toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Yaxing Wang; L. Zhang; Joost Van de Weijer edit   pdf
openurl 
  Title Ensembles of generative adversarial networks Type Conference Article
  Year 2016 Publication 30th Annual Conference on Neural Information Processing Systems Worshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Ensembles are a popular way to improve results of discriminative CNNs. The
combination of several networks trained starting from different initializations
improves results significantly. In this paper we investigate the usage of ensembles of GANs. The specific nature of GANs opens up several new ways to construct ensembles. The first one is based on the fact that in the minimax game which is played to optimize the GAN objective the generator network keeps on changing even after the network can be considered optimal. As such ensembles of GANs can be constructed based on the same network initialization but just taking models which have different amount of iterations. These so-called self ensembles are much faster to train than traditional ensembles. The second method, called cascade GANs, redirects part of the training data which is badly modeled by the first GAN to another GAN. In experiments on the CIFAR10 dataset we show that ensembles of GANs obtain model probability distributions which better model the data distribution. In addition, we show that these improved results can be obtained at little additional computational cost.
 
  Address Barcelona; Spain; December 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NIPSW  
  Notes LAMP; 600.068;CIC Approved no  
  Call Number Admin @ si @ WZW2016 Serial 2905  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: