Publicacions CVC
Home
|
Show All
|
Simple Search
|
Advanced Search
|
Add Record
|
Import
You must login to submit this form!
Login
Quick Search:
Field:
main fields
author
title
publication
keywords
abstract
created_date
call_number
contains:
...
Edit the following record:
Author
...
is Editor
Title
...
Type
Journal Article
Abstract
Book Chapter
Book Whole
Conference Article
Conference Volume
Journal
Magazine Article
Manual
Manuscript
Map
Miscellaneous
Newspaper Article
Patent
Report
Software
Year
...
Publication
...
Abbreviated Journal
...
Volume
...
Issue
...
Pages
...
Keywords
...
Abstract
Following the completion of the AutoDL challenge (the final challenge in the ChaLearn AutoDL challenge series 2019), we investigate winning solutions and challenge results to answer an important motivational question: how far are we from achieving true AutoML? On one hand, the winning solutions achieve good (accurate and fast) classification performance on unseen datasets. On the other hand, all winning solutions still contain a considerable amount of hard-coded knowledge on the domain (or modality) such as image, video, text, speech and tabular. This form of ad-hoc meta-learning could be replaced by more automated forms of meta-learning in the future. Organizing a meta-learning challenge could help forging AutoML solutions that generalize to new unseen domains (e.g. new types of sensor data) as well as gaining insights on the AutoML problem from a more fundamental point of view. The datasets of the AutoDL challenge are a resource that can be used for further benchmarks and the code of the winners has been outsourced, which is a big step towards “democratizing” Deep Learning.
Address
...
Corporate Author
...
Thesis
Bachelor's thesis
Master's thesis
Ph.D. thesis
Diploma thesis
Doctoral thesis
Habilitation thesis
Publisher
...
Place of Publication
...
Editor
...
Language
...
Summary Language
...
Original Title
...
Series Editor
...
Series Title
...
Abbreviated Series Title
...
Series Volume
...
Series Issue
...
Edition
...
ISSN
...
ISBN
...
Medium
...
Area
...
Expedition
...
Conference
...
Notes
...
Approved
yes
no
Location
Call Number
...
Serial
Marked
yes
no
Copy
true
fetch
ordered
false
Selected
yes
no
User Keys
...
User Notes
...
User File
...
User Groups
...
Cite Key
...
Related
...
File
URL
...
DOI
...
Online publication. Cite with this text:
...
Location Field:
don't touch
add
remove
my name & email address
Home
SQL Search
|
Library Search
|
Show Record
|
Extract Citations
Help