|
Abstract |
The interest in action and gesture recognition has grown considerably in the last years. In this paper, we present a survey on current deep learning methodologies for action and gesture recognition in image sequences. We introduce a taxonomy that summarizes important aspects of deep learning
for approaching both tasks. We review the details of the proposed architectures, fusion strategies, main datasets, and competitions.
We summarize and discuss the main works proposed so far with particular interest on how they treat the temporal dimension of data, discussing their main features and identify opportunities and challenges for future research. |
|