toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Chenshen Wu edit  isbn
openurl 
  Title Going beyond Classification Problems for the Continual Learning of Deep Neural Networks Type Book Whole
  Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep learning has made tremendous progress in the last decade due to the explosion of training data and computational power. Through end-to-end training on a
large dataset, image representations are more discriminative than the previously
used hand-crafted features. However, for many real-world applications, training
and testing on a single dataset is not realistic, as the test distribution may change over time. Continuous learning takes this situation into account, where the learner must adapt to a sequence of tasks, each with a different distribution. If you would naively continue training the model with a new task, the performance of the model would drop dramatically for the previously learned data. This phenomenon is known as catastrophic forgetting.
Many approaches have been proposed to address this problem, which can be divided into three main categories: regularization-based approaches, rehearsal-based
approaches, and parameter isolation-based approaches. However, most of the existing works focus on image classification tasks and many other computer vision tasks
have not been well-explored in the continual learning setting. Therefore, in this
thesis, we study continual learning for image generation, object re-identification,
and object counting.
For the image generation problem, since the model can generate images from the previously learned task, it is free to apply rehearsal without any limitation. We developed two methods based on generative replay. The first one uses the generated image for joint training together with the new data. The second one is based on
output pixel-wise alignment. We extensively evaluate these methods on several
benchmarks.
Next, we study continual learning for object Re-Identification (ReID). Although
most state-of-the-art methods of ReID and continual ReID use softmax-triplet loss,
we found that it is better to solve the ReID problem from a meta-learning perspective because continual learning of reID can benefit a lot from the generalization of metalearning. We also propose a distillation loss and found that the removal of the positive pairs before the distillation loss is critical.
Finally, we study continual learning for the counting problem. We study the mainstream method based on density maps and propose a new approach for density
map distillation. We found that fixing the counter head is crucial for the continual learning of object counting. To further improve results, we propose an adaptor to adapt the changing feature extractor for the fixed counter head. Extensive evaluation shows that this results in improved continual learning performance.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Joost Van de Weijer;Bogdan Raducanu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-126409-0-8 Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Wu2023 Serial 3960  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: