toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Yaxing Wang; Lu Yu; Joost Van de Weijer edit   pdf
openurl 
  Title DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Type Conference Article
  Year 2020 Publication 34th Conference on Neural Information Processing Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image-to-image translation has recently achieved remarkable results. But despite current success, it suffers from inferior performance when translations between classes require large shape changes. We attribute this to the high-resolution bottlenecks which are used by current state-of-the-art image-to-image methods. Therefore, in this work, we propose a novel deep hierarchical Image-to-Image Translation method, called DeepI2I. We learn a model by leveraging hierarchical features: (a) structural information contained in the shallow layers and (b) semantic information extracted from the deep layers. To enable the training of deep I2I models on small datasets, we propose a novel transfer learning method, that transfers knowledge from pre-trained GANs. Specifically, we leverage the discriminator of a pre-trained GANs (i.e. BigGAN or StyleGAN) to initialize both the encoder and the discriminator and the pre-trained generator to initialize the generator of our model. Applying knowledge transfer leads to an alignment problem between the encoder and generator. We introduce an adaptor network to address this. On many-class image-to-image translation on three datasets (Animal faces, Birds, and Foods) we decrease mFID by at least 35% when compared to the state-of-the-art. Furthermore, we qualitatively and quantitatively demonstrate that transfer learning significantly improves the performance of I2I systems, especially for small datasets. Finally, we are the first to perform I2I translations for domains with over 100 classes.  
  Address virtual; December 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NEURIPS  
  Notes LAMP; 600.120;CIC Approved no  
  Call Number Admin @ si @ WYW2020 Serial 3485  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: