toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Xinhang Song; Shuqiang Jiang; Luis Herranz; Chengpeng Chen edit   pdf
url  doi
openurl 
  Title Learning Effective RGB-D Representations for Scene Recognition Type Journal Article
  Year 2019 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 28 Issue 2 Pages 980-993  
  Keywords  
  Abstract Deep convolutional networks can achieve impressive results on RGB scene recognition thanks to large data sets such as places. In contrast, RGB-D scene recognition is still underdeveloped in comparison, due to two limitations of RGB-D data we address in this paper. The first limitation is the lack of depth data for training deep learning models. Rather than fine tuning or transferring RGB-specific features, we address this limitation by proposing an architecture and a two-step training approach that directly learns effective depth-specific features using weak supervision via patches. The resulting RGB-D model also benefits from more complementary multimodal features. Another limitation is the short range of depth sensors (typically 0.5 m to 5.5 m), resulting in depth images not capturing distant objects in the scenes that RGB images can. We show that this limitation can be addressed by using RGB-D videos, where more comprehensive depth information is accumulated as the camera travels across the scenes. Focusing on this scenario, we introduce the ISIA RGB-D video data set to evaluate RGB-D scene recognition with videos. Our video recognition architecture combines convolutional and recurrent neural networks that are trained in three steps with increasingly complex data to learn effective features (i.e., patches, frames, and sequences). Our approach obtains the state-of-the-art performances on RGB-D image (NYUD2 and SUN RGB-D) and video (ISIA RGB-D) scene recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ SJH2019 Serial 3247  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: