toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jose Manuel Alvarez edit  openurl
  Title On-Board Road Surface Segmentation Type Report
  Year 2007 Publication CVC Technical Report #108 Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up)  
  Abstract  
  Address CVC (UAB)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Alv2007 Serial 820  
Permanent link to this record
 

 
Author Angel Sappa; Rosa Herrero; Fadi Dornaika; David Geronimo; Antonio Lopez edit   pdf
url  openurl
  Title Road Approximation in Euclidean and v-Disparity Space: A Comparative Study Type Conference Article
  Year 2007 Publication Computer Aided Systems Theory, Abbreviated Journal  
  Volume 4739 Issue Pages 1105–1112  
  Keywords (up)  
  Abstract This paper presents a comparative study between two road approximation techniques—planar surfaces—from stereo vision data. The first approach is carried out in the v-disparity space and is based on a voting scheme, the Hough transform. The second one consists in computing the best fitting plane for the whole 3D road data points, directly in the Euclidean space, by using least squares fitting. The comparative study is initially performed over a set of different synthetic surfaces
(e.g., plane, quadratic surface, cubic surface) digitized by a virtual stereo head; then real data obtained with a commercial stereo head are used. The comparative study is intended to be used as a criterion for fining the best technique according to the road geometry. Additionally, it highlights common problems driven from a wrong assumption about the scene’s prior knowledge.
 
  Address Las Palmas de Gran Canaria (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference EUROCAST  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ SHD2007b Serial 917  
Permanent link to this record
 

 
Author Angel Sappa; Rosa Herrero; Fadi Dornaika; David Geronimo; Antonio Lopez edit   pdf
openurl 
  Title Road Approximation in Euclidean and v-Disparity Space: A Comparative Study Type Conference Article
  Year 2007 Publication EUROCAST2007, Workshop on Cybercars and Intelligent Vehicles Abbreviated Journal  
  Volume Issue Pages 368–369  
  Keywords (up)  
  Abstract This paper presents a comparative study between two road approximation techniques—planar surfaces—from stereo vision data. The first approach is carried out in the v-disparity space and is based on a voting scheme, the Hough transform. The second one consists in computing the best fitting plane for the whole 3D road data points, directly in the Euclidean space, by using least squares fitting. The comparative study is initially performed over a set of different synthetic surfaces
(e.g., plane, quadratic surface, cubic surface) digitized by a virtual stereo head; then real data obtained with a commercial stereo head are used. The comparative study is intended to be used as a criterion for fining the best technique according to the road geometry. Additionally, it highlights common problems driven from a wrong assumption about the scene’s prior knowledge.
 
  Address Las Palmas de Gran Canaria (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ SHD2007a Serial 936  
Permanent link to this record
 

 
Author Jose Manuel Alvarez edit  isbn
openurl 
  Title Combining Context and Appearance for Road Detection Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up)  
  Abstract Road traffic crashes have become a major cause of death and injury throughout the world.
Hence, in order to improve road safety, the automobile manufacture is moving towards the
development of vehicles with autonomous functionalities such as keeping in the right lane, safe distance keeping between vehicles or regulating the speed of the vehicle according to the traffic conditions. A key component of these systems is vision–based road detection that aims to detect the free road surface ahead the moving vehicle. Detecting the road using a monocular vision system is very challenging since the road is an outdoor scenario imaged from a mobile platform. Hence, the detection algorithm must be able to deal with continuously changing imaging conditions such as the presence ofdifferent objects (vehicles, pedestrians), different environments (urban, highways, off–road), different road types (shape, color), and different imaging conditions (varying illumination, different viewpoints and changing weather conditions). Therefore, in this thesis, we focus on vision–based road detection using a single color camera. More precisely, we first focus on analyzing and grouping pixels according to their low–level properties. In this way, two different approaches are presented to exploit
color and photometric invariance. Then, we focus the research of the thesis on exploiting context information. This information provides relevant knowledge about the road not using pixel features from road regions but semantic information from the analysis of the scene.
In this way, we present two different approaches to infer the geometry of the road ahead
the moving vehicle. Finally, we focus on combining these context and appearance (color)
approaches to improve the overall performance of road detection algorithms. The qualitative and quantitative results presented in this thesis on real–world driving sequences show that the proposed method is robust to varying imaging conditions, road types and scenarios going beyond the state–of–the–art.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Theo Gevers  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-937261-8-8 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Alv2010 Serial 1454  
Permanent link to this record
 

 
Author Sebastian Ramos edit  openurl
  Title Vision-based Detection of Road Hazards for Autonomous Driving Type Report
  Year 2014 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up)  
  Abstract  
  Address UAB; September 2014  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Ram2014 Serial 2580  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Antonio Lopez edit  url
doi  openurl
  Title Evaluating Color Representation for Online Road Detection Type Conference Article
  Year 2013 Publication ICCV Workshop on Computer Vision in Vehicle Technology: From Earth to Mars Abbreviated Journal  
  Volume Issue Pages 594-595  
  Keywords (up)  
  Abstract Detecting traversable road areas ahead a moving vehicle is a key process for modern autonomous driving systems. Most existing algorithms use color to classify pixels as road or background. These algorithms reduce the effect of lighting variations and weather conditions by exploiting the discriminant/invariant properties of different color representations. However, up to date, no comparison between these representations have been conducted. Therefore, in this paper, we perform an evaluation of existing color representations for road detection. More specifically, we focus on color planes derived from RGB data and their most com-
mon combinations. The evaluation is done on a set of 7000 road images acquired
using an on-board camera in different real-driving situations.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVVT:E2M  
  Notes ADAS;ISE Approved no  
  Call Number Admin @ si @ AGL2013 Serial 2794  
Permanent link to this record
 

 
Author Zhijie Fang edit  isbn
openurl 
  Title Behavior understanding of vulnerable road users by 2D pose estimation Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up)  
  Abstract Anticipating the intentions of vulnerable road users (VRUs) such as pedestrians
and cyclists can be critical for performing safe and comfortable driving maneuvers. This is the case for human driving and, therefore, should be taken into account by systems providing any level of driving assistance, i.e. from advanced driver assistant systems (ADAS) to fully autonomous vehicles (AVs). In this PhD work, we show how the latest advances on monocular vision-based human pose estimation, i.e. those relying on deep Convolutional Neural Networks (CNNs), enable to recognize the intentions of such VRUs. In the case of cyclists, we assume that they follow the established traffic codes to indicate future left/right turns and stop maneuvers with arm signals. In the case of pedestrians, no indications can be assumed a priori. Instead, we hypothesize that the walking pattern of a pedestrian can allow us to determine if he/she has the intention of crossing the road in the path of the egovehicle, so that the ego-vehicle must maneuver accordingly (e.g. slowing down or stopping). In this PhD work, we show how the same methodology can be used for recognizing pedestrians and cyclists’ intentions. For pedestrians, we perform experiments on the publicly available Daimler and JAAD datasets. For cyclists, we did not found an analogous dataset, therefore, we created our own one by acquiring
and annotating corresponding video-sequences which we aim to share with the
research community. Overall, the proposed pipeline provides new state-of-the-art results on the intention recognition of VRUs.
 
  Address May 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;David Vazquez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-948531-6-6 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ Fan2019 Serial 3388  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez; Theo Gevers; Felipe Lumbreras edit   pdf
doi  openurl
  Title Combining Priors, Appearance and Context for Road Detection Type Journal Article
  Year 2014 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 15 Issue 3 Pages 1168-1178  
  Keywords (up) Illuminant invariance; lane markings; road detection; road prior; road scene understanding; vanishing point; 3-D scene layout  
  Abstract Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning.
Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076;ISE Approved no  
  Call Number Admin @ si @ ALG2014 Serial 2501  
Permanent link to this record
 

 
Author Antonio Lopez; Joan Serrat; Cristina Cañero; Felipe Lumbreras; T. Graf edit   pdf
doi  openurl
  Title Robust lane markings detection and road geometry computation Type Journal Article
  Year 2010 Publication International Journal of Automotive Technology Abbreviated Journal IJAT  
  Volume 11 Issue 3 Pages 395–407  
  Keywords (up) lane markings  
  Abstract Detection of lane markings based on a camera sensor can be a low-cost solution to lane departure and curve-over-speed warnings. A number of methods and implementations have been reported in the literature. However, reliable detection is still an issue because of cast shadows, worn and occluded markings, variable ambient lighting conditions, for example. We focus on increasing detection reliability in two ways. First, we employed an image feature other than the commonly used edges: ridges, which we claim addresses this problem better. Second, we adapted RANSAC, a generic robust estimation method, to fit a parametric model of a pair of lane lines to the image features, based on both ridgeness and ridge orientation. In addition, the model was fitted for the left and right lane lines simultaneously to enforce a consistent result. Four measures of interest for driver assistance applications were directly computed from the fitted parametric model at each frame: lane width, lane curvature, and vehicle yaw angle and lateral offset with regard the lane medial axis. We qualitatively assessed our method in video sequences captured on several road types and under very different lighting conditions. We also quantitatively assessed it on synthetic but realistic video sequences for which road geometry and vehicle trajectory ground truth are known.  
  Address  
  Corporate Author Thesis  
  Publisher The Korean Society of Automotive Engineers Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1229-9138 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ LSC2010 Serial 1300  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez; Ramon Baldrich edit   pdf
openurl 
  Title Shadow Resistant Road Segmentation from a Mobile Monocular System Type Conference Article
  Year 2007 Publication 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4477:9–16 Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) road detection  
  Abstract  
  Address Gerona (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;CIC Approved no  
  Call Number ADAS @ adas @ ALB2007 Serial 943  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: