toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Yagmur Gucluturk; Umut Guclu; Marc Perez; Hugo Jair Escalante; Xavier Baro; Isabelle Guyon; Carlos Andujar; Julio C. S. Jacques Junior; Meysam Madadi; Sergio Escalera edit   pdf
doi  openurl
  Title Visualizing Apparent Personality Analysis with Deep Residual Networks Type Conference Article
  Year 2017 Publication Chalearn Workshop on Action, Gesture, and Emotion Recognition: Large Scale Multimodal Gesture Recognition and Real versus Fake expressed emotions at ICCV Abbreviated Journal  
  Volume Issue Pages 3101-3109  
  Keywords  
  Abstract Automatic prediction of personality traits is a subjective task that has recently received much attention. Specifically, automatic apparent personality trait prediction from multimodal data has emerged as a hot topic within the filed of computer vision and, more particularly, the so called “looking
at people” sub-field. Considering “apparent” personality traits as opposed to real ones considerably reduces the subjectivity of the task. The real world applications are encountered in a wide range of domains, including entertainment, health, human computer interaction, recruitment and security. Predictive models of personality traits are useful for individuals in many scenarios (e.g., preparing for job interviews, preparing for public speaking). However, these predictions in and of themselves might be deemed to be untrustworthy without human understandable supportive evidence. Through a series of experiments on a recently released benchmark dataset for automatic apparent personality trait prediction, this paper characterizes the audio and
visual information that is used by a state-of-the-art model while making its predictions, so as to provide such supportive evidence by explaining predictions made. Additionally, the paper describes a new web application, which gives feedback on apparent personality traits of its users by combining
model predictions with their explanations.
 
  Address Venice; Italy; October 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes HUPBA; 6002.143;MV;OR;MILAB Approved no  
  Call Number Admin @ si @ GGP2017 Serial 3067  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: