toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Yecong Wan; Yuanshuo Cheng; Miingwen Shao; Jordi Gonzalez edit  doi
openurl 
  Title Image rain removal and illumination enhancement done in one go Type Journal Article
  Year 2022 Publication Knowledge-Based Systems Abbreviated Journal KBS  
  Volume 252 Issue Pages 109244  
  Keywords  
  Abstract Rain removal plays an important role in the restoration of degraded images. Recently, CNN-based methods have achieved remarkable success. However, these approaches neglect that the appearance of real-world rain is often accompanied by low light conditions, which will further degrade the image quality, thereby hindering the restoration mission. Therefore, it is very indispensable to jointly remove the rain and enhance illumination for real-world rain image restoration. To this end, we proposed a novel spatially-adaptive network, dubbed SANet, which can remove the rain and enhance illumination in one go with the guidance of degradation mask. Meanwhile, to fully utilize negative samples, a contrastive loss is proposed to preserve more natural textures and consistent illumination. In addition, we present a new synthetic dataset, named DarkRain, to boost the development of rain image restoration algorithms in practical scenarios. DarkRain not only contains different degrees of rain, but also considers different lighting conditions, and more realistically simulates real-world rainfall scenarios. SANet is extensively evaluated on the proposed dataset and attains new state-of-the-art performance against other combining methods. Moreover, after a simple transformation, our SANet surpasses existing the state-of-the-art algorithms in both rain removal and low-light image enhancement.  
  Address Sept 2022  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.157; 600.168 Approved no  
  Call Number Admin @ si @ WCS2022 Serial 3744  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: