toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Mingyi Yang; Luis Herranz; Fei Yang; Luka Murn; Marc Gorriz Blanch; Shuai Wan; Fuzheng Yang; Marta Mrak edit  url
doi  openurl
  Title Semantic Preprocessor for Image Compression for Machines Type Conference Article
  Year (down) 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Visual content is being increasingly transmitted and consumed by machines rather than humans to perform automated content analysis tasks. In this paper, we propose an image preprocessor that optimizes the input image for machine consumption prior to encoding by an off-the-shelf codec designed for human consumption. To achieve a better trade-off between the accuracy of the machine analysis task and bitrate, we propose leveraging pre-extracted semantic information to improve the preprocessor’s ability to accurately identify and filter out task-irrelevant information. Furthermore, we propose a two-part loss function to optimize the preprocessor, consisted of a rate-task performance loss and a semantic distillation loss, which helps the reconstructed image obtain more information that contributes to the accuracy of the task. Experiments show that the proposed preprocessor can save up to 48.83% bitrate compared with the method without the preprocessor, and save up to 36.24% bitrate compared to existing preprocessors for machine vision.  
  Address Rodhes Islands; Greece; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICASSP  
  Notes MACO; LAMP Approved no  
  Call Number Admin @ si @ YHY2023 Serial 3912  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Asma Bensalah; Jialuo Chen; Alicia Fornes; Michelle Waldispühl edit  url
doi  openurl
  Title A User Perspective on HTR methods for the Automatic Transcription of Rare Scripts: The Case of Codex Runicus Just Accepted Type Journal Article
  Year (down) 2023 Publication ACM Journal on Computing and Cultural Heritage Abbreviated Journal JOCCH  
  Volume 15 Issue 4 Pages 1-18  
  Keywords  
  Abstract Recent breakthroughs in Artificial Intelligence, Deep Learning and Document Image Analysis and Recognition have significantly eased the creation of digital libraries and the transcription of historical documents. However, for documents in rare scripts with few labelled training data available, current Handwritten Text Recognition (HTR) systems are too constraint. Moreover, research on HTR often focuses on technical aspects only, and rarely puts emphasis on implementing software tools for scholars in Humanities. In this article, we describe, compare and analyse different transcription methods for rare scripts. We evaluate their performance in a real use case of a medieval manuscript written in the runic script (Codex Runicus) and discuss advantages and disadvantages of each method from the user perspective. From this exhaustive analysis and comparison with a fully manual transcription, we raise conclusions and provide recommendations to scholars interested in using automatic transcription tools.  
  Address  
  Corporate Author Thesis  
  Publisher ACM Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ SBC2023 Serial 3732  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Pau Torras; Jialuo Chen; Alicia Fornes edit  url
openurl 
  Title An Evaluation of Handwritten Text Recognition Methods for Historical Ciphered Manuscripts Type Conference Article
  Year (down) 2023 Publication 7th International Workshop on Historical Document Imaging and Processing Abbreviated Journal  
  Volume Issue Pages 7-12  
  Keywords  
  Abstract This paper investigates the effectiveness of different deep learning HTR families, including LSTM, Seq2Seq, and transformer-based approaches with self-supervised pretraining, in recognizing ciphered manuscripts from different historical periods and cultures. The goal is to identify the most suitable method or training techniques for recognizing ciphered manuscripts and to provide insights into the challenges and opportunities in this field of research. We evaluate the performance of these models on several datasets of ciphered manuscripts and discuss their results. This study contributes to the development of more accurate and efficient methods for recognizing historical manuscripts for the preservation and dissemination of our cultural heritage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HIP  
  Notes DAG Approved no  
  Call Number Admin @ si @ STC2023 Serial 3849  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Sanket Biswas; Andres Mafla; Ali Furkan Biten; Alicia Fornes; Yousri Kessentini; Josep Llados; Lluis Gomez; Dimosthenis Karatzas edit  url
openurl 
  Title Text-DIAE: a self-supervised degradation invariant autoencoder for text recognition and document enhancement Type Conference Article
  Year (down) 2023 Publication Proceedings of the 37th AAAI Conference on Artificial Intelligence Abbreviated Journal  
  Volume 37 Issue 2 Pages  
  Keywords Representation Learning for Vision; CV Applications; CV Language and Vision; ML Unsupervised; Self-Supervised Learning  
  Abstract In this paper, we propose a Text-Degradation Invariant Auto Encoder (Text-DIAE), a self-supervised model designed to tackle two tasks, text recognition (handwritten or scene-text) and document image enhancement. We start by employing a transformer-based architecture that incorporates three pretext tasks as learning objectives to be optimized during pre-training without the usage of labelled data. Each of the pretext objectives is specifically tailored for the final downstream tasks. We conduct several ablation experiments that confirm the design choice of the selected pretext tasks. Importantly, the proposed model does not exhibit limitations of previous state-of-the-art methods based on contrastive losses, while at the same time requiring substantially fewer data samples to converge. Finally, we demonstrate that our method surpasses the state-of-the-art in existing supervised and self-supervised settings in handwritten and scene text recognition and document image enhancement. Our code and trained models will be made publicly available at https://github.com/dali92002/SSL-OCR  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AAAI  
  Notes DAG Approved no  
  Call Number Admin @ si @ SBM2023 Serial 3848  
Permanent link to this record
 

 
Author Mohammad Momeny; Ali Asghar Neshat; Ahmad Jahanbakhshi; Majid Mahmoudi; Yiannis Ampatzidis; Petia Radeva edit  url
openurl 
  Title Grading and fraud detection of saffron via learning-to-augment incorporated Inception-v4 CNN Type Journal Article
  Year (down) 2023 Publication Food Control Abbreviated Journal FC  
  Volume 147 Issue Pages 109554  
  Keywords  
  Abstract Saffron is a well-known product in the food industry. It is one of the spices that are sometimes adulterated with the sole motive of gaining more economic profit. Today, machine vision systems are widely used in controlling the quality of food and agricultural products as a new, non-destructive, and inexpensive approach. In this study, a machine vision system based on deep learning was used to detect fraud and saffron quality. A dataset of 1869 images was created and categorized in 6 classes including: dried saffron stigma using a dryer; dried saffron stigma using pressing method; pure stem of saffron; sunflower; saffron stem mixed with food coloring; and corn silk mixed with food coloring. A Learning-to-Augment incorporated Inception-v4 Convolutional Neural Network (LAII-v4 CNN) was developed for grading and fraud detection of saffron in images captured by smartphones. The best policies of data augmentation were selected with the proposed LAII-v4 CNN using images corrupted by Gaussian, speckle, and impulse noise to address overfitting the model. The proposed LAII-v4 CNN compared with regular CNN-based methods and traditional classifiers. Ensemble of Bagged Decision Trees, Ensemble of Boosted Decision Trees, k-Nearest Neighbor, Random Under-sampling Boosted Trees, and Support Vector Machine were used for classification of the features extracted by Histograms of Oriented Gradients and Local Binary Patterns, and selected by the Principal Component Analysis. The results showed that the proposed LAII-v4 CNN with an accuracy of 99.5% has achieved the best performance by employing batch normalization, Dropout, and leaky ReLU.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ MNJ2023 Serial 3882  
Permanent link to this record
 

 
Author Olivier Penacchio; Xavier Otazu; Arnold J Wilkings; Sara M. Haigh edit  url
openurl 
  Title A mechanistic account of visual discomfort Type Journal Article
  Year (down) 2023 Publication Frontiers in Neuroscience Abbreviated Journal FN  
  Volume 17 Issue Pages  
  Keywords  
  Abstract Much of the neural machinery of the early visual cortex, from the extraction of local orientations to contextual modulations through lateral interactions, is thought to have developed to provide a sparse encoding of contour in natural scenes, allowing the brain to process efficiently most of the visual scenes we are exposed to. Certain visual stimuli, however, cause visual stress, a set of adverse effects ranging from simple discomfort to migraine attacks, and epileptic seizures in the extreme, all phenomena linked with an excessive metabolic demand. The theory of efficient coding suggests a link between excessive metabolic demand and images that deviate from natural statistics. Yet, the mechanisms linking energy demand and image spatial content in discomfort remain elusive. Here, we used theories of visual coding that link image spatial structure and brain activation to characterize the response to images observers reported as uncomfortable in a biologically based neurodynamic model of the early visual cortex that included excitatory and inhibitory layers to implement contextual influences. We found three clear markers of aversive images: a larger overall activation in the model, a less sparse response, and a more unbalanced distribution of activity across spatial orientations. When the ratio of excitation over inhibition was increased in the model, a phenomenon hypothesised to underlie interindividual differences in susceptibility to visual discomfort, the three markers of discomfort progressively shifted toward values typical of the response to uncomfortable stimuli. Overall, these findings propose a unifying mechanistic explanation for why there are differences between images and between observers, suggesting how visual input and idiosyncratic hyperexcitability give rise to abnormal brain responses that result in visual stress.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT Approved no  
  Call Number Admin @ si @ POW2023 Serial 3886  
Permanent link to this record
 

 
Author P. Canals; Simone Balocco; O. Diaz; J. Li; A. Garcia Tornel; M. Olive Gadea; M. Ribo edit  url
doi  openurl
  Title A fully automatic method for vascular tortuosity feature extraction in the supra-aortic region: unraveling possibilities in stroke treatment planning Type Journal Article
  Year (down) 2023 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume 104 Issue 102170 Pages  
  Keywords Artificial intelligence; Deep learning; Stroke; Thrombectomy; Vascular feature extraction; Vascular tortuosity  
  Abstract Vascular tortuosity of supra-aortic vessels is widely considered one of the main reasons for failure and delays in endovascular treatment of large vessel occlusion in patients with acute ischemic stroke. Characterization of tortuosity is a challenging task due to the lack of objective, robust and effective analysis tools. We present a fully automatic method for arterial segmentation, vessel labelling and tortuosity feature extraction applied to the supra-aortic region. A sample of 566 computed tomography angiography scans from acute ischemic stroke patients (aged 74.8 ± 12.9, 51.0% females) were used for training, validation and testing of a segmentation module based on a U-Net architecture (162 cases) and a vessel labelling module powered by a graph U-Net (566 cases). Successively, 30 cases were processed for testing of a tortuosity feature extraction module. Measurements obtained through automatic processing were compared to manual annotations from two observers for a thorough validation of the method. The proposed feature extraction method presented similar performance to the inter-rater variability observed in the measurement of 33 geometrical and morphological features of the arterial anatomy in the supra-aortic region. This system will contribute to the development of more complex models to advance the treatment of stroke by adding immediate automation, objectivity, repeatability and robustness to the vascular tortuosity characterization of patients.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ CBD2023 Serial 4005  
Permanent link to this record
 

 
Author Parichehr Behjati; Pau Rodriguez; Carles Fernandez; Isabelle Hupont; Armin Mehri; Jordi Gonzalez edit  url
openurl 
  Title Single image super-resolution based on directional variance attention network Type Journal Article
  Year (down) 2023 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 133 Issue Pages 108997  
  Keywords  
  Abstract Recent advances in single image super-resolution (SISR) explore the power of deep convolutional neural networks (CNNs) to achieve better performance. However, most of the progress has been made by scaling CNN architectures, which usually raise computational demands and memory consumption. This makes modern architectures less applicable in practice. In addition, most CNN-based SR methods do not fully utilize the informative hierarchical features that are helpful for final image recovery. In order to address these issues, we propose a directional variance attention network (DiVANet), a computationally efficient yet accurate network for SISR. Specifically, we introduce a novel directional variance attention (DiVA) mechanism to capture long-range spatial dependencies and exploit inter-channel dependencies simultaneously for more discriminative representations. Furthermore, we propose a residual attention feature group (RAFG) for parallelizing attention and residual block computation. The output of each residual block is linearly fused at the RAFG output to provide access to the whole feature hierarchy. In parallel, DiVA extracts most relevant features from the network for improving the final output and preventing information loss along the successive operations inside the network. Experimental results demonstrate the superiority of DiVANet over the state of the art in several datasets, while maintaining relatively low computation and memory footprint. The code is available at https://github.com/pbehjatii/DiVANet.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ BPF2023 Serial 3861  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa edit  openurl
  Title Toward a Thermal Image-Like Representation Type Conference Article
  Year (down) 2023 Publication Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal  
  Volume Issue Pages 133-140  
  Keywords  
  Abstract This paper proposes a novel model to obtain thermal image-like representations to be used as an input in any thermal image compressive sensing approach (e.g., thermal image: filtering, enhancing, super-resolution). Thermal images offer interesting information about the objects in the scene, in addition to their temperature. Unfortunately, in most of the cases thermal cameras acquire low resolution/quality images. Hence, in order to improve these images, there are several state-of-the-art approaches that exploit complementary information from a low-cost channel (visible image) to increase the image quality of an expensive channel (infrared image). In these SOTA approaches visible images are fused at different levels without paying attention the images acquire information at different bands of the spectral. In this paper a novel approach is proposed to generate thermal image-like representations from a low cost visible images, by means of a contrastive cycled GAN network. Obtained representations (synthetic thermal image) can be later on used to improve the low quality thermal image of the same scene. Experimental results on different datasets are presented.  
  Address Lisboa; Portugal; February 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISIGRAPP  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SuS2023b Serial 3927  
Permanent link to this record
 

 
Author Patricia Suarez; Dario Carpio; Angel Sappa edit  url
openurl 
  Title A Deep Learning Based Approach for Synthesizing Realistic Depth Maps Type Conference Article
  Year (down) 2023 Publication 22nd International Conference on Image Analysis and Processing Abbreviated Journal  
  Volume 14234 Issue Pages 369–380  
  Keywords  
  Abstract This paper presents a novel cycle generative adversarial network (CycleGAN) architecture for synthesizing high-quality depth maps from a given monocular image. The proposed architecture uses multiple loss functions, including cycle consistency, contrastive, identity, and least square losses, to enable the generation of realistic and high-fidelity depth maps. The proposed approach addresses this challenge by synthesizing depth maps from RGB images without requiring paired training data. Comparisons with several state-of-the-art approaches are provided showing the proposed approach overcome other approaches both in terms of quantitative metrics and visual quality.  
  Address Udine; Italia; Setember 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIAP  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SCS2023 Serial 3968  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: