toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Yunan Li; Jun Wan; Qiguang Miao; Sergio Escalera; Huijuan Fang; Huizhou Chen; Xiangda Qi; Guodong Guo edit  url
openurl 
  Title CR-Net: A Deep Classification-Regression Network for Multimodal Apparent Personality Analysis Type Journal Article
  Year 2020 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 128 Issue Pages 2763–2780  
  Keywords  
  Abstract First impressions strongly influence social interactions, having a high impact in the personal and professional life. In this paper, we present a deep Classification-Regression Network (CR-Net) for analyzing the Big Five personality problem and further assisting on job interview recommendation in a first impressions setup. The setup is based on the ChaLearn First Impressions dataset, including multimodal data with video, audio, and text converted from the corresponding audio data, where each person is talking in front of a camera. In order to give a comprehensive prediction, we analyze the videos from both the entire scene (including the person’s motions and background) and the face of the person. Our CR-Net first performs personality trait classification and applies a regression later, which can obtain accurate predictions for both personality traits and interview recommendation. Furthermore, we present a new loss function called Bell Loss to address inaccurate predictions caused by the regression-to-the-mean problem. Extensive experiments on the First Impressions dataset show the effectiveness of our proposed network, outperforming the state-of-the-art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona;MILAB Approved no  
  Call Number Admin @ si @ LWM2020 Serial 3413  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: