Publicacions CVC
Home
|
Show All
|
Simple Search
|
Advanced Search
|
Add Record
|
Import
You must login to submit this form!
Login
Quick Search:
Field:
main fields
author
title
publication
keywords
abstract
created_date
call_number
contains:
...
Edit the following record:
Author
...
is Editor
Title
...
Type
Journal Article
Abstract
Book Chapter
Book Whole
Conference Article
Conference Volume
Journal
Magazine Article
Manual
Manuscript
Map
Miscellaneous
Newspaper Article
Patent
Report
Software
Year
...
Publication
...
Abbreviated Journal
...
Volume
...
Issue
...
Pages
...
Keywords
...
Abstract
Anticipating the intentions of vulnerable road users (VRUs) such as pedestrians and cyclists can be critical for performing safe and comfortable driving maneuvers. This is the case for human driving and, therefore, should be taken into account by systems providing any level of driving assistance, i.e. from advanced driver assistant systems (ADAS) to fully autonomous vehicles (AVs). In this PhD work, we show how the latest advances on monocular vision-based human pose estimation, i.e. those relying on deep Convolutional Neural Networks (CNNs), enable to recognize the intentions of such VRUs. In the case of cyclists, we assume that they follow the established traffic codes to indicate future left/right turns and stop maneuvers with arm signals. In the case of pedestrians, no indications can be assumed a priori. Instead, we hypothesize that the walking pattern of a pedestrian can allow us to determine if he/she has the intention of crossing the road in the path of the egovehicle, so that the ego-vehicle must maneuver accordingly (e.g. slowing down or stopping). In this PhD work, we show how the same methodology can be used for recognizing pedestrians and cyclists’ intentions. For pedestrians, we perform experiments on the publicly available Daimler and JAAD datasets. For cyclists, we did not found an analogous dataset, therefore, we created our own one by acquiring and annotating corresponding video-sequences which we aim to share with the research community. Overall, the proposed pipeline provides new state-of-the-art results on the intention recognition of VRUs.
Address
...
Corporate Author
...
Thesis
Bachelor's thesis
Master's thesis
Ph.D. thesis
Diploma thesis
Doctoral thesis
Habilitation thesis
Publisher
...
Place of Publication
...
Editor
...
Language
...
Summary Language
...
Original Title
...
Series Editor
...
Series Title
...
Abbreviated Series Title
...
Series Volume
...
Series Issue
...
Edition
...
ISSN
...
ISBN
...
Medium
...
Area
...
Expedition
...
Conference
...
Notes
...
Approved
yes
no
Location
Call Number
...
Serial
Marked
yes
no
Copy
true
fetch
ordered
false
Selected
yes
no
User Keys
...
User Notes
...
User File
...
User Groups
...
Cite Key
...
Related
...
File
URL
...
DOI
...
Online publication. Cite with this text:
...
Location Field:
don't touch
add
remove
my name & email address
Home
SQL Search
|
Library Search
|
Show Record
|
Extract Citations
Help