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Abstract— Road segmentation is an essential functionality for
supporting advanced driver assistance systems (ADAS) suchas
road following and vehicle and pedestrian detection. Significant
efforts have been made in order to solve this task using vision-
based techniques. The major challenge is to deal with lighting
variations and the presence of objects on the road surface. In
this paper, we propose a new road detection method to infer the
areas of the image depicting road surfaces without performing
any image segmentation. The idea is to previously segment
manually or semi–automatically the road region in a traffic–
free reference video record on a first drive. And then to transfer
these regions to the frames of a second video sequence acquired
later in a second drive through the same road, in an on–line
manner. This is possible because we are able to automatically
align the two videos in time and space, that is, to synchronize
them and warp each frame of the first video to its corresponding
frame in the second one. The geometric transform can thus
transfer the road region to the present frame on–line. In order
to reduce the different lighting conditions which are present
in outdoor scenarios, our approach incorporates a shadowless
feature space which represents an image in an illuminant–
invariant feature space. Furthermore, we propose a dynamic
background subtraction algorithm which removes the regions
containing vehicles in the observed frames which are withinthe
transferred road region.

I. I NTRODUCTION

Road detection, that is, determining the area of free road
ahead, is a key component of several driving assistance mod-
ules like lane keeping and, vehicle and pedestrian detection.
Beyond the evident interest of knowing the forward desirable
area, determining the road regions in the images considerably
reduces the search for such objects, thus reducing false de-
tections and allowing real–time processing. In this paper we
focus on the problem of road detection on images recorded
by a single color camera. The main challenges that a road
detection method has to face are the continuously changing
background, the presence of different objects like vehicles
and pedestrian, road types (urban, highways, back–road)
and ambient illumination and weather conditions. Common
vision–based algorithms for road detection adopt a bottom–
up approach whereby low–level pixel or region properties
such as color [1], [2] or texture [3], [4] are extracted and
grouped according to some similarity measure. However,
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these algorithms based on low–level visual cues fail under
wide lighting variations (camera over– and under–saturation
due to large constrast changes) and depend on road structure,
road surface homogeneity, simple road shapes, and mild
lighting conditions. The performance of these systems is
sometimes improved by including constraints such as tem-
poral coherence [5], [6] or road shape restrictions [1] though
they cannot solve the problem completely.

(a)

(b)

Fig. 1. Road detection algorithm:(a) shows the road detection via on–line
video registration where the manually segmented road region is transferred
from the reference sequence to the ’observed’ sequence being acquired
whereas(b) shows another examples of the meaning of road detection.
Left: input image. Right: road detection results in red.

In this paper, we describe an original and completely
different approach in that it does not perform any image
segmentation for road detection. Therefore, it does not need
to rely on low–level features like color, texture or intensity
whose effectiveness and suitability varies with the ambient
lighting and road type. The key idea is to previously record
a video sequence along some road track and at each frame
manually or semi–automatically segment the road region.
On a second round, when the vehicle drives later along
this same track, we record a second video sequence which
we call the ’observed’ sequence. Note that, of course, the



vehicle speed varies and this variation is independent in
the two videos, so that at one same location the speed is
different, in general. For each current frame of the observed
sequence, we will be able to find out the corresponding
frame in the reference sequence, that is, the one recorded
at the same or the closest camera location in the first ride.
In other words, we synchronize the two video sequences
on–line, while recording the second one. Once found the
corresponding reference frame, we compute the geometric
transform which better warps it to the current ’observed’
frame. Thus, the manually segmented road region can be
transferred to it. Note that we perform a temporal and a
spatial alignment, and the two must work even under differ-
ent lighting conditions and slight relative camera translations
and rotations, as shown in Fig. 1. As a final step, the regions
containing vehicles in the observed frame which are within
the transferred road region are removed. This is done by
thresholding the difference of observed and warped reference
frames, in a sort of dynamic background subtraction since
the reference sequence is recorded with the absence of traffic.
That is a plausible assumption in certain scenarios.

II. ROAD SEGMENTATION FRAMEWORK

The overall road segmentation framework consists of three
stages (Fig. 2). Given an observed video sequence, in the
first stage, we represent it in an illuminant–invariant feature
space with the goal of reducing the influence of different
lighting conditions. In the second stage, we synchronize
two video sequences in order to find out the corresponding
frame in the reference sequence to the current frame in
the observed sequence. In order to compare properly the
video sequences, all frames of the reference sequence are
also represented in a shadowless feature space. Furthermore,
we estimate the geometric transform in order to transfer
the road segmentation of the reference frame to the current
observed frame. Finally, in the third stage, we refine the road
segmentation by removing objects which appear on the target
frame at the place occupied by the transferred road region.
These stages are described below.

Fig. 2. Scheme of our road detection algorithm.

A. Invariant feature space conversion

The first stage minimizes the influence of lighting vari-
ations converting a image onto an illuminant–invariant fea-
ture space. Finlaysonet al. have shown that ifLambertian

surfaces are imaged by a three delta–function sensor un-
der approximately Planckian light sources it is possible to
generate an illuminant-invariant imageI [7]. Under these
assumptions, a log-log plot of two dimensional{log(R/G),
log(B/G)} values for any surface forms a straight line
provided camera sensors are fairly narrow-band. Thus, a
lighting change is reduced to a linear transformation along
an almost straight line (Fig. 3). This theory holds even for
real data with only approximately Planckian lights,non-
Lambertian surfacesand real cameras having only approxi-
mately narrow–band sensors.

Fig. 3. An illuminant–invariant image is obtained under theassumptions
of Planckian light, Lambertian surface and narrow-band sensors. This image
is almost shadow free.

In short,I is a gray-scale image that is obtained by pro-
jecting the{log(R/G), log(B/G)} pixel values of the image
onto the direction orthogonal to the lighting change lines,
invariant–directionθ. This direction is device dependent and
can be estimated off-line using the calibration procedure
of [7].

B. On–line video registration

The aim of video registration is the alignment of two
different video sequences in the temporal and spatial dimen-
sions [8]. The video registration algorithm consists of two
parts: temporal and spatial alignment. Temporal alignment
or synchronization estimates a temporal mapping which
relates the frames of the observed sequence to frames of
the reference sequence, such that corresponding pairs of
frames, show ’similar content’. Once the temporal mapping
has been estimated, the corresponding frame in reference
sequence can be warped to observed frame in order to
compare them pixel–wise. However, registration of two video
sequences recorded by an on–board camera from a moving
vehicle is a challenging task. It must face (1) varying and
independent speed of the cameras in the two sequences
which implies a non–linear time correspondences and (2)



slight rotations and translations of the camera location due
to dissimilar trajectories. Although several video registration
techniques have been proposed [9], [10], [11], only our
previous work [8] on video alignment addresses these two
specific requirements. Now, we need to add a third important
requirement: the temporal correspondence between the ob-
served and the reference sequence must be computed on–line,
because we need to obtain the road segmentation right after
each frame has been acquired. Therefore, we propose a on–
line video registration algorithm by extending [8]. The two
parts of the video registration algorithm, temporal and spatial
alignment, are described in the following two subsections.

Fig. 4. Temporal meaning of a fixed lag–smoothing of a hidden Markov
model where the labelxt−l is estimated at timet using L images in the
observed sequence, which are from the(t − L)th to the tth frame.

1) On–line synchronization:Let Sr andSo be two video
sequencesnr and no frames long, respectively.Sr denotes
the reference sequence andSo the observed video sequence,
that we suppose to be contained entirely withinSr. On–
line synchronization consists in estimating a corresponding
frame of the current frame of the observed sequence in the
reference sequence. This task is formulated as a labelling
problem. Each labelxt ∈ [1 . . . nr] , refers to the frame
number in the reference video corresponding to thetth frame
in the observed sequence. This task is posed as a maximum a
posteriori inference problem of a fixed-lag smoothing hidden
Markov model [12] which is defined as

x∗
t−l = argmax

xt−l∈Ωt

p(xt−l|yt−L:t) (1)

whereΩt is a set of possible labels at timet − l, l ≥ 0 is a
lag or delay,L ≥ l is the total set of observed frames used to
infer the labelxt−l andyt−L:t are the observations from the
(t−L)th to the tth in the observed sequence. Note that the
estimationx∗

t−l requiresL frames of the observed sequence.
Fig. 4 illustrates the meaning of a fixed–lag smoothing.
The range of labels ofxt−l, Ωt, is [xt−L−1, xt−l−1 + ∆],
being∆ the maximum label difference between consecutive
frames, andxt−L−1 and xt−l−1 the xth

t−L−1 and xth
t−l−1

estimated labels in the reference sequence, respectively.
Fixed-lag smoothing infers the labelxt−l at time t with a
delay of l frames. The max–product inference algorithm is
applied in Eq. (1) in order to exactly inferx∗

t−l estimating
p(xt−l|yt−L:t) as

p(xt−l|yt−L:t) ∝ max
xt−L:t\xt−l

p(xt−L:t|yt−L:t) (2)

∝ max
xt−L:t\xt−l

p(yt−L:t|xt−L:t)p(xt−L:t)

where xt−L:t = [xt−L, . . . , xt] is a list of labels which
corresponds the temporal mapping between the reference
and observed sequence and, the termsp(xt−L:t) and
p(yt−L:t|xt−L:t) are the a prior and the anobservation
likelihood, respectively. The estimation of labelxt−l is the
argument that maximizes the temporal coherence between
two video sequences summarized as

xMAP
t−l = argmax

xt−l∈Ωt

max
xt−L:t\xt−l

p(yt−L:t|xt−L:t)p(xt−L:t) .

(3)
The priorp(xt−L:t) can be factorized as

p(xt−L:t) = P (xt−L)

t−1
∏

k=t−L

p(xk+1 | xk), (4)

under the assumption that the transition probabilities arecon-
ditionally independent given the label values. The intended
meaning ofP (xk+1 | xk) is the following: we assume that
vehicles do not go backward, that they move always forward
or at most stop for some time. Therefore, the labelsxt must
increase monotonically. Hence,P (xk+1 | xk) is defined as

p(xk+1 | xk) =

{

β if xk+1 ≥ xk

0 otherwise,
(5)

whereβ is a constant which gives the same importance at
the labels satisfying the constraint of Eq. (5). The prior
P (xt−L) for the first label of the fixed–lag smoothing
algorithm gives the same probability to all labels inΩt ∈
{xt−L−1, . . . , xt−l−1, . . . , xt−l−1 + ∆}.

The observation likelihood, p(yt−L:t|xt−L:t), measures
the similarity of two video sequences given a temporal cor-
respondencext−L:t. The observation likelihood is assumed
to be conditional independent given a label. Hence, it can be
written as

p(yt−L:t|xt−L:t) =

t
∏

k=t−L

p(yk|xk) (6)

wherep(yk|xk) describes the similarity between one frame
of the reference sequence and another of the observed
sequence. We want this similarity to be maximum or at least
high, if two frames are corresponding. Before computing this
similarity, we compute a simply representation of the frames,
which is called image descriptord∗. The image descriptor is
computed from a smoothed image using a Gaussian kernel
and downsampled to the1/16th of the original resolution.
The image descriptord of the illuminant invariant frame
described in Sect. II-A is computed as follows. First, partial
derivatives(ix, iy) are computed and the value at each pixel
is set to zero if the gradient magnitude is less than5% of the
maximum. Finally, the descriptor is normalized to unit norm
of the vector which are built concatenating the rows ofix and
iy. We consider the inner product of two image descriptor



as a similarity measure because it measures the coincidence
of the gradient orientation in the subsampled image. Hence,
our observation probability is defined as

P (yk|xk) = max
−∆x<i<∆x

−∆y<j<∆y

N (< di,j
xk

,dk >; 1, σ2
s) (7)

whereσ2
s controls the likelihood of the similarity measure

between two frames. Thedi,j
xk

is the image descriptor of
the xth

t frame in reference sequence with a translation of
i and j pixels over x– and y–directions respectively. The
maximum translation of the smoothed downsampled image
over x– and y–directions are∆x and ∆y respectively, and
set to 2 pixels. These translations are set to increase the
robustness of the likelihood against slight camera rotations
and translations due to trajectory dissimilarities. In ourcase,
σ2

s is to set to0.5 to give a significant likelihood only to
those frames whose image descriptor form an angle less than
approximately5◦.

