toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Chenshen Wu; Luis Herranz; Xialei Liu; Joost Van de Weijer; Bogdan Raducanu edit   pdf
openurl 
  Title Memory Replay GANs: Learning to Generate New Categories without Forgetting Type Conference Article
  Year 2018 Publication 32nd Annual Conference on Neural Information Processing Systems Abbreviated Journal  
  Volume Issue Pages 5966-5976  
  Keywords  
  Abstract Previous works on sequential learning address the problem of forgetting in discriminative models. In this paper we consider the case of generative models. In particular, we investigate generative adversarial networks (GANs) in the task of learning new categories in a sequential fashion. We first show that sequential fine tuning renders the network unable to properly generate images from previous categories (ie forgetting). Addressing this problem, we propose Memory Replay GANs (MeRGANs), a conditional GAN framework that integrates a memory replay generator. We study two methods to prevent forgetting by leveraging these replays, namely joint training with replay and replay alignment. Qualitative and quantitative experimental results in MNIST, SVHN and LSUN datasets show that our memory replay approach can generate competitive images while significantly mitigating the forgetting of previous categories.  
  Address Montreal; Canada; December 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NIPS  
  Notes LAMP; 600.106; 600.109; 602.200; 600.120;MV;OR;CIC Approved no  
  Call Number Admin @ si @ WHL2018 Serial 3249  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: