Vision—based Road Detection via On-line Video Registratio
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Abstract— Road segmentation is an essential functionality for these algorithms based on low-level visual cues fail under
supporting advanced driver assistance systems (ADAS) suas  wide lighting variations (camera over— and under—satomati
road following and vehicle and pedestrian detection. Sigficant due to large constrast changes) and depend on road structure

efforts have been made in order to solve this task using visib d f h it imol d sh d mild
based techniques. The major challenge is to deal with lightg road surtace homogeneity, simpie road shapes, and mi

variations and the presence of objects on the road surfacenl lighting conditions. The performance of these systems is
this paper, we propose a new road detection method to infer &  sometimes improved by including constraints such as tem-

areas of the image depicting road surfaces without performig  poral coherence [5], [6] or road shape restrictions [1] tifou

any image segmentation. The idea is to previously segment they cannot solve the problem completely.
manually or semi—automatically the road region in a traffic— )

free reference video record on a first drive. And then to tranger
these regions to the frames of a second video sequence acedir Aligned 1 Round Manual road segmentation
later in a second drive through the same road, in an on-line =

manner. This is possible because we are able to automaticall
align the two videos in time and space, that is, to synchrone
them and warp each frame of the first video to its correspondig
frame in the second one. The geometric transform can thus
transfer the road region to the present frame on-line. In orcer
to reduce the different lighting conditions which are presat
in outdoor scenarios, our approach incorporates a shadowss
feature space which represents an image in an illuminant—
invariant feature space. Furthermore, we propose a dynamic
background subtraction algorithm which removes the regiors
containing vehicles in the observed frames which are withithe
transferred road region.

Transferred road segmentation

I. INTRODUCTION

Road detection, that is, determining the area of free road
ahead, is a key component of several driving assistance mod-
ules like lane keeping and, vehicle and pedestrian detectio
Beyond the evident interest of knowing the forward desgabl
area, determining the road regions in the images consityerab
reduces the search for such objects, thus reducing false de- (b)
tections and allowing real-time processing. In this paper w
focus on the problem of road detection on images recordeg}. 1. Road detection algorithnfia) shows the road detection via on-line
by a single color camera. The main challenges that a roaieo registration where the manually segmented road meigitransferred
detection method has to face are the continuously changiffy” 1S /eeerce seauerce lo e ‘obsered seduerce maured
background, the presence of different objects like vehicle eft: input image. Right: road detection results in red.
and pedestrian, road types (urban, highways, back-road)
and ambient illumination and weather conditions. Common |n this paper, we describe an original and completely

vision—based algorithms for road detection adopt a bottondifferent approach in that it does not perform any image
up approach whereby low-level pixel or region propertiesegmentation for road detection. Therefore, it does nodl nee
such as color [1], [2] or texture [3], [4] are extracted ando rely on low-level features like color, texture or integsi
grouped according to some similarity measure. Howevefhose effectiveness and suitability varies with the ambien
lighting and road type. The key idea is to previously record
This work was supported by the Spanish Ministry of Educatiom 9 id 9 ypl y dt kp d at y h f
Science under project TRA2007-62526/AUT and researchrpnoge Con- a viaeo sequence_ along so_me road track and at eac rame
solider Ingenio 2010: MIPRCV (CSD2007-00018) and the FPUMfEant manually or semi—automatically segment the road region.
AP2007-01558. y _ On a second round, when the vehicle drives later along
The authors are with Computer Vision Center & Computer Sebept., hi K d d vid hich
Edifici O, Universitat Autbnoma de Barcelona, 08193 Ceydémdel Vallés, this same track, we record a second video sequence wnic
Spain.f erran. di ego@vc. uab. es we call the 'observed’ sequence. Note that, of course, the




vehicle speed varies and this variation is independent surfaces are imaged by a three delta—function sensor un-
the two videos, so that at one same location the speeddsr approximately Planckian light sources it is possible to
different, in general. For each current frame of the obgkrvegenerate an illuminant-invariant imadge [7]. Under these
sequence, we will be able to find out the correspondingssumptions, a log-log plot of two dimensiodabg(R/G),
frame in the reference sequence, that is, the one recordeg(B/G)} values for any surface forms a straight line
at the same or the closest camera location in the first ridprovided camera sensors are fairly narrow-band. Thus, a
In other words, we synchronize the two video sequencéighting change is reduced to a linear transformation along
on-line, while recording the second one. Once found then almost straight line (Fig. 3). This theory holds even for
corresponding reference frame, we compute the geometrieal data with only approximately Planckian lightson-
transform which better warps it to the current 'observedlL.ambertian surfacesand real cameras having only approxi-
frame. Thus, the manually segmented road region can beately narrow—band sensors.

transferredto it. Note that we perform a temporal and a »
spatial alignment, and the two must work even under differ ___ | "
ent lighting conditions and slight relative camera tratistes AN P4
and rotations, as shown in Fig. 1. As a final step, the regior rwse s0%
containing vehicles in the observed frame which are withii A
the transferred road region are removed. This is done I _ ;
thresholding the difference of observed and warped reteren | \,_ * Log (RG] TG ettt o
frames, in a sort of dynamic background subtraction sinc : RETSHIRIEAERI R0 AR MR A
the reference sequence is recorded with the absence of traf
That is a plausible assumption in certain scenarios.

Log (B/G)

Lambertian surface

v}
Planckianlight
Il. ROAD SEGMENTATION FRAMEWORK

The overall road segmentation framework consists of thre
stages (Fig. 2). Given an observed video sequence, in t
first stage, we represent it in an illuminant—invariant fieat
space with the goal of reducing the influence of differen.
lighting conditions. In the second stage, we synchronize
two video sequences in order to find out the correspondi ig. 3. An iI_Iuminant—inva_riant image is obtained under Etasu_m_ptions
frame in the reference sequence to the current frame rg;mﬂ:iﬂ;gg&, 'f‘rirgbert'a” surface and narrow-band:sen This image
the observed sequence. In order to compare properly the
video sequences, all frames of the reference sequence ar¢n short,J is a gray-scale image that is obtained by pro-
also represented in a shadowless feature space. Furtlegrmiecting the{log(R/G), log(B/G)} pixel values of the image
we estimate the geometric transform in order to transfeynto the direction orthogonal to the lighting change lines,
the road segmentation of the reference frame to the currdntariant—directiond. This direction is device dependent and
observed frame. Finally, in the third stage, we refine thelroacan be estimated off-line using the calibration procedure
segmentation by removing objects which appear on the targsft[7].
frame at the place occupied by the transferred road regiog.
These stages are described below. '

Wavelength (nm) Original Shadows are almost

Narrow-Band sensor removed

On-line video registration

The aim of video registration is the alignment of two
different video sequences in the temporal and spatial dimen
sions [8]. The video registration algorithm consists of two
parts: temporal and spatial alignment. Temporal alignment
or synchronization estimates a temporal mapping which

ROAD DETECTION

" Invariant On-line Image ) Refine step
Obs. Seq f::r:v:ri?;r? tz%@%zal registration l(veh detec.)
J

Obs. frame

O”'"“ei‘%{f"s"am” = relates the frames of the observed sequence to frames of
F\/j the reference sequence, such that corresponding pairs of
reference s , .
\gﬁnﬂej frames, show 'similar content’. Once the temporal mapping
has been estimated, the corresponding frame in reference
Fig. 2. Scheme of our road detection algorithm. sequence can be warped to observed frame in order to
) ) compare them pixel-wise. However, registration of two vide
A. Invariant feature space conversion sequences recorded by an on—board camera from a moving

The first stage minimizes the influence of lighting vari-vehicle is a challenging task. It must face (1) varying and
ations converting a image onto an illuminant—invariant feaindependent speed of the cameras in the two sequences
ture space. Finlaysoat al. have shown that iLambertian which implies a non-linear time correspondences and (2)



slight rotations and translations of the camera locatioea duwhere x;_r.: = [x:—r,...,2¢] IS a list of labels which

to dissimilar trajectories. Although several video regibn corresponds the temporal mapping between the reference
techniques have been proposed [9], [10], [11], only ouand observed sequence and, the terpix; ..) and
previous work [8] on video alignment addresses these twe(y;—r.:|x;—r.) are thea prior and the anobservation
specific requirements. Now, we need to add a third importalikelihood respectively. The estimation of labe] ; is the
requirement: the temporal correspondence between the alygument that maximizes the temporal coherence between
served and the reference sequence must be computed on—ltae video sequences summarized as

because we need to obtain the road segmentation right after

each frame has been acquired. Therefore, we propose a on4;4p

line video registration algorithm by extending [8]. The two “t— = if%fggfxtf?\)iklp(yt‘L:t|xt‘L:t)p(xt‘L:t) :

parts of the video registration algorithm, temporal andiapa 3)
alignment, are described in the following two subsections. The priorp(x;_r.;) can be factorized as

OO, p— -1
& I TIN 1y p(xi_r¢) = Plxi_p) H p(zisr | 2k), (@)
t-L t-l t k=t—L

Fig. 4. Temporal meaning of a fixed lag-smoothing of a hiddekav  Under the assumption that the transition probabilitiesare
model where the labet,_; is estimated at time using L images in the ditionally independent given the label values. The intehde
observed sequence, which are from the- L)t" to thett" frame. meaning ofP(zy1 | k) is the following: we assume that
1) On-line synchronizationtet S™ andS° be two video Vehicles do not go backward, that they move always forward
sequences., and T frames |0ng' respective'ﬁ"“ denotes Or at most StOp for some time. Therefore, the Iab@lmust
the reference sequence a8itithe observed video sequence increase monotonically. Henc&(z 1 | ) is defined as
that we suppose to be contained entirely witldh. On— 3
line synchronization consists in estimating a correspogdi p(Trt1 | k) { (5)
frame of the current frame of the observed sequence in the ) ) ) )
reference sequence. This task is formulated as a labellif!€re/ is a constant which gives the same importance at
problem. Each labek; € [1...n,] , refers to the frame the labels satlsfymg the constraint qf Eq. (5). The prior
number in the reference video corresponding totthdrame  (z:-z) for the first label of the fixed—lag smoothing
in the observed sequence. This task is posed as a maximu!@erithm gives the same probability to all labels (i <
posteriori inference problem of a fixed-lag smoothing hitde \¥t—L—1:- - Lt—i—1, -, Tt—i—-1 + A}

Markov model [12] which is defined as The observation likelihood p(y:—p1.:|x:—1.t), measures
the similarity of two video sequences given a temporal cor-

respondence;_.;. The observation likelihood is assumed

if Tpp1 > a0k
0 otherwise,

Tl = if%?ééfp(‘“*l'y”“ @ to be conditional independent given a label. Hence, it can be
. . . . written as
where(); is a set of possible labels at tinte- 1, [ >0 is a .
lag or delay,. > [ is the total set of observed frames used to
infer the labelr,_; andy;_.., are the observations from the PYe-LalXi-r:) = k_lt_[Lp(yklxk) ©)

(t — L)' to thet' in the observed sequence. Note that the _ o
estimationz;_, requiresL frames of the observed sequenceWherep(yx|xzx) describes the similarity between one frame
Fig. 4 illustrates the meaning of a fixed—-lag smoothing®f the reference sequence and another of the observed
The range of labels of;_;, , is [x4__1, 21 + A], Sequence. We want this similarity to be maximum or at least

being A the maximum label difference between consecutivBigh, if two frames are corresponding. Before computing thi
frames, andz;_ , and z;,_;_; the !, | and z!", | similarity, we compute a simply representation of the frame
estimated labels in the reference sequence, respectivepich is called image descriptak,. The image descriptor is
Fixed-lag smoothing infers the labe}_; at timet with a computed from a smoothed image using a Gaussian kernel
delay of frames. The max—product inference algorithm ind downsampled to the/16"" of the original resolution.
applied in Eq. (1) in order to exactly infer; , estimating The imagg descriptod_of the illuminant invariapt frame_
p(xe_1|ye—r+) @s described in Sect. II-A is computed as follows. First, @rti
derivatives(i,, i,,) are computed and the value at each pixel
is set to zero if the gradient magnitude is less th#nof the
p(@i—i|yt—r4) o max  p(Xe—ri|ye—ri) (2)  maximum. Finally, the descriptor is normalized to unit norm
*emLa\out of the vector which are built concatenating the rows,oénd
x xt,??\ﬁ,,Lp(y‘f‘“|xt‘L:t)p(xt‘L:t) i,. We consider the inner product of two image descriptor



as a similarity measure because it measures the coincidemm-linearities. For a detailed description we refer treales

of the gradient orientation in the subsampled image. Hence, [14]. Let M,, and M, be the road segmentation of
our observation probability is defined as the 2" frame in the reference sequence and ttteframe

in the observed sequence. Ongeis estimated, the road

segmentation of thert” frame in the reference sequence,

Plyler) = _AMEEAL N(< dy di >51,07) (7) M_,, (x), is warped to the image coordinates of thetarget
TAy<I<Ay frame in observed sequence as
where 2 controls the likelihood of the similarity measure
between two frames. Thd%/ is the image descriptor of M= Mg, (x+W(x;92)) . (10)

the 2" frame in reference sequence with a translation % Road transferred region refinement

1 and j pixels over x— and y—directions respectively. The i : .
maximum translation of the smoothed downsampled image The reflne.ment .algorlthm of th? road t.ransferre_d region
over x— and y—directions ara, and A, respectively, and cons_lsts basically in removing regions _vvh|ch contains vehi
set to 2 pixels. These translations are set to increase tﬁlgs_ In the_ob_served frame and are within the transferred roa
robustness of the likelihood against slight camera ratatio region. This is done by a dynamic background subtraction.

and translations due to trajectory dissimilarities. In oase, Ve impose that the reference sequence is recorded in the

o2 is to set t00.5 to give a significant likelihood only to absgn_ce oﬁ_lt(rafgc. Jh's ((:jonstt:amt is plausible undir cr;arta g
those frames whose image descriptor form an angle less thegyditions like bac —road, urban scenarios at_ WEEKENS an
approximatelys°. etcetera. The dynamic background subtraction proceed as

2) Spatial RegistrationOn—line temporal alignment esti- follows. Once a pair of corresponding frames are spatially

mates a pair of corresponding frame numbgrs:,) each aligned, we subtract pixel-wise the intensity of such péir o
time a new frame,S9, is acquired. Ideally, for such a SO'résponding frames & — Sy, wherew means that the
pair, the camera was at the same position and orientatiJﬁ"?‘me S;_t is warped to the image coordlnatesSﬁ..Th.ese
However, in practice, the camera pose may be diﬁereﬁyptractlon allow us to sppt dn‘fergnces of potenual |esa?r
due to trajectory dissimilarities, independent acceienat points which are the regions which contains the vehicles

and brakings, and road surface irregularities. Hence, i the observed sequence. Then, we binarize the absolute

coordinates of two corresponding frames are related by V@!ue Of the pixel-subtractionS;;* — Sy | by thresholding

homographyHl = K RK ', whereK = diag(f, f, 1), being automatically using the Otsu’s method [15]. Finally, a aigs

f the focal length of the camera in pixels. The rotation matrigPerator, which is a mathematical morphology, is applied to

R expresses the relative orientation of the camera for or{uz| possible h0|e'|5 mfthef_blnary reglonsddete_ctedc.j Fig. sl
pair of corresponding frames. This rotation matfixcan be trates an example of refinement procedure in order to remove

parameterized by the Euler angi&s= (1., ,, .) (pitch regions on the road surface which contain vehicles. Finally
yaw and roll respectively). We approximategihe homograpH he refinement algorithm consists directly in removing ées
H by a quadratic motion vector fiel) egions, O, from the transferred road segmentatiow,,
' according to a logical XOR operator between them. The
logical XOR operator is only applied on the transferred road

Yy Iz Q i i i
—zy + z segmentation using the logical AND operator.
W(x; Q) = i d Lo ] 0, . @©® ’ ’ i

—f -4 = x Q. 1. RESULTS

This model is quadratic in the andy coordinates but In this secf[ion we present qualitative anq qua_mtitative
linear in§2 and it holds under the assumption of having smalfesults to validate our approach. The algorithm is tested
angles and large focal length [13]. We estim@aising the ©On two different scenarios. The first one scenario is free
well-known additive forward implementation of the Lukas-Of vehicles on both video sequences whereas the second
Kanade algorithm [14] which minimizes the sum of Squaregeals with the presence of other vehicles in the observed
differences between the target frame (observed frafife) Seduence. The length of the observed and reference sequence

and its corresponding transformed reference fréthe in the first and second scenario 580 and 627, and 1318
’ and 1459 frames long, respectively. The observed video

) sequence of each scenario was recorded in a sunny day under
Q" = argmin (Z [S7,(x + W(x;9Q)) —S7(x)] 7). (9) the influence of lighting variation while the reference \dde
o x sequence was recorded in a cloudy day, and hence, it does not
In order to deal with large miss—alignment3, is iter- contains shadows. The difference in the number of frames is
atively estimated in a coarse—to—fine manner. Furthermormde to differences in the trajectory and the vehicle spedld. A
S!., is repeatedly warped at each image pyramid level bassgquences were recorded at the same frame rate, 25fps, using
on previous estimations d? in order to deal with image a SONY DCR-PC330E camcorder. In addition, the average



number of non-road pixels classified as road pixels and FN
is the number of road pixels erroneously marked as non-
road. Each of these measures provides different insight of
the results. Accuracy provides information about the feect

of classifications that are correct. Specificity measures th
proportion of true negatives (i.e. background pixels) whic
are correctly identified as such. Sensitivity, or recallthis
ratio of detecting true positives. Quality is related to the
completeness of the extracted data as well as its correctnes
All these measures range frairo 1, from worst to perfect.

To properly assess the quality of the results, we annotated
manually the road regions of the reference and observed
sequence. Two different evaluations are possible depgndin
on the output step of our on—-board road detection, which are
(d) before and after the refinement step. This comparison allows
to know the contribution of the refinement step. Furthermore
the evaluation is evaluated for each video sequence separat
and the average of all sequences together. The averaged
performance over all the frames is shown in Table. I. The
contribution of the refinement step is negligible on Séq.
because the observed sequence is free of traffic. However,

(e) 4] the refinement step is crucial on Sexjto remove regions
which contains vehicles even if Table. | shows a slight
Zigtébsa{se (;*)Oifsi‘; lisigzcv?lmr]etfri{;emel:‘tf-fraTn*:‘; (E‘;”T‘?ﬁg%?f?;gb;\if:;g?gm increase of performance of the four error measures. The
(S is used to detgct foreground (Eijects (d). T'he known reafhee of the regions that contain vehicles in Sejare basically moving
corresponding frame is transferred to the input image (eyder to remove  vVehicles and parked vehicles on the hard shoulder. The
the foreground vehicles and f|nally obtain the output roeghmtation (f) h|ghest performance is achieved when the refinement Step
is used.

speed of the vehicle is approximatehp) kph. Example Sse?fi 0.372 31;9(5 é.f);‘;f é(,fg(é
results of our on—board road segmentation are shown in Fig.| No Ref. step| Seq.2 | 0.955 | 0.984 | 0.974 | 0.980
6. More results, now in video format, can be viewed at SAe'('q ; 8'322 8'82(; gggg 8'822
http://www.cvc.uab.esffdiego/ITSC2010/RS.htnAll these Ref. step | Seq.2 | 0.961 | 0.985 | 0.080 | 0.982
results suggest that road region is correctly transfenreah f Al 0.962 | 0.986 | 0.982 | 0.983
the reference sequence to observed sequence. Furthermore,

the refinement step handles correctly the presence of ve-
hicles cropping properly them from the transferred road
segmentation. As shown Fig. 6d, errors (red and green) are
mainly located at the road and vehicle boundaries. However, o .
a fraction of these errors is due to the manual road boundary" inherent limitation of the method is the delay before
delimitation of the reference sequence. Another source GPt@ining a desired result which is less thasecond, exactly

errors is due to the inaccurate estimation of the motion fiell§ 800s. However, this is a minor limitation provided a high
W due to synchronization errors. frame-rate camera. Once thedelay frames are acquired,

I . . .our algorithm segments the road surface on real-time at the
Quantitative assessment is provided usin o
. . . ame-—rate of camcorders, which is normabyor 30 frames
four pixel-wise error measures are defined asﬁer second

TABLE |
PERFORMANCE OF OUR ROAD SEGMENTATION ALGORITHM

Accuracy : ACC = ﬁ% IV. CONCLUSIONS

Sens!t!v!ty © TPR = % In this paper we have proposed an approach for road
Specificity : SPC = FLTN detection based on an on-line video registration method.
Quality : g = TPIFPTFN The key idea of the algorithm is to infer the areas of the

image depicting road surfaces using road segmentations of
where TP is the number of correctly labelled road pixelgprevious video sequences. Furthermore, we include a pre—
TN is the number of non-road pixels detected, FP is thand post—processing stage in order to deal with different



(b)

(d)

Fig. 6. Example results. The frame from the reference semuém) is aligned with the input frame (c). The reference naagon (b) is used to generate
the output road segmentation (d). True positives in yelloue negatives in black, false positives in read and falgathes in green, with respect to a
road/non—road classification.

lighting conditions and the presence of vehicles. The pre48] F. Diego, D. Ponsa, J. Serrat, and A. Lopez, “Video atigmt for
processing stage consists in converting each video segquenc
onto an illuminant—invariant feature space whereas thé-pos
processing stage refines the road segmentation extracting
the foreground objects. The algorithm has been succegsfull
applied to detect the road surface under different Iightingo]
conditions and the presence of vehicles. Qualitatively and

guantitatively evaluations prove that this method is quit

accurate under different metrics.
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