2.1.1, which is the approach followed

in [8]. In addition, we also apply one bootstrapping step,

i.e., with the first learnt classifier we run the correspond-

ing pedestrian detector on the 6744 pedestrian-free frames

and collect false positives to enlarge the number of coun-

terexamples and retrain. This technique is known to provide

better classifiers [8, 14, 5]. In this case, again following

[8], 15660 new counterexamples are collected during boot-

strapping. Thus, the final classifier is trained using 15660

examples and 31220 counterexamples.

3.2.2 Training with virtual dataset

Learning a classifier by using the virtual training set is basi-

cally analogous to the Daimler case, i.e., HOG/linear-SVM

and one bootstrapping are used. Thus, let us just note some

differences. In this case we have 7973 examples, but we
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Figure 4. Per-image evaluation of the pedestrian detectors. DC stands for Daimler criteria and PC for PASCAL criteria. Left: mean

performance and standard deviation obtained in the 10 experiments with virtual samples (mandatory testing set). Middle: curves with

highest and lowest values for FPPI=10
0 of the training with virtual samples, and curve obtained with the training based on Daimler’s

training set (mandatory set). Right: performance of virtual (highest at 10
0 FPPI) and Daimler trainings for the full Daimler’s testing set.

want to assess how robust the training process is to changes

in this set. Therefore, rather than taking all the examples to

compute a single training we perform a partition of this set

into 10 subsets with the aim of conducting 10 trainings.

In order to ensure a certain variability on the subsets of

examples, the partition is done so that examples of a given

subset either come from different person-clothes combina-

tions or are more than 10 frames apart (differences come

from pose and background). To be more precise, since these

conditions are not always achievable and in order to have

800 examples per subset, we allow the inclusion of some

pedestrians in more than one subset. Altogether, the over-

lapping between two subsets is still less than 3%.

Given a subset of 800 virtual pedestrians, in order to em-

ulate the content of Daimler training set, we apply two jit-

ters per pedestrian plus a mirroring per jitter, which makes

each subset end up with 3200 examples. As in the case of

Daimler, we gather 15560 counterexamples from the vir-

tual pedestrian-free training frames, and after learning the

initial classifier we collect 15660 more using bootstrapping.

Finally, we retrain with 800 examples and 31220 counterex-

amples per subset.

3.3. Testing

To reduce the computational time per experiment, rather

than always using the 21790 testing frames from Daimler,

we also rely on a representative but reduced testing set. In

particular, we select first only those frames where there is at

least a mandatory pedestrian to detect (2.1.2), then we take

one out of each two frames. We term the final set of frames

as mandatory testing set. There are 974 of such frames and

they contain 1193 mandatory pedestrians.

We use the mandatory testing set for evaluating the

pedestrian detector associated to the classifier learnt with

Daimler’s training set and the same for the 10 detectors re-

lated to the virtual training set. Finally, we select the best

Table 2. Similarity detection overview. Common results between

virtual and Daimler pedestrian detectors are shown, over Daimler

and over virtual detectors, for Daimler and PASCAL criteria.

Daimler Criteria TP(%) FP(%) FN(%)

Over Daimler 90.91 33.62 73.61

Over virtual 91.30 36.28 71.22

PASCAL Criteria TP(%) FP(%) FN(%)

Over Daimler 90.30 45.77 70.65

Over virtual 86.61 32.55 82.28

virtual based detector and then we run a full test, i.e., the

21790 testing frames from Daimler’s testing set are pro-

cessed. We do the same full test for the pedestrian detector

based on Daimler’s training set.

4. Results

Table 1 summarizes the settings explained in Sect. 3.

In this section we draw the obtained results and discuss

them. We assess the similarity of virtual and real world-

based training, both in terms of the performance of the

corresponding pedestrian detectors and the matching of the

specific detection results.

In order to assess the performance of the different pedes-

trian detectors we compute per-image evaluation (highly

recommended in [6]). Since we are using Daimler’s datasets

for testing, we follow the evaluation settings proposed by

Enzweiler et al. in [8], who also employ per-image evalu-

ation. In particular, we plot curves depicting the tradeoff

between detection rate (i.e., the percentage of mandatory

pedestrians that are actually detected) and the number of

false positives per image (FPPI) in logarithmic scale. The

pedestrian detectors output detection windows, let Wd be

one of them, and let Wl be a window labelled as mandatory

pedestrian. Then, we define the ratio of areas r(Wd,Wl) =
a(Wd ∩ Wl)/a(Wd ∪ Wl). If there is a Wl for which



Figure 5. Qualitative results at 10
0 FPPI taken when following Daimler criteria. Top row: using the pedestrian detector based on Daimler’s

training set. Bottom row: using the pedestrian detector corresponding to the training with virtual samples, in particular with the classifier

of highest detection rate at 10
0 FPPI. Blue bounding boxes are right detections, green ones are false positives and red ones misdetections.

r(Wd,Wl) > 0.25, then Wd is considered a true positive,

otherwise, Wd is a false positive. Undetected mandatory

pedestrians count as false negative, i.e., those Wl for which

there is no Wd with r(Wd,Wl) > 0.25. If given a Wl more

than one Wd passes the true positive criterion (i.e., multi-

ple detections), only one of them is considered, the rest are

ignored. We also perform the same experiments using PAS-

CAL VOC criteria: r(Wd, Wl) > 0.5 to accept Wd as true

positive, and in case of multiple detections one counts as

true positive and the rest as false positives. Note that such

different criteria also affect training because of the boost-

rapping. The overlapping threshold of the step selecting-

the-best-detection-2) (Sect. 3.1) is set to 0.25 when follow-

ing Daimler criteria and to 0.5 for PASCAL criteria.