2) Spatial Registration:On–line temporal alignment esti-
mates a pair of corresponding frame numbers(t, xt) each
time a new frame,So

t , is acquired. Ideally, for such a
pair, the camera was at the same position and orientation.
However, in practice, the camera pose may be different
due to trajectory dissimilarities, independent accelerations
and brakings, and road surface irregularities. Hence, the
coordinates of two corresponding frames are related by a
homographyH = KRK−1, whereK = diag(f, f, 1), being
f the focal length of the camera in pixels. The rotation matrix
R expresses the relative orientation of the camera for one
pair of corresponding frames. This rotation matrixR can be
parameterized by the Euler anglesΩ = (Ωx, Ωy, Ωz) (pitch,
yaw and roll respectively). We approximate the homography
H by a quadratic motion vector fieldW ,

W(x;Ω) =

[

−xy
f

f + x2

f
−y

−f − y2

f
xy
f

x

]





Ωx

Ωy

Ωz



 . (8)

This model is quadratic in thex and y coordinates but
linear inΩ and it holds under the assumption of having small
angles and large focal length [13]. We estimateΩ using the
well-known additive forward implementation of the Lukas–
Kanade algorithm [14] which minimizes the sum of squared
differences between the target frame (observed frame)So

t

and its corresponding transformed reference frameSr
xt

:

Ω∗ = argmin
Ω

(

∑

x

[

Sr
xt

(x + W(x;Ω)) − So
t (x)

]2)

. (9)

In order to deal with large miss–alignments,Ω is iter-
atively estimated in a coarse–to–fine manner. Furthermore,
Sr

xt
is repeatedly warped at each image pyramid level based

on previous estimations ofΩ in order to deal with image

non–linearities. For a detailed description we refer the reader
to [14]. Let Mxt

and Mt be the road segmentation of
the xth

t frame in the reference sequence and thetth frame
in the observed sequence. OnceΩ is estimated, the road
segmentation of thexth

t frame in the reference sequence,
Mxt

(x), is warped to the image coordinates of thetth target
frame in observed sequence as

Mt = Mxt
(x + W(x;Ω)) . (10)

C. Road transferred region refinement

The refinement algorithm of the road transferred region
consists basically in removing regions which contains vehi-
cles in the observed frame and are within the transferred road
region. This is done by a dynamic background subtraction.
We impose that the reference sequence is recorded in the
absence of traffic. This constraint is plausible under certain
conditions like back–road, urban scenarios at weekends and
etcetera. The dynamic background subtraction proceed as
follows. Once a pair of corresponding frames are spatially
aligned, we subtract pixel–wise the intensity of such pair of
corresponding frames asSr,w

xt
−So

t , wherew means that the
frameSr

xt
is warped to the image coordinates ofSo

t . These
subtraction allow us to spot differences of potential interest
points which are the regions which contains the vehicles
in the observed sequence. Then, we binarize the absolute
value of the pixel–subtraction,| Sr,w

xt
−So

t | by thresholding
automatically using the Otsu’s method [15]. Finally, a closing
operator, which is a mathematical morphology, is applied to
fill possible holes in the binary regions detected. Fig. 3 illus-
trates an example of refinement procedure in order to remove
regions on the road surface which contain vehicles. Finally,
the refinement algorithm consists directly in removing these
regions,Ot, from the transferred road segmentation,Mt,
according to a logical XOR operator between them. The
logical XOR operator is only applied on the transferred road
segmentation using the logical AND operator.

III. R ESULTS

In this section we present qualitative and quantitative
results to validate our approach. The algorithm is tested
on two different scenarios. The first one scenario is free
of vehicles on both video sequences whereas the second
deals with the presence of other vehicles in the observed
sequence. The length of the observed and reference sequence
in the first and second scenario is520 and 627, and 1318
and 1459 frames long, respectively. The observed video
sequence of each scenario was recorded in a sunny day under
the influence of lighting variation while the reference video
sequence was recorded in a cloudy day, and hence, it does not
contains shadows. The difference in the number of frames is
due to differences in the trajectory and the vehicle speed. All
sequences were recorded at the same frame rate, 25fps, using
a SONY DCR-PC330E camcorder. In addition, the average
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Fig. 5. Road surface refinement. The corresponding frame from the
database (a) is aligned with the input frame (b). The difference between them
(c) is used to detect foreground objects (d). The known road surface of the
corresponding frame is transferred to the input image (e) inorder to remove
the foreground vehicles and finally obtain the output road segmentation (f).

speed of the vehicle is approximately50 kph. Example
results of our on–board road segmentation are shown in Fig.
6. More results, now in video format, can be viewed at
http://www.cvc.uab.es/∼fdiego/ITSC2010/RS.htm. All these
results suggest that road region is correctly transferred from
the reference sequence to observed sequence. Furthermore,
the refinement step handles correctly the presence of ve-
hicles cropping properly them from the transferred road
segmentation. As shown Fig. 6d, errors (red and green) are
mainly located at the road and vehicle boundaries. However,
a fraction of these errors is due to the manual road boundary
delimitation of the reference sequence. Another source of
errors is due to the inaccurate estimation of the motion field
W due to synchronization errors.

Quantitative assessment is provided using
four pixel–wise error measures are defined as:

Accuracy : ACC = TP+TN
TP+FP+FN+TN

Sensitivity : TPR = TP
TP+FN

Specificity : SPC = TN
FP+TN

Quality : ĝ = TP
TP+FP+FN

where TP is the number of correctly labelled road pixels,
TN is the number of non-road pixels detected, FP is the

number of non-road pixels classified as road pixels and FN
is the number of road pixels erroneously marked as non-
road. Each of these measures provides different insight of
the results. Accuracy provides information about the fraction
of classifications that are correct. Specificity measures the
proportion of true negatives (i.e. background pixels) which
are correctly identified as such. Sensitivity, or recall, isthe
ratio of detecting true positives. Quality is related to the
completeness of the extracted data as well as its correctness.
All these measures range from0 to 1, from worst to perfect.

To properly assess the quality of the results, we annotated
manually the road regions of the reference and observed
sequence. Two different evaluations are possible depending
on the output step of our on–board road detection, which are
before and after the refinement step. This comparison allows
to know the contribution of the refinement step. Furthermore,
the evaluation is evaluated for each video sequence separately
and the average of all sequences together. The averaged
performance over all the frames is shown in Table. I. The
contribution of the refinement step is negligible on Seq.1
because the observed sequence is free of traffic. However,
the refinement step is crucial on Seq.2 to remove regions
which contains vehicles even if Table. I shows a slight
increase of performance of the four error measures. The
regions that contain vehicles in Seq.2 are basically moving
vehicles and parked vehicles on the hard shoulder. The
highest performance is achieved when the refinement step
is used.

Seq. ĝ SPC TPR ACC

No Ref. step
Seq.1 0.972 0.992 0.983 0.988
Seq.2 0.955 0.984 0.974 0.980
All 0.960 0.986 0.977 0.982

Ref. step
Seq.1 0.966 0.987 0.986 0.986
Seq.2 0.961 0.985 0.980 0.982
All 0.962 0.986 0.982 0.983

TABLE I

PERFORMANCE OF OUR ROAD SEGMENTATION ALGORITHM.

An inherent limitation of the method is the delay before
obtaining a desired result which is less than1 second, exactly
is 800ms. However, this is a minor limitation provided a high
frame–rate camera. Once thel delay frames are acquired,
our algorithm segments the road surface on real–time at the
frame–rate of camcorders, which is normally25 or 30 frames
per second.

IV. CONCLUSIONS

In this paper we have proposed an approach for road
detection based on an on–line video registration method.
The key idea of the algorithm is to infer the areas of the
image depicting road surfaces using road segmentations of
previous video sequences. Furthermore, we include a pre–
and post–processing stage in order to deal with different
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Fig. 6. Example results. The frame from the reference sequence (a) is aligned with the input frame (c). The reference roadregion (b) is used to generate
the output road segmentation (d). True positives in yellow,true negatives in black, false positives in read and false negatives in green, with respect to a
road/non–road classification.

lighting conditions and the presence of vehicles. The pre–
processing stage consists in converting each video sequence
onto an illuminant–invariant feature space whereas the post–
processing stage refines the road segmentation extracting
the foreground objects. The algorithm has been successfully
applied to detect the road surface under different lighting
conditions and the presence of vehicles. Qualitatively and
quantitatively evaluations prove that this method is quite
accurate under different metrics.
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