Publicacions CVC
Home
|
Show All
|
Simple Search
|
Advanced Search
|
Add Record
|
Import
You must login to submit this form!
Login
Quick Search:
Field:
main fields
author
title
publication
keywords
abstract
created_date
call_number
contains:
...
Edit the following record:
Author
...
is Editor
Title
...
Type
Journal Article
Abstract
Book Chapter
Book Whole
Conference Article
Conference Volume
Journal
Magazine Article
Manual
Manuscript
Map
Miscellaneous
Newspaper Article
Patent
Report
Software
Year
...
Publication
...
Abbreviated Journal
...
Volume
...
Issue
...
Pages
...
Keywords
...
Abstract
Deep learning methods show great promise in a range of settings including the biomedical field. Explainability of these models is important in these fields for building end-user trust and to facilitate their confident deployment. Although several Machine Learning Interpretability tools have been proposed so far, there is currently no recognized evaluation standard to transfer the explainability results into a quantitative score. Several measures have been proposed as proxies for quantitative assessment of explainability methods. However, the robustness of the list of significant features provided by the explainability methods has not been addressed. In this work, we propose a new proxy for assessing the robustness of the list of significant features provided by two explainability methods. Our validation is defined at functionality-grounded level based on the ranked correlation statistical index and demonstrates its successful application in the framework of brain aging estimation. We assessed our proxy to estimate brain age using neuroscience data. Our results indicate small variability and high robustness in the considered explainability methods using this new proxy.
Address
...
Corporate Author
...
Thesis
Bachelor's thesis
Master's thesis
Ph.D. thesis
Diploma thesis
Doctoral thesis
Habilitation thesis
Publisher
...
Place of Publication
...
Editor
...
Language
...
Summary Language
...
Original Title
...
Series Editor
...
Series Title
...
Abbreviated Series Title
...
Series Volume
...
Series Issue
...
Edition
...
ISSN
...
ISBN
...
Medium
...
Area
...
Expedition
...
Conference
...
Notes
...
Approved
yes
no
Location
Call Number
...
Serial
Marked
yes
no
Copy
true
fetch
ordered
false
Selected
yes
no
User Keys
...
User Notes
...
User File
...
User Groups
...
Cite Key
...
Related
...
File
URL
...
DOI
...
Online publication. Cite with this text:
...
Location Field:
don't touch
add
remove
my name & email address
Home
SQL Search
|
Library Search
|
Show Record
|
Extract Citations
Help