Figure 4 shows the obtained performance curves follow-

ing both Daimler and PASCAL criteria. The standard de-

viation of the 10-experiments-based curves of the virtual

based training reveal that the different sets of virtual exam-

ples (pedestrians) give rise to rather similar performance.

For instance, a point of interest for ADAS applications is

FPPI=100, since with one false positive per image in aver-

age, a further method doing some sort of temporal analysis

has chances of discarding such isolated detections. At that

point the standard deviation of the experiments is ≤ 2% of

detection rate. The following plot comparing virtual and

real world-based testing also reveals quite similar curves.

The difference between the best virtual-world-based curve

and the real-world-based one at FPPI=100 is ≤ 1%, and

comparing the worst virtual-world-based curve and the real-

world-based one such difference is still ≤ 4%. Note that, al-

though these results are for the mandatory testing set, they

also extrapolate when using the full training set (27 min-

utes of video), as can be seen in the last plot. Altogether,

the results allow us to conclude that the differences of the

learnt virtual world based classifiers and the real world one

are minimal in terms of performance.

Figure 5 shows some qualitative results from which we

can see how similar are the particular detections coming

from virtual and real world learning. These are just a small

sample of the qualitative results, but we also perform a

quantitative assessment. In order to decide whether a de-

tection, Wv , coming from the virtual-world-based pedes-

trian detector and another, say Wr, coming from the real-

world-based one are equivalent we need an overlapping cri-

terion. Like for performance evaluation, we use the cri-

terion r(Wv,Wr) > t to accept that these are analogous

detections, with t = 0.25 when applying Daimler criteria

and t = 0.5 for PASCAL criteria. The statistics of Table

2 suggest that virtual and real-world-based pedestrian de-

tectors basically identify the same pedestrians, and also that

there is a large number of matches regarding the misdetec-

tions. However, both detectors are quite different with re-

spect to the false positives, i.e., they are confused by differ-

ent background clutter. These results are coherent with the

fact that virtual and real pedestrians are similar to the eyes

of the training, while background is different since we did

not copy in the virtual world the backgrounds of the testing

set and this is quite a more heterogeneous class.

Hence, we think that there is a high correlation regard-

ing the performance of virtual and real world based training

as well as the matching of the corresponding detection re-

sults. We argue that in part this is due to the high realism

of modern computer graphics as well as what we could call

world invariance of the HOG features. This invariance is



in fact just the consequence of being robust to illumination

changes (gradient orientation is invariant under monotonic

grayscale changes) , which is mandatory for ADAS applica-

tions. Thus, other features with similar invariant properties

(e.g., normalized Haar features or LBP) are also very likely

to reach such world invariance, so their performance is also

an interesting topic to research.

Enzweiler et al. [8] argue that the size and complexity

of Daimler’s testing set allows to draw meaningful conclu-

sions. Therefore, we think that our current conclusions are

trustworthy. Thus, coming back to the question that opened

this research, i.e., can we learn a pedestrian appearance

model in virtual worlds and then use it successfully back in

real world for pedestrian detection?, we answer yes we can.

5. Conclusions

In this paper we have explored how realistic virtual

worlds can help in learning appearance-based models for

pedestrian detection in the ADAS area. We have used the

HOG/linear-SVM technique to learn a pedestrian classifier

using only samples from virtual worlds. We have plugged-

in such classifier in a standard pedestrian detection method

and have evaluated how this detector works when applied to

real images, i.e., when the pedestrian classifier is used out

of its world. The same procedure has been followed to ob-

tain an analogous pedestrian detector that only differs from

the virtual-world-based one in the sense that the plugged-in

classifier was trained using real images (i.e., manually la-

belled pedestrians). Comparison between virtual and real

world based pedestrian detectors reveals a rather close per-

formance. The size and complexity of Daimler’s testing

set allows for this conclusion to be reliable. Therefore, we

think that the results presented in this paper are new and

relevant for research in pedestrian detection. However, to

provide a totally definitive conclusion we must test with

more databases, more features and more learning machines.

These experiments are part of our future work. Moreover,

since we did not fine tuned virtual training sets, we plan to

do a more custom design of them to obtain better classifiers,

e.g., following active learning approaches. In addition, the

detection of other targets (e.g. vehicles) can also be evalu-

ated under the proposed framework.
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