toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio edit  doi
openurl 
  Title A computational framework for cancer response assessment based on oncological PET-CT scans Type Journal Article
  Year 2014 Publication Computers in Biology and Medicine Abbreviated Journal CBM  
  Volume 55 Issue Pages 92–99  
  Keywords Computer aided diagnosis; Nuclear medicine; Machine learning; Image processing; Quantitative analysis  
  Abstract In this work we present a comprehensive computational framework to help in the clinical assessment of cancer response from a pair of time consecutive oncological PET-CT scans. In this scenario, the design and implementation of a supervised machine learning system to predict and quantify cancer progression or response conditions by introducing a novel feature set that models the underlying clinical context is described. Performance results in 100 clinical cases (corresponding to 200 whole body PET-CT scans) in comparing expert-based visual analysis and classifier decision making show up to 70% accuracy within a completely automatic pipeline and 90% accuracy when providing the system with expert-guided PET tumor segmentation masks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SED2014 Serial 2606  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: