toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Alejandro Cartas; Juan Marin; Petia Radeva; Mariella Dimiccoli edit   pdf
url  openurl
  Title Batch-based activity recognition from egocentric photo-streams revisited Type Journal Article
  Year 2018 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 21 Issue 4 Pages 953–965  
  Keywords Egocentric vision; Lifelogging; Activity recognition; Deep learning; Recurrent neural networks  
  Abstract (down) Wearable cameras can gather large amounts of image data that provide rich visual information about the daily activities of the wearer. Motivated by the large number of health applications that could be enabled by the automatic recognition of daily activities, such as lifestyle characterization for habit improvement, context-aware personal assistance and tele-rehabilitation services, we propose a system to classify 21 daily activities from photo-streams acquired by a wearable photo-camera. Our approach combines the advantages of a late fusion ensemble strategy relying on convolutional neural networks at image level with the ability of recurrent neural networks to account for the temporal evolution of high-level features in photo-streams without relying on event boundaries. The proposed batch-based approach achieved an overall accuracy of 89.85%, outperforming state-of-the-art end-to-end methodologies. These results were achieved on a dataset consists of 44,902 egocentric pictures from three persons captured during 26 days in average.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ CMR2018 Serial 3186  
Permanent link to this record
 

 
Author Md.Mostafa Kamal Sarker; Syeda Furruka Banu; Hatem A. Rashwan; Mohamed Abdel-Nasser; Vivek Kumar Singh; Sylvie Chambon; Petia Radeva; Domenec Puig edit  doi
openurl 
  Title Food Places Classification in Egocentric Images Using Siamese Neural Networks Type Conference Article
  Year 2019 Publication 22nd International Conference of the Catalan Association of Artificial Intelligence Abbreviated Journal  
  Volume Issue Pages 145-151  
  Keywords  
  Abstract (down) Wearable cameras are become more popular in recent years for capturing the unscripted moments of the first-person that help to analyze the users lifestyle. In this work, we aim to recognize the places related to food in egocentric images during a day to identify the daily food patterns of the first-person. Thus, this system can assist to improve their eating behavior to protect users against food-related diseases. In this paper, we use Siamese Neural Networks to learn the similarity between images from corresponding inputs for one-shot food places classification. We tested our proposed method with ‘MiniEgoFoodPlaces’ with 15 food related places. The proposed Siamese Neural Networks model with MobileNet achieved an overall classification accuracy of 76.74% and 77.53% on the validation and test sets of the “MiniEgoFoodPlaces” dataset, respectively outperforming with the base models, such as ResNet50, InceptionV3, and InceptionResNetV2.  
  Address Illes Balears; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CCIA  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ SBR2019 Serial 3368  
Permanent link to this record
 

 
Author Francisco Cruz; Oriol Ramos Terrades edit  openurl
  Title A probabilistic framework for handwritten text line segmentation Type Miscellaneous
  Year 2018 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords Document Analysis; Text Line Segmentation; EM algorithm; Probabilistic Graphical Models; Parameter Learning  
  Abstract (down) We successfully combine Expectation-Maximization algorithm and variational
approaches for parameter learning and computing inference on Markov random fields. This is a general method that can be applied to many computer
vision tasks. In this paper, we apply it to handwritten text line segmentation.
We conduct several experiments that demonstrate that our method deal with
common issues of this task, such as complex document layout or non-latin
scripts. The obtained results prove that our method achieve state-of-theart performance on different benchmark datasets without any particular fine
tuning step.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ CrR2018 Serial 3253  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit   pdf
url  doi
openurl 
  Title Application of deformable template matching to symbol recognition in hand-written architectural draw Type Conference Article
  Year 1999 Publication Proceedings of the Fifth International Conference on Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) We propose to use deformable template matching as a new approach to recognize characters and lineal symbols in hand-written line drawings, instead of traditional methods based on vectorization and feature extraction. Bayesian formulation of the deformable template matching allows combining fidelity to the ideal shape of the symbol with maximum flexibility to get the best fit to the input image. Lineal nature of symbols can be exploited to define a suitable representation of models and the set of deformations to be applied to them. Matching, however, is done over the original binary image to avoid losing relevant features during vectorization. We have applied this method to hand-written architectural drawings and experimental results demonstrate that symbols with high distortions from ideal shape can be accurately identified.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bangalore (India) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ VAM1999a Serial 1657  
Permanent link to this record
 

 
Author Kai Wang; Luis Herranz; Anjan Dutta; Joost Van de Weijer edit   pdf
openurl 
  Title Bookworm continual learning: beyond zero-shot learning and continual learning Type Conference Article
  Year 2020 Publication Workshop TASK-CV 2020 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) We propose bookworm continual learning(BCL), a flexible setting where unseen classes can be inferred via a semantic model, and the visual model can be updated continually. Thus BCL generalizes both continual learning (CL) and zero-shot learning (ZSL). We also propose the bidirectional imagination (BImag) framework to address BCL where features of both past and future classes are generated. We observe that conditioning the feature generator on attributes can actually harm the continual learning ability, and propose two variants (joint class-attribute conditioning and asymmetric generation) to alleviate this problem.  
  Address Virtual; August 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ WHD2020 Serial 3466  
Permanent link to this record
 

 
Author Jiaolong Xu; David Vazquez; Krystian Mikolajczyk; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Hierarchical online domain adaptation of deformable part-based models Type Conference Article
  Year 2016 Publication IEEE International Conference on Robotics and Automation Abbreviated Journal  
  Volume Issue Pages 5536-5541  
  Keywords Domain Adaptation; Pedestrian Detection  
  Abstract (down) We propose an online domain adaptation method for the deformable part-based model (DPM). The online domain adaptation is based on a two-level hierarchical adaptation tree, which consists of instance detectors in the leaf nodes and a category detector at the root node. Moreover, combined with a multiple object tracking procedure (MOT), our proposal neither requires target-domain annotated data nor revisiting the source-domain data for performing the source-to-target domain adaptation of the DPM. From a practical point of view this means that, given a source-domain DPM and new video for training on a new domain without object annotations, our procedure outputs a new DPM adapted to the domain represented by the video. As proof-of-concept we apply our proposal to the challenging task of pedestrian detection. In this case, each instance detector is an exemplar classifier trained online with only one pedestrian per frame. The pedestrian instances are collected by MOT and the hierarchical model is constructed dynamically according to the pedestrian trajectories. Our experimental results show that the adapted detector achieves the accuracy of recent supervised domain adaptation methods (i.e., requiring manually annotated targetdomain data), and improves the source detector more than 10 percentage points.  
  Address Stockholm; Sweden; May 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICRA  
  Notes ADAS; 600.085; 600.082; 600.076 Approved no  
  Call Number Admin @ si @ XVM2016 Serial 2728  
Permanent link to this record
 

 
Author Lichao Zhang; Martin Danelljan; Abel Gonzalez-Garcia; Joost Van de Weijer; Fahad Shahbaz Khan edit   pdf
url  doi
openurl 
  Title Multi-Modal Fusion for End-to-End RGB-T Tracking Type Conference Article
  Year 2019 Publication IEEE International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 2252-2261  
  Keywords  
  Abstract (down) We propose an end-to-end tracking framework for fusing the RGB and TIR modalities in RGB-T tracking. Our baseline tracker is DiMP (Discriminative Model Prediction), which employs a carefully designed target prediction network trained end-to-end using a discriminative loss. We analyze the effectiveness of modality fusion in each of the main components in DiMP, i.e. feature extractor, target estimation network, and classifier. We consider several fusion mechanisms acting at different levels of the framework, including pixel-level, feature-level and response-level. Our tracker is trained in an end-to-end manner, enabling the components to learn how to fuse the information from both modalities. As data to train our model, we generate a large-scale RGB-T dataset by considering an annotated RGB tracking dataset (GOT-10k) and synthesizing paired TIR images using an image-to-image translation approach. We perform extensive experiments on VOT-RGBT2019 dataset and RGBT210 dataset, evaluating each type of modality fusing on each model component. The results show that the proposed fusion mechanisms improve the performance of the single modality counterparts. We obtain our best results when fusing at the feature-level on both the IoU-Net and the model predictor, obtaining an EAO score of 0.391 on VOT-RGBT2019 dataset. With this fusion mechanism we achieve the state-of-the-art performance on RGBT210 dataset.  
  Address Seul; Corea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP; 600.109; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ ZDG2019 Serial 3279  
Permanent link to this record
 

 
Author David Aldavert; Arnau Ramisa; Ramon Lopez de Mantaras; Ricardo Toledo edit  doi
isbn  openurl
  Title Fast and Robust Object Segmentation with the Integral Linear Classifier Type Conference Article
  Year 2010 Publication 23rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1046–1053  
  Keywords  
  Abstract (down) We propose an efficient method, built on the popular Bag of Features approach, that obtains robust multiclass pixel-level object segmentation of an image in less than 500ms, with results comparable or better than most state of the art methods. We introduce the Integral Linear Classifier (ILC), that can readily obtain the classification score for any image sub-window with only 6 additions and 1 product by fusing the accumulation and classification steps in a single operation. In order to design a method as efficient as possible, our building blocks are carefully selected from the quickest in the state of the art. More precisely, we evaluate the performance of three popular local descriptors, that can be very efficiently computed using integral images, and two fast quantization methods: the Hierarchical K-Means, and the Extremely Randomized Forest. Finally, we explore the utility of adding spatial bins to the Bag of Features histograms and that of cascade classifiers to improve the obtained segmentation. Our method is compared to the state of the art in the difficult Graz-02 and PASCAL 2007 Segmentation Challenge datasets.  
  Address San Francisco; CA; USA; June 2010  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4244-6984-0 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS Approved no  
  Call Number Admin @ si @ ARL2010a Serial 1311  
Permanent link to this record
 

 
Author Albert Clapes; Miguel Reyes; Sergio Escalera edit   pdf
doi  isbn
openurl 
  Title User Identification and Object Recognition in Clutter Scenes Based on RGB-Depth Analysis Type Conference Article
  Year 2012 Publication 7th Conference on Articulated Motion and Deformable Objects Abbreviated Journal  
  Volume 7378 Issue Pages 1-11  
  Keywords  
  Abstract (down) We propose an automatic system for user identification and object recognition based on multi-modal RGB-Depth data analysis. We model a RGBD environment learning a pixel-based background Gaussian distribution. Then, user and object candidate regions are detected and recognized online using robust statistical approaches over RGBD descriptions. Finally, the system saves the historic of user-object assignments, being specially useful for surveillance scenarios. The system has been evaluated on a novel data set containing different indoor/outdoor scenarios, objects, and users, showing accurate recognition and better performance than standard state-of-the-art approaches.  
  Address Mallorca  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-31566-4 Medium  
  Area Expedition Conference AMDO  
  Notes HUPBA;MILAB Approved no  
  Call Number Admin @ si @ CRE2012 Serial 2010  
Permanent link to this record
 

 
Author Albert Clapes; Miguel Reyes; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Multi-modal User Identification and Object Recognition Surveillance System Type Journal Article
  Year 2013 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 34 Issue 7 Pages 799-808  
  Keywords Multi-modal RGB-Depth data analysis; User identification; Object recognition; Intelligent surveillance; Visual features; Statistical learning  
  Abstract (down) We propose an automatic surveillance system for user identification and object recognition based on multi-modal RGB-Depth data analysis. We model a RGBD environment learning a pixel-based background Gaussian distribution. Then, user and object candidate regions are detected and recognized using robust statistical approaches. The system robustly recognizes users and updates the system in an online way, identifying and detecting new actors in the scene. Moreover, segmented objects are described, matched, recognized, and updated online using view-point 3D descriptions, being robust to partial occlusions and local 3D viewpoint rotations. Finally, the system saves the historic of user–object assignments, being specially useful for surveillance scenarios. The system has been evaluated on a novel data set containing different indoor/outdoor scenarios, objects, and users, showing accurate recognition and better performance than standard state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; 600.046; 605.203;MILAB Approved no  
  Call Number Admin @ si @ CRE2013 Serial 2248  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: