Publicacions CVC
Home
|
Show All
|
Simple Search
|
Advanced Search
|
Add Record
|
Import
You must login to submit this form!
Login
Quick Search:
Field:
main fields
author
title
publication
keywords
abstract
created_date
call_number
contains:
...
Edit the following record:
Author
...
is Editor
Title
...
Type
Journal Article
Abstract
Book Chapter
Book Whole
Conference Article
Conference Volume
Journal
Magazine Article
Manual
Manuscript
Map
Miscellaneous
Newspaper Article
Patent
Report
Software
Year
...
Publication
...
Abbreviated Journal
...
Volume
...
Issue
...
Pages
...
Keywords
...
Abstract
Automatic prediction of personality traits is a subjective task that has recently received much attention. Specifically, automatic apparent personality trait prediction from multimodal data has emerged as a hot topic within the filed of computer vision and, more particularly, the so called “looking at people” sub-field. Considering “apparent” personality traits as opposed to real ones considerably reduces the subjectivity of the task. The real world applications are encountered in a wide range of domains, including entertainment, health, human computer interaction, recruitment and security. Predictive models of personality traits are useful for individuals in many scenarios (e.g., preparing for job interviews, preparing for public speaking). However, these predictions in and of themselves might be deemed to be untrustworthy without human understandable supportive evidence. Through a series of experiments on a recently released benchmark dataset for automatic apparent personality trait prediction, this paper characterizes the audio and visual information that is used by a state-of-the-art model while making its predictions, so as to provide such supportive evidence by explaining predictions made. Additionally, the paper describes a new web application, which gives feedback on apparent personality traits of its users by combining model predictions with their explanations.
Address
...
Corporate Author
...
Thesis
Bachelor's thesis
Master's thesis
Ph.D. thesis
Diploma thesis
Doctoral thesis
Habilitation thesis
Publisher
...
Place of Publication
...
Editor
...
Language
...
Summary Language
...
Original Title
...
Series Editor
...
Series Title
...
Abbreviated Series Title
...
Series Volume
...
Series Issue
...
Edition
...
ISSN
...
ISBN
...
Medium
...
Area
...
Expedition
...
Conference
...
Notes
...
Approved
yes
no
Location
Call Number
...
Serial
Marked
yes
no
Copy
true
fetch
ordered
false
Selected
yes
no
User Keys
...
User Notes
...
User File
...
User Groups
...
Cite Key
...
Related
...
File
URL
...
DOI
...
Online publication. Cite with this text:
...
Location Field:
don't touch
add
remove
my name & email address
Home
SQL Search
|
Library Search
|
Show Record
|
Extract Citations
Help