|
Abstract |
Handbook of pattern recognition will include contributions from university educators and active research experts. This Handbook is intended to serve as a basic reference on methods and applications of pattern recognition. The primary aim of this handbook is providing the community of pattern recognition with a readable, easy to understand resource that covers introductory, intermediate and advanced topics with equal clarity. Therefore, the Handbook of pattern recognition can serve equally well as reference resource and as classroom textbook. Contributions cover all methods, techniques and applications of pattern recognition. A tentative list of relevant topics might include: 1- Statistical, structural, syntactic pattern recognition. 2- Neural networks, machine learning, data mining. 3- Discrete geometry, algebraic, graph-based techniques for pattern recognition. 4- Face recognition, Signal analysis, image coding and processing, shape and texture analysis. 5- Document processing, text and graphics recognition, digital libraries. 6- Speech recognition, music analysis, multimedia systems. 7- Natural language analysis, information retrieval. 8- Biometrics, biomedical pattern analysis and information systems. 9- Other scientific, engineering, social and economical applications of pattern recognition. 10- Special hardware architectures, software packages for pattern recognition. |
|