toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Zhijie Fang edit  isbn
openurl 
  Title Behavior understanding of vulnerable road users by 2D pose estimation Type Book Whole
  Year (down) 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Anticipating the intentions of vulnerable road users (VRUs) such as pedestrians
and cyclists can be critical for performing safe and comfortable driving maneuvers. This is the case for human driving and, therefore, should be taken into account by systems providing any level of driving assistance, i.e. from advanced driver assistant systems (ADAS) to fully autonomous vehicles (AVs). In this PhD work, we show how the latest advances on monocular vision-based human pose estimation, i.e. those relying on deep Convolutional Neural Networks (CNNs), enable to recognize the intentions of such VRUs. In the case of cyclists, we assume that they follow the established traffic codes to indicate future left/right turns and stop maneuvers with arm signals. In the case of pedestrians, no indications can be assumed a priori. Instead, we hypothesize that the walking pattern of a pedestrian can allow us to determine if he/she has the intention of crossing the road in the path of the egovehicle, so that the ego-vehicle must maneuver accordingly (e.g. slowing down or stopping). In this PhD work, we show how the same methodology can be used for recognizing pedestrians and cyclists’ intentions. For pedestrians, we perform experiments on the publicly available Daimler and JAAD datasets. For cyclists, we did not found an analogous dataset, therefore, we created our own one by acquiring
and annotating corresponding video-sequences which we aim to share with the
research community. Overall, the proposed pipeline provides new state-of-the-art results on the intention recognition of VRUs.
 
  Address May 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;David Vazquez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-948531-6-6 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ Fan2019 Serial 3388  
Permanent link to this record
 

 
Author Sebastian Ramos edit  openurl
  Title Vision-based Detection of Road Hazards for Autonomous Driving Type Report
  Year (down) 2014 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address UAB; September 2014  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Ram2014 Serial 2580  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez; Theo Gevers; Felipe Lumbreras edit   pdf
doi  openurl
  Title Combining Priors, Appearance and Context for Road Detection Type Journal Article
  Year (down) 2014 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 15 Issue 3 Pages 1168-1178  
  Keywords Illuminant invariance; lane markings; road detection; road prior; road scene understanding; vanishing point; 3-D scene layout  
  Abstract Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning.
Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076;ISE Approved no  
  Call Number Admin @ si @ ALG2014 Serial 2501  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Antonio Lopez edit  url
doi  openurl
  Title Evaluating Color Representation for Online Road Detection Type Conference Article
  Year (down) 2013 Publication ICCV Workshop on Computer Vision in Vehicle Technology: From Earth to Mars Abbreviated Journal  
  Volume Issue Pages 594-595  
  Keywords  
  Abstract Detecting traversable road areas ahead a moving vehicle is a key process for modern autonomous driving systems. Most existing algorithms use color to classify pixels as road or background. These algorithms reduce the effect of lighting variations and weather conditions by exploiting the discriminant/invariant properties of different color representations. However, up to date, no comparison between these representations have been conducted. Therefore, in this paper, we perform an evaluation of existing color representations for road detection. More specifically, we focus on color planes derived from RGB data and their most com-
mon combinations. The evaluation is done on a set of 7000 road images acquired
using an on-board camera in different real-driving situations.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVVT:E2M  
  Notes ADAS;ISE Approved no  
  Call Number Admin @ si @ AGL2013 Serial 2794  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Ferran Diego; Antonio Lopez edit   pdf
doi  openurl
  Title Road Geometry Classification by Adaptative Shape Models Type Journal Article
  Year (down) 2013 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 14 Issue 1 Pages 459-468  
  Keywords road detection  
  Abstract Vision-based road detection is important for different applications in transportation, such as autonomous driving, vehicle collision warning, and pedestrian crossing detection. Common approaches to road detection are based on low-level road appearance (e.g., color or texture) and neglect of the scene geometry and context. Hence, using only low-level features makes these algorithms highly depend on structured roads, road homogeneity, and lighting conditions. Therefore, the aim of this paper is to classify road geometries for road detection through the analysis of scene composition and temporal coherence. Road geometry classification is proposed by building corresponding models from training images containing prototypical road geometries. We propose adaptive shape models where spatial pyramids are steered by the inherent spatial structure of road images. To reduce the influence of lighting variations, invariant features are used. Large-scale experiments show that the proposed road geometry classifier yields a high recognition rate of 73.57% ± 13.1, clearly outperforming other state-of-the-art methods. Including road shape information improves road detection results over existing appearance-based methods. Finally, it is shown that invariant features and temporal information provide robustness against disturbing imaging conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;ISE Approved no  
  Call Number Admin @ si @ AGD2013;; ADAS @ adas @ Serial 2269  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Y. LeCun; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Road Scene Segmentation from a Single Image Type Conference Article
  Year (down) 2012 Publication 12th European Conference on Computer Vision Abbreviated Journal  
  Volume 7578 Issue VII Pages 376-389  
  Keywords road detection  
  Abstract Road scene segmentation is important in computer vision for different applications such as autonomous driving and pedestrian detection. Recovering the 3D structure of road scenes provides relevant contextual information to improve their understanding.
In this paper, we use a convolutional neural network based algorithm to learn features from noisy labels to recover the 3D scene layout of a road image. The novelty of the algorithm relies on generating training labels by applying an algorithm trained on a general image dataset to classify on–board images. Further, we propose a novel texture descriptor based on a learned color plane fusion to obtain maximal uniformity in road areas. Finally, acquired (off–line) and current (on–line) information are combined to detect road areas in single images.
From quantitative and qualitative experiments, conducted on publicly available datasets, it is concluded that convolutional neural networks are suitable for learning 3D scene layout from noisy labels and provides a relative improvement of 7% compared to the baseline. Furthermore, combining color planes provides a statistical description of road areas that exhibits maximal uniformity and provides a relative improvement of 8% compared to the baseline. Finally, the improvement is even bigger when acquired and current information from a single image are combined
 
  Address Florence, Italy  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-33785-7 Medium  
  Area Expedition Conference ECCV  
  Notes ADAS;ISE Approved no  
  Call Number Admin @ si @ AGL2012; ADAS @ adas @ agl2012a Serial 2022  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Y. LeCun; Theo Gevers; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Semantic Road Segmentation via Multi-Scale Ensembles of Learned Features Type Conference Article
  Year (down) 2012 Publication 12th European Conference on Computer Vision – Workshops and Demonstrations Abbreviated Journal  
  Volume 7584 Issue Pages 586-595  
  Keywords road detection  
  Abstract Semantic segmentation refers to the process of assigning an object label (e.g., building, road, sidewalk, car, pedestrian) to every pixel in an image. Common approaches formulate the task as a random field labeling problem modeling the interactions between labels by combining local and contextual features such as color, depth, edges, SIFT or HoG. These models are trained to maximize the likelihood of the correct classification given a training set. However, these approaches rely on hand–designed features (e.g., texture, SIFT or HoG) and a higher computational time required in the inference process.
Therefore, in this paper, we focus on estimating the unary potentials of a conditional random field via ensembles of learned features. We propose an algorithm based on convolutional neural networks to learn local features from training data at different scales and resolutions. Then, diversification between these features is exploited using a weighted linear combination. Experiments on a publicly available database show the effectiveness of the proposed method to perform semantic road scene segmentation in still images. The algorithm outperforms appearance based methods and its performance is similar compared to state–of–the–art methods using other sources of information such as depth, motion or stereo.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-33867-0 Medium  
  Area Expedition Conference ECCVW  
  Notes ADAS;ISE Approved no  
  Call Number Admin @ si @ ALG2012; ADAS @ adas Serial 2187  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez edit   pdf
openurl 
  Title Road Detection Based on Illuminant Invariance Type Journal Article
  Year (down) 2011 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 12 Issue 1 Pages 184-193  
  Keywords road detection  
  Abstract By using an onboard camera, it is possible to detect the free road surface ahead of the ego-vehicle. Road detection is of high relevance for autonomous driving, road departure warning, and supporting driver-assistance systems such as vehicle and pedestrian detection. The key for vision-based road detection is the ability to classify image pixels as belonging or not to the road surface. Identifying road pixels is a major challenge due to the intraclass variability caused by lighting conditions. A particularly difficult scenario appears when the road surface has both shadowed and nonshadowed areas. Accordingly, we propose a novel approach to vision-based road detection that is robust to shadows. The novelty of our approach relies on using a shadow-invariant feature space combined with a model-based classifier. The model is built online to improve the adaptability of the algorithm to the current lighting and the presence of other vehicles in the scene. The proposed algorithm works in still images and does not depend on either road shape or temporal restrictions. Quantitative and qualitative experiments on real-world road sequences with heavy traffic and shadows show that the method is robust to shadows and lighting variations. Moreover, the proposed method provides the highest performance when compared with hue-saturation-intensity (HSI)-based algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ AlL2011 Serial 1456  
Permanent link to this record
 

