toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Akshita Gupta; Sanath Narayan; Salman Khan; Fahad Shahbaz Khan; Ling Shao; Joost Van de Weijer edit  doi
openurl 
  Title Generative Multi-Label Zero-Shot Learning Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 12 Pages 14611-14624  
  Keywords Generalized zero-shot learning; Multi-label classification; Zero-shot object detection; Feature synthesis  
  Abstract Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. When multiple objects occur jointly in a single image, a critical question is how to effectively fuse multi-class information. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embeddings. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Our cross-level fusion-based generative approach outperforms the state-of-the-art on three zero-shot benchmarks: NUS-WIDE, Open Images and MS COCO. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods.  
  Address December 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; PID2021-128178OB-I00 Approved no  
  Call Number (up) Admin @ si @ Serial 3853  
Permanent link to this record
 

 
Author Jose Elias Yauri; M. Lagos; H. Vega-Huerta; P. de-la-Cruz; G.L.E Maquen-Niño; E. Condor-Tinoco edit  doi
openurl 
  Title Detection of Epileptic Seizures Based-on Channel Fusion and Transformer Network in EEG Recordings Type Journal Article
  Year 2023 Publication International Journal of Advanced Computer Science and Applications Abbreviated Journal IJACSA  
  Volume 14 Issue 5 Pages 1067-1074  
  Keywords Epilepsy; epilepsy detection; EEG; EEG channel fusion; convolutional neural network; self-attention  
  Abstract According to the World Health Organization, epilepsy affects more than 50 million people in the world, and specifically, 80% of them live in developing countries. Therefore, epilepsy has become among the major public issue for many governments and deserves to be engaged. Epilepsy is characterized by uncontrollable seizures in the subject due to a sudden abnormal functionality of the brain. Recurrence of epilepsy attacks change people’s lives and interferes with their daily activities. Although epilepsy has no cure, it could be mitigated with an appropriated diagnosis and medication. Usually, epilepsy diagnosis is based on the analysis of an electroencephalogram (EEG) of the patient. However, the process of searching for seizure patterns in a multichannel EEG recording is a visual demanding and time consuming task, even for experienced neurologists. Despite the recent progress in automatic recognition of epilepsy, the multichannel nature of EEG recordings still challenges current methods. In this work, a new method to detect epilepsy in multichannel EEG recordings is proposed. First, the method uses convolutions to perform channel fusion, and next, a self-attention network extracts temporal features to classify between interictal and ictal epilepsy states. The method was validated in the public CHB-MIT dataset using the k-fold cross-validation and achieved 99.74% of specificity and 99.15% of sensitivity, surpassing current approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number (up) Admin @ si @ Serial 3856  
Permanent link to this record
 

 
Author Filip Szatkowski; Mateusz Pyla; Marcin Przewięzlikowski; Sebastian Cygert; Bartłomiej Twardowski; Tomasz Trzcinski edit   pdf
url  openurl
  Title Adapt Your Teacher: Improving Knowledge Distillation for Exemplar-Free Continual Learning Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages 3512-3517  
  Keywords  
  Abstract In this work, we investigate exemplar-free class incremental learning (CIL) with knowledge distillation (KD) as a regularization strategy, aiming to prevent forgetting. KD-based methods are successfully used in CIL, but they often struggle to regularize the model without access to exemplars of the training data from previous tasks. Our analysis reveals that this issue originates from substantial representation shifts in the teacher network when dealing with out-of-distribution data. This causes large errors in the KD loss component, leading to performance degradation in CIL. Inspired by recent test-time adaptation methods, we introduce Teacher Adaptation (TA), a method that concurrently updates the teacher and the main model during incremental training. Our method seamlessly integrates with KD-based CIL approaches and allows for consistent enhancement of their performance across multiple exemplar-free CIL benchmarks.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP Approved no  
  Call Number (up) Admin @ si @ Serial 3944  
Permanent link to this record
 

 
Author Cristhian A. Aguilera-Carrasco; Luis Felipe Gonzalez-Böhme; Francisco Valdes; Francisco Javier Quitral Zapata; Bogdan Raducanu edit  doi
openurl 
  Title A Hand-Drawn Language for Human–Robot Collaboration in Wood Stereotomy Type Journal Article
  Year 2023 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 11 Issue Pages 100975 - 100985  
  Keywords  
  Abstract This study introduces a novel, hand-drawn language designed to foster human-robot collaboration in wood stereotomy, central to carpentry and joinery professions. Based on skilled carpenters’ line and symbol etchings on timber, this language signifies the location, geometry of woodworking joints, and timber placement within a framework. A proof-of-concept prototype has been developed, integrating object detectors, keypoint regression, and traditional computer vision techniques to interpret this language and enable an extensive repertoire of actions. Empirical data attests to the language’s efficacy, with the successful identification of a specific set of symbols on various wood species’ sawn surfaces, achieving a mean average precision (mAP) exceeding 90%. Concurrently, the system can accurately pinpoint critical positions that facilitate robotic comprehension of carpenter-indicated woodworking joint geometry. The positioning error, approximately 3 pixels, meets industry standards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number (up) Admin @ si @ AGV2023 Serial 3969  
Permanent link to this record
 

 
Author Eduardo Aguilar; Bogdan Raducanu; Petia Radeva; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Continual Evidential Deep Learning for Out-of-Distribution Detection Type Conference Article
  Year 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops -Visual Continual Learning workshop Abbreviated Journal  
  Volume Issue Pages 3444-3454  
  Keywords  
  Abstract Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-of-distribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP; MILAB Approved no  
  Call Number (up) Admin @ si @ ARR2023 Serial 3841  
Permanent link to this record
 

 
Author Eduardo Aguilar; Bogdan Raducanu; Petia Radeva; Joost Van de Weijer edit  url
openurl 
  Title Continual Evidential Deep Learning for Out-of-Distribution Detection Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages 3444-3454  
  Keywords  
  Abstract Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-ofdistribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method 1, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP; MILAB Approved no  
  Call Number (up) Admin @ si @ ARR2023 Serial 3974  
Permanent link to this record
 

 
Author Alejandro Ariza-Casabona; Bartlomiej Twardowski; Tri Kurniawan Wijaya edit  url
openurl 
  Title Exploiting Graph Structured Cross-Domain Representation for Multi-domain Recommendation Type Conference Article
  Year 2023 Publication European Conference on Information Retrieval – ECIR 2023: Advances in Information Retrieval Abbreviated Journal  
  Volume 13980 Issue Pages 49–65  
  Keywords  
  Abstract Multi-domain recommender systems benefit from cross-domain representation learning and positive knowledge transfer. Both can be achieved by introducing a specific modeling of input data (i.e. disjoint history) or trying dedicated training regimes. At the same time, treating domains as separate input sources becomes a limitation as it does not capture the interplay that naturally exists between domains. In this work, we efficiently learn multi-domain representation of sequential users’ interactions using graph neural networks. We use temporal intra- and inter-domain interactions as contextual information for our method called MAGRec (short for Multi-dom Ain Graph-based Recommender). To better capture all relations in a multi-domain setting, we learn two graph-based sequential representations simultaneously: domain-guided for recent user interest, and general for long-term interest. This approach helps to mitigate the negative knowledge transfer problem from multiple domains and improve overall representation. We perform experiments on publicly available datasets in different scenarios where MAGRec consistently outperforms state-of-the-art methods. Furthermore, we provide an ablation study and discuss further extensions of our method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECIR  
  Notes LAMP Approved no  
  Call Number (up) Admin @ si @ ATK2023 Serial 3933  
Permanent link to this record
 

 
Author Ayan Banerjee; Sanket Biswas; Josep Llados; Umapada Pal edit  url
openurl 
  Title SwinDocSegmenter: An End-to-End Unified Domain Adaptive Transformer for Document Instance Segmentation Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14187 Issue Pages 307–325  
  Keywords  
  Abstract Instance-level segmentation of documents consists in assigning a class-aware and instance-aware label to each pixel of the image. It is a key step in document parsing for their understanding. In this paper, we present a unified transformer encoder-decoder architecture for en-to-end instance segmentation of complex layouts in document images. The method adapts a contrastive training with a mixed query selection for anchor initialization in the decoder. Later on, it performs a dot product between the obtained query embeddings and the pixel embedding map (coming from the encoder) for semantic reasoning. Extensive experimentation on competitive benchmarks like PubLayNet, PRIMA, Historical Japanese (HJ), and TableBank demonstrate that our model with SwinL backbone achieves better segmentation performance than the existing state-of-the-art approaches with the average precision of 93.72, 54.39, 84.65 and 98.04 respectively under one billion parameters. The code is made publicly available at: github.com/ayanban011/SwinDocSegmenter .  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @ BBL2023 Serial 3893  
Permanent link to this record
 

 
Author Souhail Bakkali; Sanket Biswas; Zuheng Ming; Mickael Coustaty; Marçal Rusiñol; Oriol Ramos Terrades; Josep Llados edit   pdf
url  openurl
  Title TransferDoc: A Self-Supervised Transferable Document Representation Learning Model Unifying Vision and Language Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The field of visual document understanding has witnessed a rapid growth in emerging challenges and powerful multi-modal strategies. However, they rely on an extensive amount of document data to learn their pretext objectives in a ``pre-train-then-fine-tune'' paradigm and thus, suffer a significant performance drop in real-world online industrial settings. One major reason is the over-reliance on OCR engines to extract local positional information within a document page. Therefore, this hinders the model's generalizability, flexibility and robustness due to the lack of capturing global information within a document image. We introduce TransferDoc, a cross-modal transformer-based architecture pre-trained in a self-supervised fashion using three novel pretext objectives. TransferDoc learns richer semantic concepts by unifying language and visual representations, which enables the production of more transferable models. Besides, two novel downstream tasks have been introduced for a ``closer-to-real'' industrial evaluation scenario where TransferDoc outperforms other state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @ BBM2023 Serial 3995  
Permanent link to this record
 

 
Author Ruben Ballester; Carles Casacuberta; Sergio Escalera edit   pdf
url  openurl
  Title Decorrelating neurons using persistence Type Miscellaneous
  Year 2023 Publication ARXIV Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose a novel way to improve the generalisation capacity of deep learning models by reducing high correlations between neurons. For this, we present two regularisation terms computed from the weights of a minimum spanning tree of the clique whose vertices are the neurons of a given network (or a sample of those), where weights on edges are correlation dissimilarities. We provide an extensive set of experiments to validate the effectiveness of our terms, showing that they outperform popular ones. Also, we demonstrate that naive minimisation of all correlations between neurons obtains lower accuracies than our regularisation terms, suggesting that redundancies play a significant role in artificial neural networks, as evidenced by some studies in neuroscience for real networks. We include a proof of differentiability of our regularisers, thus developing the first effective topological persistence-based regularisation terms that consider the whole set of neurons and that can be applied to a feedforward architecture in any deep learning task such as classification, data generation, or regression.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number (up) Admin @ si @ BCE2023 Serial 3977  
Permanent link to this record
 

 
Author German Barquero; Sergio Escalera; Cristina Palmero edit   pdf
url  openurl
  Title BeLFusion: Latent Diffusion for Behavior-Driven Human Motion Prediction Type Conference Article
  Year 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages 2317-2327  
  Keywords  
  Abstract Stochastic human motion prediction (HMP) has generally been tackled with generative adversarial networks and variational autoencoders. Most prior works aim at predicting highly diverse movements in terms of the skeleton joints’ dispersion. This has led to methods predicting fast and motion-divergent movements, which are often unrealistic and incoherent with past motion. Such methods also neglect contexts that need to anticipate diverse low-range behaviors, or actions, with subtle joint displacements. To address these issues, we present BeLFusion, a model that, for the first time, leverages latent diffusion models in HMP to sample from a latent space where behavior is disentangled from pose and motion. As a result, diversity is encouraged from a behavioral perspective. Thanks to our behavior
coupler’s ability to transfer sampled behavior to ongoing motion, BeLFusion’s predictions display a variety of behaviors that are significantly more realistic than the state of the art. To support it, we introduce two metrics, the Area of
the Cumulative Motion Distribution, and the Average Pairwise Distance Error, which are correlated to our definition of realism according to a qualitative study with 126 participants. Finally, we prove BeLFusion’s generalization power in a new cross-dataset scenario for stochastic HMP.
 
  Address 2-6 October 2023. Paris (France)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes HUPBA; no menciona Approved no  
  Call Number (up) Admin @ si @ BEP2023 Serial 3829  
Permanent link to this record
 

 
Author Joakim Bruslund Haurum; Sergio Escalera; Graham W. Taylor; Thomas B. edit   pdf
url  openurl
  Title Which Tokens to Use? Investigating Token Reduction in Vision Transformers Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Since the introduction of the Vision Transformer (ViT), researchers have sought to make ViTs more efficient by removing redundant information in the processed tokens. While different methods have been explored to achieve this goal, we still lack understanding of the resulting reduction patterns and how those patterns differ across token reduction methods and datasets. To close this gap, we set out to understand the reduction patterns of 10 different token reduction methods using four image classification datasets. By systematically comparing these methods on the different classification tasks, we find that the Top-K pruning method is a surprisingly strong baseline. Through in-depth analysis of the different methods, we determine that: the reduction patterns are generally not consistent when varying the capacity of the backbone model, the reduction patterns of pruning-based methods significantly differ from fixed radial patterns, and the reduction patterns of pruning-based methods are correlated across classification datasets. Finally we report that the similarity of reduction patterns is a moderate-to-strong proxy for model performance. Project page at https://vap.aau.dk/tokens.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes HUPBA Approved no  
  Call Number (up) Admin @ si @ BET2023 Serial 3940  
Permanent link to this record
 

 
Author Sonia Baeza; Debora Gil; Carles Sanchez; Guillermo Torres; Ignasi Garcia Olive; Ignasi Guasch; Samuel Garcia Reina; Felipe Andreo; Jose Luis Mate; Jose Luis Vercher; Antonio Rosell edit  openurl
  Title Biopsia virtual radiomica para el diagnóstico histológico de nódulos pulmonares – Resultados intermedios del proyecto Radiolung Type Conference Article
  Year 2023 Publication SEPAR Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pòster  
  Address Granada; Spain; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SEPAR  
  Notes IAM Approved no  
  Call Number (up) Admin @ si @ BGS2023 Serial 3951  
Permanent link to this record
 

 
Author Souhail Bakkali; Zuheng Ming; Mickael Coustaty; Marçal Rusiñol; Oriol Ramos Terrades edit   pdf
doi  openurl
  Title VLCDoC: Vision-Language Contrastive Pre-Training Model for Cross-Modal Document Classification Type Journal Article
  Year 2023 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 139 Issue Pages 109419  
  Keywords  
  Abstract Multimodal learning from document data has achieved great success lately as it allows to pre-train semantically meaningful features as a prior into a learnable downstream approach. In this paper, we approach the document classification problem by learning cross-modal representations through language and vision cues, considering intra- and inter-modality relationships. Instead of merging features from different modalities into a common representation space, the proposed method exploits high-level interactions and learns relevant semantic information from effective attention flows within and across modalities. The proposed learning objective is devised between intra- and inter-modality alignment tasks, where the similarity distribution per task is computed by contracting positive sample pairs while simultaneously contrasting negative ones in the common feature representation space}. Extensive experiments on public document classification datasets demonstrate the effectiveness and the generalization capacity of our model on both low-scale and large-scale datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number (up) Admin @ si @ BMC2023 Serial 3826  
Permanent link to this record
 

 
Author Hugo Bertiche; Niloy J Mitra; Kuldeep Kulkarni; Chun Hao Paul Huang; Tuanfeng Y Wang; Meysam Madadi; Sergio Escalera; Duygu Ceylan edit  url
doi  openurl
  Title Blowing in the Wind: CycleNet for Human Cinemagraphs from Still Images Type Conference Article
  Year 2023 Publication 36th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 459-468  
  Keywords  
  Abstract Cinemagraphs are short looping videos created by adding subtle motions to a static image. This kind of media is popular and engaging. However, automatic generation of cinemagraphs is an underexplored area and current solutions require tedious low-level manual authoring by artists. In this paper, we present an automatic method that allows generating human cinemagraphs from single RGB images. We investigate the problem in the context of dressed humans under the wind. At the core of our method is a novel cyclic neural network that produces looping cinemagraphs for the target loop duration. To circumvent the problem of collecting real data, we demonstrate that it is possible, by working in the image normal space, to learn garment motion dynamics on synthetic data and generalize to real data. We evaluate our method on both synthetic and real data and demonstrate that it is possible to create compelling and plausible cinemagraphs from single RGB images.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes HUPBA Approved no  
  Call Number (up) Admin @ si @ BMK2023 Serial 3921  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: