Publicacions CVC
Home
|
Show All
|
Simple Search
|
Advanced Search
|
Add Record
|
Import
You must login to submit this form!
Login
Quick Search:
Field:
main fields
author
title
publication
keywords
abstract
created_date
call_number
contains:
...
Edit the following record:
Author
...
is Editor
Title
...
Type
Journal Article
Abstract
Book Chapter
Book Whole
Conference Article
Conference Volume
Journal
Magazine Article
Manual
Manuscript
Map
Miscellaneous
Newspaper Article
Patent
Report
Software
Year
...
Publication
...
Abbreviated Journal
...
Volume
...
Issue
...
Pages
...
Keywords
...
Abstract
We propose an online domain adaptation method for the deformable part-based model (DPM). The online domain adaptation is based on a two-level hierarchical adaptation tree, which consists of instance detectors in the leaf nodes and a category detector at the root node. Moreover, combined with a multiple object tracking procedure (MOT), our proposal neither requires target-domain annotated data nor revisiting the source-domain data for performing the source-to-target domain adaptation of the DPM. From a practical point of view this means that, given a source-domain DPM and new video for training on a new domain without object annotations, our procedure outputs a new DPM adapted to the domain represented by the video. As proof-of-concept we apply our proposal to the challenging task of pedestrian detection. In this case, each instance detector is an exemplar classifier trained online with only one pedestrian per frame. The pedestrian instances are collected by MOT and the hierarchical model is constructed dynamically according to the pedestrian trajectories. Our experimental results show that the adapted detector achieves the accuracy of recent supervised domain adaptation methods (i.e., requiring manually annotated targetdomain data), and improves the source detector more than 10 percentage points.
Address
...
Corporate Author
...
Thesis
Bachelor's thesis
Master's thesis
Ph.D. thesis
Diploma thesis
Doctoral thesis
Habilitation thesis
Publisher
...
Place of Publication
...
Editor
...
Language
...
Summary Language
...
Original Title
...
Series Editor
...
Series Title
...
Abbreviated Series Title
...
Series Volume
...
Series Issue
...
Edition
...
ISSN
...
ISBN
...
Medium
...
Area
...
Expedition
...
Conference
...
Notes
...
Approved
yes
no
Location
Call Number
...
Serial
Marked
yes
no
Copy
true
fetch
ordered
false
Selected
yes
no
User Keys
...
User Notes
...
User File
...
User Groups
...
Cite Key
...
Related
...
File
URL
...
DOI
...
Online publication. Cite with this text:
...
Location Field:
don't touch
add
remove
my name & email address
Home
SQL Search
|
Library Search
|
Show Record
|
Extract Citations
Help