 
Author Fadi Dornaika; Jose Manuel Alvarez; Angel Sappa; Antonio Lopez edit   pdf
doi  openurl
  Title A New Framework for Stereo Sensor Pose through Road Segmentation and Registration Type Journal Article
  Year (down) 2011 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 12 Issue 4 Pages 954-966  
  Keywords road detection  
  Abstract This paper proposes a new framework for real-time estimation of the onboard stereo head's position and orientation relative to the road surface, which is required for any advanced driver-assistance application. This framework can be used with all road types: highways, urban, etc. Unlike existing works that rely on feature extraction in either the image domain or 3-D space, we propose a framework that directly estimates the unknown parameters from the stream of stereo pairs' brightness. The proposed approach consists of two stages that are invoked for every stereo frame. The first stage segments the road region in one monocular view. The second stage estimates the camera pose using a featureless registration between the segmented monocular road region and the other view in the stereo pair. This paper has two main contributions. The first contribution combines a road segmentation algorithm with a registration technique to estimate the online stereo camera pose. The second contribution solves the registration using a featureless method, which is carried out using two different optimization techniques: 1) the differential evolution algorithm and 2) the Levenberg-Marquardt (LM) algorithm. We provide experiments and evaluations of performance. The results presented show the validity of our proposed framework.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ DAS2011; ADAS @ adas @ das2011a Serial 1833  
Permanent link to this record
 

 
Author Ferran Diego; Jose Manuel Alvarez; Joan Serrat; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Vision-based road detection via on-line video registration Type Conference Article
  Year (down) 2010 Publication 13th Annual International Conference on Intelligent Transportation Systems Abbreviated Journal  
  Volume Issue Pages 1135–1140  
  Keywords video alignment; road detection  
  Abstract TB6.2
Road segmentation is an essential functionality for supporting advanced driver assistance systems (ADAS) such as road following and vehicle and pedestrian detection. Significant efforts have been made in order to solve this task using vision-based techniques. The major challenge is to deal with lighting variations and the presence of objects on the road surface. In this paper, we propose a new road detection method to infer the areas of the image depicting road surfaces without performing any image segmentation. The idea is to previously segment manually or semi-automatically the road region in a traffic-free reference video record on a first drive. And then to transfer these regions to the frames of a second video sequence acquired later in a second drive through the same road, in an on-line manner. This is possible because we are able to automatically align the two videos in time and space, that is, to synchronize them and warp each frame of the first video to its corresponding frame in the second one. The geometric transform can thus transfer the road region to the present frame on-line. In order to reduce the different lighting conditions which are present in outdoor scenarios, our approach incorporates a shadowless feature space which represents an image in an illuminant-invariant feature space. Furthermore, we propose a dynamic background subtraction algorithm which removes the regions containing vehicles in the observed frames which are within the transferred road region.
 
  Address Madeira Island (Portugal)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2153-0009 ISBN 978-1-4244-7657-2 Medium  
  Area Expedition Conference ITSC  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ DAS2010 Serial 1424  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: