toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Parichehr Behjati Ardakani; Pau Rodriguez; Carles Fernandez; Armin Mehri; Xavier Roca; Seiichi Ozawa; Jordi Gonzalez edit  doi
openurl 
  Title Frequency-based Enhancement Network for Efficient Super-Resolution Type Journal Article
  Year 2022 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 10 Issue Pages 57383-57397  
  Keywords Deep learning; Frequency-based methods; Lightweight architectures; Single image super-resolution  
  Abstract Recently, deep convolutional neural networks (CNNs) have provided outstanding performance in single image super-resolution (SISR). Despite their remarkable performance, the lack of high-frequency information in the recovered images remains a core problem. Moreover, as the networks increase in depth and width, deep CNN-based SR methods are faced with the challenge of computational complexity in practice. A promising and under-explored solution is to adapt the amount of compute based on the different frequency bands of the input. To this end, we present a novel Frequency-based Enhancement Block (FEB) which explicitly enhances the information of high frequencies while forwarding low-frequencies to the output. In particular, this block efficiently decomposes features into low- and high-frequency and assigns more computation to high-frequency ones. Thus, it can help the network generate more discriminative representations by explicitly recovering finer details. Our FEB design is simple and generic and can be used as a direct replacement of commonly used SR blocks with no need to change network architectures. We experimentally show that when replacing SR blocks with FEB we consistently improve the reconstruction error, while reducing the number of parameters in the model. Moreover, we propose a lightweight SR model — Frequency-based Enhancement Network (FENet) — based on FEB that matches the performance of larger models. Extensive experiments demonstrate that our proposal performs favorably against the state-of-the-art SR algorithms in terms of visual quality, memory footprint, and inference time. The code is available at https://github.com/pbehjatii/FENet  
  Address 18 May 2022  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes ISE Approved no  
  Call Number Admin @ si @ BRF2022a Serial 3747  
Permanent link to this record
 

 
Author Pau Riba; Lutz Goldmann; Oriol Ramos Terrades; Diede Rusticus; Alicia Fornes; Josep Llados edit  doi
openurl 
  Title Table detection in business document images by message passing networks Type Journal Article
  Year 2022 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 127 Issue Pages 108641  
  Keywords  
  Abstract Tabular structures in business documents offer a complementary dimension to the raw textual data. For instance, there is information about the relationships among pieces of information. Nowadays, digital mailroom applications have become a key service for workflow automation. Therefore, the detection and interpretation of tables is crucial. With the recent advances in information extraction, table detection and recognition has gained interest in document image analysis, in particular, with the absence of rule lines and unknown information about rows and columns. However, business documents usually contain sensitive contents limiting the amount of public benchmarking datasets. In this paper, we propose a graph-based approach for detecting tables in document images which do not require the raw content of the document. Hence, the sensitive content can be previously removed and, instead of using the raw image or textual content, we propose a purely structural approach to keep sensitive data anonymous. Our framework uses graph neural networks (GNNs) to describe the local repetitive structures that constitute a table. In particular, our main application domain are business documents. We have carefully validated our approach in two invoice datasets and a modern document benchmark. Our experiments demonstrate that tables can be detected by purely structural approaches.  
  Address July 2022  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG; 600.162; 600.121 Approved no  
  Call Number Admin @ si @ RGR2022 Serial 3729  
Permanent link to this record
 

 
Author Hugo Jair Escalante; Heysem Kaya; Albert Ali Salah; Sergio Escalera; Yagmur Gucluturk; Umut Guçlu; Xavier Baro; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Stephane Ayache; Evelyne Viegas; Furkan Gurpinar; Achmadnoer Sukma Wicaksana; Cynthia Liem; Marcel A. J. Van Gerven; Rob Van Lier edit   pdf
url  doi
openurl 
  Title Modeling, Recognizing, and Explaining Apparent Personality from Videos Type Journal Article
  Year 2022 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 13 Issue 2 Pages 894-911  
  Keywords  
  Abstract Explainability and interpretability are two critical aspects of decision support systems. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition. To the best of our knowledge, this is the first effort in this direction. We describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge. We investigate the issue of bias in detail. Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future.  
  Address 1 April-June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ EKS2022 Serial 3406  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Y.Kessentini edit   pdf
url  doi
openurl 
  Title DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement Type Journal Article
  Year 2022 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 44 Issue 3 Pages 1180-1191  
  Keywords  
  Abstract Documents often exhibit various forms of degradation, which make it hard to be read and substantially deteriorate the performance of an OCR system. In this paper, we propose an effective end-to-end framework named Document Enhancement Generative Adversarial Networks (DE-GAN) that uses the conditional GANs (cGANs) to restore severely degraded document images. To the best of our knowledge, this practice has not been studied within the context of generative adversarial deep networks. We demonstrate that, in different tasks (document clean up, binarization, deblurring and watermark removal), DE-GAN can produce an enhanced version of the degraded document with a high quality. In addition, our approach provides consistent improvements compared to state-of-the-art methods over the widely used DIBCO 2013, DIBCO 2017 and H-DIBCO 2018 datasets, proving its ability to restore a degraded document image to its ideal condition. The obtained results on a wide variety of degradation reveal the flexibility of the proposed model to be exploited in other document enhancement problems.  
  Address 1 March 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG; 602.230; 600.121; 600.140 Approved no  
  Call Number Admin @ si @ SoK2022 Serial 3454  
Permanent link to this record
 

 
Author Saad Minhas; Aura Hernandez-Sabate; Shoaib Ehsan; Klaus McDonald Maier edit  doi
openurl 
  Title Effects of Non-Driving Related Tasks during Self-Driving mode Type Journal Article
  Year 2022 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 23 Issue 2 Pages 1391-1399  
  Keywords  
  Abstract Perception reaction time and mental workload have proven to be crucial in manual driving. Moreover, in highly automated cars, where most of the research is focusing on Level 4 Autonomous driving, take-over performance is also a key factor when taking road safety into account. This study aims to investigate how the immersion in non-driving related tasks affects the take-over performance of drivers in given scenarios. The paper also highlights the use of virtual simulators to gather efficient data that can be crucial in easing the transition between manual and autonomous driving scenarios. The use of Computer Aided Simulations is of absolute importance in this day and age since the automotive industry is rapidly moving towards Autonomous technology. An experiment comprising of 40 subjects was performed to examine the reaction times of driver and the influence of other variables in the success of take-over performance in highly automated driving under different circumstances within a highway virtual environment. The results reflect the relationship between reaction times under different scenarios that the drivers might face under the circumstances stated above as well as the importance of variables such as velocity in the success on regaining car control after automated driving. The implications of the results acquired are important for understanding the criteria needed for designing Human Machine Interfaces specifically aimed towards automated driving conditions. Understanding the need to keep drivers in the loop during automation, whilst allowing drivers to safely engage in other non-driving related tasks is an important research area which can be aided by the proposed study.  
  Address Feb. 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ MHE2022 Serial 3468  
Permanent link to this record
 

 
Author Jun Wan; Chi Lin; Longyin Wen; Yunan Li; Qiguang Miao; Sergio Escalera; Gholamreza Anbarjafari; Isabelle Guyon; Guodong Guo; Stan Z. Li edit   pdf
url  doi
openurl 
  Title ChaLearn Looking at People: IsoGD and ConGD Large-scale RGB-D Gesture Recognition Type Journal Article
  Year 2022 Publication IEEE Transactions on Cybernetics Abbreviated Journal TCIBERN  
  Volume 52 Issue 5 Pages 3422-3433  
  Keywords  
  Abstract The ChaLearn large-scale gesture recognition challenge has been run twice in two workshops in conjunction with the International Conference on Pattern Recognition (ICPR) 2016 and International Conference on Computer Vision (ICCV) 2017, attracting more than 200 teams round the world. This challenge has two tracks, focusing on isolated and continuous gesture recognition, respectively. This paper describes the creation of both benchmark datasets and analyzes the advances in large-scale gesture recognition based on these two datasets. We discuss the challenges of collecting large-scale ground-truth annotations of gesture recognition, and provide a detailed analysis of the current state-of-the-art methods for large-scale isolated and continuous gesture recognition based on RGB-D video sequences. In addition to recognition rate and mean jaccard index (MJI) as evaluation metrics used in our previous challenges, we also introduce the corrected segmentation rate (CSR) metric to evaluate the performance of temporal segmentation for continuous gesture recognition. Furthermore, we propose a bidirectional long short-term memory (Bi-LSTM) baseline method, determining the video division points based on the skeleton points extracted by convolutional pose machine (CPM). Experiments demonstrate that the proposed Bi-LSTM outperforms the state-of-the-art methods with an absolute improvement of 8.1% (from 0.8917 to 0.9639) of CSR.  
  Address May 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ WLW2022 Serial 3522  
Permanent link to this record
 

 
Author Daniel Rato; Miguel Oliveira; Vitor Santos; Manuel Gomes; Angel Sappa edit  doi
openurl 
  Title A sensor-to-pattern calibration framework for multi-modal industrial collaborative cells Type Journal Article
  Year 2022 Publication Journal of Manufacturing Systems Abbreviated Journal JMANUFSYST  
  Volume 64 Issue Pages 497-507  
  Keywords Calibration; Collaborative cell; Multi-modal; Multi-sensor  
  Abstract Collaborative robotic industrial cells are workspaces where robots collaborate with human operators. In this context, safety is paramount, and for that a complete perception of the space where the collaborative robot is inserted is necessary. To ensure this, collaborative cells are equipped with a large set of sensors of multiple modalities, covering the entire work volume. However, the fusion of information from all these sensors requires an accurate extrinsic calibration. The calibration of such complex systems is challenging, due to the number of sensors and modalities, and also due to the small overlapping fields of view between the sensors, which are positioned to capture different viewpoints of the cell. This paper proposes a sensor to pattern methodology that can calibrate a complex system such as a collaborative cell in a single optimization procedure. Our methodology can tackle RGB and Depth cameras, as well as LiDARs. Results show that our methodology is able to accurately calibrate a collaborative cell containing three RGB cameras, a depth camera and three 3D LiDARs.  
  Address  
  Corporate Author Thesis  
  Publisher Science Direct Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes MSIAU; MACO Approved no  
  Call Number Admin @ si @ ROS2022 Serial 3750  
Permanent link to this record
 

 
Author Xavier Soria; Gonzalo Pomboza-Junez; Angel Sappa edit  doi
openurl 
  Title LDC: Lightweight Dense CNN for Edge Detection Type Journal Article
  Year 2022 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 10 Issue Pages 68281-68290  
  Keywords  
  Abstract This paper presents a Lightweight Dense Convolutional (LDC) neural network for edge detection. The proposed model is an adaptation of two state-of-the-art approaches, but it requires less than 4% of parameters in comparison with these approaches. The proposed architecture generates thin edge maps and reaches the highest score (i.e., ODS) when compared with lightweight models (models with less than 1 million parameters), and reaches a similar performance when compare with heavy architectures (models with about 35 million parameters). Both quantitative and qualitative results and comparisons with state-of-the-art models, using different edge detection datasets, are provided. The proposed LDC does not use pre-trained weights and requires straightforward hyper-parameter settings. The source code is released at https://github.com/xavysp/LDC  
  Address 27 June 2022  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes MSIAU; MACO; 600.160; 600.167 Approved no  
  Call Number Admin @ si @ SPS2022 Serial 3751  
Permanent link to this record
 

 
Author Marc Masana; Xialei Liu; Bartlomiej Twardowski; Mikel Menta; Andrew Bagdanov; Joost Van de Weijer edit   pdf
doi  openurl
  Title Class-incremental learning: survey and performance evaluation Type Journal Article
  Year 2022 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume Issue Pages  
  Keywords  
  Abstract For future learning systems incremental learning is desirable, because it allows for: efficient resource usage by eliminating the need to retrain from scratch at the arrival of new data; reduced memory usage by preventing or limiting the amount of data required to be stored -- also important when privacy limitations are imposed; and learning that more closely resembles human learning. The main challenge for incremental learning is catastrophic forgetting, which refers to the precipitous drop in performance on previously learned tasks after learning a new one. Incremental learning of deep neural networks has seen explosive growth in recent years. Initial work focused on task incremental learning, where a task-ID is provided at inference time. Recently we have seen a shift towards class-incremental learning where the learner must classify at inference time between all classes seen in previous tasks without recourse to a task-ID. In this paper, we provide a complete survey of existing methods for incremental learning, and in particular we perform an extensive experimental evaluation on twelve class-incremental methods. We consider several new experimental scenarios, including a comparison of class-incremental methods on multiple large-scale datasets, investigation into small and large domain shifts, and comparison on various network architectures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MLT2022 Serial 3538  
Permanent link to this record
 

 
Author Ana Garcia Rodriguez; Yael Tudela; Henry Cordova; S. Carballal; I. Ordas; L. Moreira; E. Vaquero; O. Ortiz; L. Rivero; F. Javier Sanchez; Miriam Cuatrecasas; Maria Pellise; Jorge Bernal; Gloria Fernandez Esparrach edit  doi
openurl 
  Title First in Vivo Computer-Aided Diagnosis of Colorectal Polyps using White Light Endoscopy Type Journal Article
  Year 2022 Publication Endoscopy Abbreviated Journal END  
  Volume 54 Issue Pages  
  Keywords  
  Abstract  
  Address 2022/04/14  
  Corporate Author Thesis  
  Publisher Georg Thieme Verlag KG Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes ISE Approved no  
  Call Number Admin @ si @ GTC2022a Serial 3746  
Permanent link to this record
 

 
Author Lei Kang; Pau Riba; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas edit   file
url  doi
openurl 
  Title Pay Attention to What You Read: Non-recurrent Handwritten Text-Line Recognition Type Journal Article
  Year 2022 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 129 Issue Pages 108766  
  Keywords  
  Abstract The advent of recurrent neural networks for handwriting recognition marked an important milestone reaching impressive recognition accuracies despite the great variability that we observe across different writing styles. Sequential architectures are a perfect fit to model text lines, not only because of the inherent temporal aspect of text, but also to learn probability distributions over sequences of characters and words. However, using such recurrent paradigms comes at a cost at training stage, since their sequential pipelines prevent parallelization. In this work, we introduce a non-recurrent approach to recognize handwritten text by the use of transformer models. We propose a novel method that bypasses any recurrence. By using multi-head self-attention layers both at the visual and textual stages, we are able to tackle character recognition as well as to learn language-related dependencies of the character sequences to be decoded. Our model is unconstrained to any predefined vocabulary, being able to recognize out-of-vocabulary words, i.e. words that do not appear in the training vocabulary. We significantly advance over prior art and demonstrate that satisfactory recognition accuracies are yielded even in few-shot learning scenarios.  
  Address Sept. 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG; 600.121; 600.162 Approved no  
  Call Number Admin @ si @ KRR2022 Serial 3556  
Permanent link to this record
 

 
Author Diego Velazquez; Pau Rodriguez; Josep M. Gonfaus; Xavier Roca; Jordi Gonzalez edit  url
openurl 
  Title A Closer Look at Embedding Propagation for Manifold Smoothing Type Journal Article
  Year 2022 Publication Journal of Machine Learning Research Abbreviated Journal JMLR  
  Volume 23 Issue 252 Pages 1-27  
  Keywords Regularization; emi-supervised learning; self-supervised learning; adversarial robustness; few-shot classification  
  Abstract Supervised training of neural networks requires a large amount of manually annotated data and the resulting networks tend to be sensitive to out-of-distribution (OOD) data.
Self- and semi-supervised training schemes reduce the amount of annotated data required during the training process. However, OOD generalization remains a major challenge for most methods. Strategies that promote smoother decision boundaries play an important role in out-of-distribution generalization. For example, embedding propagation (EP) for manifold smoothing has recently shown to considerably improve the OOD performance for few-shot classification. EP achieves smoother class manifolds by building a graph from sample embeddings and propagating information through the nodes in an unsupervised manner. In this work, we extend the original EP paper providing additional evidence and experiments showing that it attains smoother class embedding manifolds and improves results in settings beyond few-shot classification. Concretely, we show that EP improves the robustness of neural networks against multiple adversarial attacks as well as semi- and
self-supervised learning performance.
 
  Address 9/2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Admin @ si @ VRG2022 Serial 3762  
Permanent link to this record
 

 
Author S.K. Jemni; Mohamed Ali Souibgui; Yousri Kessentini; Alicia Fornes edit  url
openurl 
  Title Enhance to Read Better: A Multi-Task Adversarial Network for Handwritten Document Image Enhancement Type Journal Article
  Year 2022 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 123 Issue Pages 108370  
  Keywords  
  Abstract Handwritten document images can be highly affected by degradation for different reasons: Paper ageing, daily-life scenarios (wrinkles, dust, etc.), bad scanning process and so on. These artifacts raise many readability issues for current Handwritten Text Recognition (HTR) algorithms and severely devalue their efficiency. In this paper, we propose an end to end architecture based on Generative Adversarial Networks (GANs) to recover the degraded documents into a and form. Unlike the most well-known document binarization methods, which try to improve the visual quality of the degraded document, the proposed architecture integrates a handwritten text recognizer that promotes the generated document image to be more readable. To the best of our knowledge, this is the first work to use the text information while binarizing handwritten documents. Extensive experiments conducted on degraded Arabic and Latin handwritten documents demonstrate the usefulness of integrating the recognizer within the GAN architecture, which improves both the visual quality and the readability of the degraded document images. Moreover, we outperform the state of the art in H-DIBCO challenges, after fine tuning our pre-trained model with synthetically degraded Latin handwritten images, on this task.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG; 600.124; 600.121; 602.230 Approved no  
  Call Number Admin @ si @ JSK2022 Serial 3613  
Permanent link to this record
 

 
Author Vacit Oguz Yazici edit  isbn
openurl 
  Title Towards Smart Fashion: Visual Recognition of Products and Attributes Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Artificial intelligence is innovating the fashion industry by proposing new applications and solutions to the problems encountered by researchers and engineers working in the industry. In this thesis, we address three of these problems. In the first part of the thesis, we tackle the problem of multi-label image classification which is very related to fashion attribute recognition. In the second part of the thesis, we address two problems that are specific to fashion. Firstly, we address the problem of main product detection which is the task of associating correct image parts (e.g. bounding boxes) with the fashion product being sold. Secondly, we address the problem of color naming for multicolored fashion items. The task of multi-label image classification consists in assigning various concepts such as objects or attributes to images. Usually, there are dependencies that can be learned between the concepts to capture label correlations (chair and table classes are more likely to co-exist than chair and giraffe).
If we treat the multi-label image classification problem as an orderless set prediction problem, we can exploit recurrent neural networks (RNN) to capture label correlations. However, RNNs are trained to predict ordered sequences of tokens, so if the order of the predicted sequence is different than the order of the ground truth sequence, there will be penalization although the predictions are correct. Therefore, in the first part of the thesis, we propose an orderless loss function which will order the labels in the ground truth sequence dynamically in a way that the minimum loss is achieved. This results in a significant improvement of RNN models on multi-label image classification over the previous methods.
However, RNNs suffer from long term dependencies when the cardinality of set grows bigger. The decoding process might stop early if the current hidden state cannot find any object and outputs the termination token. This would cause the remaining classes not to be predicted and lower recall metric. Transformers can be used to avoid the long term dependency problem exploiting their selfattention modules that process sequential data simultaneously. Consequently, we propose a novel transformer model for multi-label image classification which surpasses the state-of-the-art results by a large margin.
In the second part of thesis, we focus on two fashion-specific problems. Main product detection is the task of associating image parts with the fashion product that is being sold, generally using associated textual metadata (product title or description). Normally, in fashion e-commerces, products are represented by multiple images where a person wears the product along with other fashion items. If all the fashion items in the images are marked with bounding boxes, we can use the textual metadata to decide which item is the main product. The initial work treated each of these images independently, discarding the fact that they all belong to the same product. In this thesis, we represent the bounding boxes from all the images as nodes in a fully connected graph. This allows the algorithm to learn relations between the nodes during training and take the entire context into account for the final decision. Our algorithm results in a significant improvement of the state-ofthe-art.
Moreover, we address the problem of color naming for multicolored fashion items, which is a challenging task due to the external factors such as illumination changes or objects that act as clutter. In the context of multi-label classification, the vaguely defined lines between the classes in the color space cause ambiguity. For example, a shade of blue which is very close to green might cause the model to incorrectly predict the color blue and green at the same time. Based on this, models trained for color naming are expected to recognize the colors and their quantities in both single colored and multicolored fashion items. Therefore, in this thesis, we propose a novel architecture with an additional head that explicitly estimates the number of colors in fashion items. This removes the ambiguity problem and results in better color naming performance.
 
  Address January 2022  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Joost Van de Weijer;Arnau Ramisa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-6-1 Medium  
  Area Expedition Conference (up)  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Ogu2022 Serial 3631  
Permanent link to this record
 

 
Author Meysam Madadi; Sergio Escalera; Xavier Baro; Jordi Gonzalez edit   pdf
doi  openurl
  Title End-to-end Global to Local CNN Learning for Hand Pose Recovery in Depth data Type Journal Article
  Year 2022 Publication IET Computer Vision Abbreviated Journal IETCV  
  Volume 16 Issue 1 Pages 50-66  
  Keywords Computer vision; data acquisition; human computer interaction; learning (artificial intelligence); pose estimation  
  Abstract Despite recent advances in 3D pose estimation of human hands, especially thanks to the advent of CNNs and depth cameras, this task is still far from being solved. This is mainly due to the highly non-linear dynamics of fingers, which make hand model training a challenging task. In this paper, we exploit a novel hierarchical tree-like structured CNN, in which branches are trained to become specialized in predefined subsets of hand joints, called local poses. We further fuse local pose features, extracted from hierarchical CNN branches, to learn higher order dependencies among joints in the final pose by end-to-end training. Lastly, the loss function used is also defined to incorporate appearance and physical constraints about doable hand motion and deformation. Finally, we introduce a non-rigid data augmentation approach to increase the amount of training depth data. Experimental results suggest that feeding a tree-shaped CNN, specialized in local poses, into a fusion network for modeling joints correlations and dependencies, helps to increase the precision of final estimations, outperforming state-of-the-art results on NYU and SyntheticHand datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes HUPBA; ISE; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ MEB2022 Serial 3652  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: