toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Isabelle Guyon; Imad Chaabane; Hugo Jair Escalante; Sergio Escalera; Damir Jajetic; James Robert Lloyd; Nuria Macia; Bisakha Ray; Lukasz Romaszko; Michele Sebag; Alexander Statnikov; Sebastien Treguer; Evelyne Viegas edit  openurl
  Title A brief Review of the ChaLearn AutoML Challenge: Any-time Any-dataset Learning without Human Intervention Type Conference Article
  Year 2016 Publication AutoML Workshop Abbreviated Journal  
  Volume Issue 1 Pages 1-8  
  Keywords AutoML Challenge; machine learning; model selection; meta-learning; repre- sentation learning; active learning  
  Abstract The ChaLearn AutoML Challenge team conducted a large scale evaluation of fully automatic, black-box learning machines for feature-based classification and regression problems. The test bed was composed of 30 data sets from a wide variety of application domains and ranged across different types of complexity. Over six rounds, participants succeeded in delivering AutoML software capable of being trained and tested without human intervention. Although improvements can still be made to close the gap between human-tweaked and AutoML models, this competition contributes to the development of fully automated environments by challenging practitioners to solve problems under specific constraints and sharing their approaches; the platform will remain available for post-challenge submissions at http://codalab.org/AutoML.  
  Address New York; USA; June 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICML  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ GCE2016 Serial 2769  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: