
Local Prediction Aggregation: A Frustratingly Easy Source-free Domain
Adaptation Method

Shiqi Yang 1 Yaxing Wang 2 Kai Wang 1 Joost van de Weijer 1 Shangling Jui 3

Abstract
We propose a simple but effective source-free do-
main adaptation (SFDA) method. Treating SFDA
as an unsupervised clustering problem and follow-
ing the intuition that local neighbors in feature
space should have more similar predictions than
other features, we propose to optimize an objec-
tive of prediction consistency. This objective en-
courages local neighborhood features in feature
space to have similar predictions while features
farther away in feature space have dissimilar pre-
dictions, leading to efficient feature clustering and
cluster assignment simultaneously. For efficient
training, we seek to optimize an upper-bound of
the objective which contains two simple terms.
Furthermore, we relate popular existing methods
in domain adaptation, source-free domain adapta-
tion and contrastive learning via the perspective of
discriminability and diversity. The experimental
results prove the superiority of our method, and
our method can be adopted as a simple but strong
baseline for future research in SFDA.

1. Introduction
Supervised learning methods which are based on training
with huge amounts of labeled data are advancing almost
all fields of computer vision. However, the learned models
typically perform decently on test data which have a similar
distribution with the training set. Significant performance
degradation will occur if directly applying those models
to a new domain different from the training set, where the
data distribution (such as variation of background, styles or
camera parameter) is considerably different. This kind of
distribution shift is formally denoted as domain/distribution
shift. It limits the generalization of the model to unseen do-
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mains which is important in real-world applications. There
are several research fields trying to tackle this problem. One
of them is Domain Adaptation (DA), which aims to reduce
the domain shift between the labeled source domain and
unlabeled target domain. Typical works (Gong et al., 2012;
Pan & Yang, 2009) resort to learn domain-invariant features,
thus improving generalization ability of the model between
different domains. And in the past few years, the main re-
search line of domain adaptation is either trying to minimize
the distribution discrepancy between two domains (Long
et al., 2018a; 2015; 2016), or deploying adversarial training
on features to learn domain invariant representation (Tzeng
et al., 2017; Zhang et al., 2019b; Cicek & Soatto, 2019; Lu
et al., 2020). Some methods also tackle domain shift from
the view of semi-supervised learning (Zhang et al., 2020;
Liang et al., 2021a) or clustering (Deng et al., 2019; Tang
et al., 2020; Cui et al., 2020).

Although those domain adaptation methods achieve good
results, for many real-world tasks the accessibility of labeled
source data cannot be ensured. With the growing attention
for data privacy and intellectual property from both daily
users and business, often it is impossible to have constant
access to source domain data, for example when deploying
recognition/diagnosis model to countless mobile terminals
or hospital severs where devices are decentralized. Due
to its high practical value, source-free domain adaptation
(SFDA) (Li et al., 2020; Liang et al., 2020b) has been pro-
posed to deal with situations where those privacy or property
issues need to be carefully considered. Under the SFDA
setting, we are provided with a model which is already pre-
trained on the source domain, and during whole adaptation
period we only have access to unlabeled target data. In
terms of final goal, the SFDA setting is close to unsuper-
vised clustering, where the model is expected to give the
right predictions after training on unlabeled data. However,
SFDA has a huge advantage over typical unsupervised clus-
tering, that is the source model provides a good initialization
for target adaptation. In other words the source-pretrained
model already learned a good feature representation, since
the target domain shares some similarity with the source
domain. A successful SFDA method should fully exploit
source information for target adaptation.
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To address SFDA from the view of unsupervised clustering,
we propose a simple solution dubbed as LPA (Local Pre-
diction Aggregation). Based on the fact that target features
from the source model already form some semantic struc-
ture and following the intuition that for a target feature from
(source-pretrained) model, local neighbors in feature space
should have more similar prediction than other features, we
propose to minimize an objective function which encourages
local prediction aggregation; it encourages similar features
in feature space to have similar prediction, while dissimilar
features to have dissimilar prediction. Therefore, we can
efficiently and simultaneously cluster target features and
do cluster assignment. To accelerate and simplify the train-
ing, we upper-bound this objective, resulting in a simple
final objective which only contains two types of dot product
terms. Further, we unify several popular domain adapta-
tion, source-free domain adaptation and contrastive learn-
ing methods from the perspective towards discriminability
and diversity. Experimental results on several benchmarks
prove the superiority of our proposed method. We improve
the state-of-the-art on the challenging VisDA with 2.1% to
88.0%.

2. Related Work
Domain Adaptation. Early DA methods such as (Long
et al., 2015; Sun et al., 2016; Tzeng et al., 2014) adopt mo-
ment matching to align feature distributions. For adversarial
learning methods, DANN (Ganin et al., 2016) formulates
domain adaptation as an adversarial two-player game. The
adversarial training of CDAN (Long et al., 2018b) is condi-
tioned on several sources of information. DIRT-T (Shu et al.,
2018) performs domain adversarial training with an added
term that penalizes violations of the cluster assumption. Ad-
ditionally, (Lee et al., 2019; Lu et al., 2020; Saito et al.,
2018) adopts prediction diversity between multiple learn-
able classifiers to achieve local or category-level feature
alignment between source and target domains. SRDC (Tang
et al., 2020) proposes to directly uncover the intrinsic target
discrimination via discriminative clustering to achieve adap-
tation. CST (Liu et al., 2021) proposes a simple self-training
strategy to improve the rough pseudo label under domain
shift. LAMDA (Le et al., 2021) develops a new theoretical
setting to investigate label shift in domain adaptation and
achieves good results on current benchmarks.

Source-free Domain Adaptation. The above-mentioned
normal domain adaptation methods need to access source
domain data at all time during adaptation. In recent years
plenty of methods emerge trying to tackle source-free
domain adaptation. USFDA (Kundu et al., 2020a) and
FS (Kundu et al., 2020b) resort to synthesize extra train-
ing samples in order to get compact decision boundaries,
which is beneficial for both the detection of open classes

and also target adaptation. SHOT (Liang et al., 2020a)
proposes to freeze the source classifier and it clusters tar-
get features by maximizing mutual information along with
pseudo labeling for extra supervision. 3C-GAN (Li et al.,
2020) synthesizes labeled target-style training images. It
is based on a conditional GAN to provide supervision for
adaptation. A2Net (Xia et al., 2021) proposes to learn an ad-
ditional target-specific classifier for hard samples and adopts
a contrastive category-wise matching module to cluster tar-
get features. HCL (Huang et al., 2021a) adopts Instance
Discrimination (Wu et al., 2018) for features from current
and historical models to cluster features, along with a gen-
erated pseudo label conditioned on historical consistency.
G-SFDA (Yang et al., 2021b) and NRC (Yang et al., 2021a)
propose neighborhood clustering which enforces prediction
consistency between local neighborhood features.

Deep Clustering and Contrastive Learning. Recent
Deep Clustering methods can be roughly divided into two
groups, they the differ in how they learn the feature rep-
resentation and cluster assignments, either simultaneously
or alternatively. For example, DAC (Chang et al., 2017)
and DCCM (Wu et al., 2019) alternately update cluster as-
signments and between-sample similarity. Simultaneous
clustering methods IIC (Ji et al., 2019) and ISMAT (Hu
et al., 2017) are based on mutual information maximizing
between samples and theirs augmentations. Recent unsuper-
vised clustering works (Li et al., 2021b; Tsai et al., 2021;
Shen et al., 2021) start to rely on contrastive learning, where
InfoNCE (Oord et al., 2018) is typically deployed. And
recently NNCLR (Dwibedi et al., 2021) proposes to use
nearest neighbors in the latent space as positives in con-
trastive learning to cover more semantic variations than
pre-defined transformations. However an inevitable prob-
lem of normal contrastive learning is class collision where
negative samples are from the same class. To tackle this
issue, recent works (Li et al., 2021a; Huang et al., 2021b)
propose to estimate cluster prototypes and integrate them
into contrastive learning.

3. Method
For source-free domain adaptation (SFDA), we are given
source-pretrained model in the beginning and an unlabeled
target domain with Nt samples as Dt = {xti}

Nt
i=1. Target

domain have same C classes as source domain in this paper
(known as the closed-set setting). The goal of SFDA is to
adapt the model to target domain without source data. We
divide the model into two parts: the feature extractor f ,
and the classifier g. The output of the feature extractor is
denoted as feature (zi = f (x) ∈ Rh), where h is dimension
of the feature space. The output of classifier is denoted as
(pi = δ(g(zi)) ∈ RC ) where δ is the softmax function. We
denote P ∈ Rbs×C as the prediction matrix in a mini-batch.
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Algorithm 1 Local Prediction Aggregation for SFDA
Require: Source-pretrained model and target data Dt

1: Build memory bank storing all target features and predictions
2: while Adaptation do
3: Sample batch T from Dt and Update memory bank
4: For each feature zi in T , retrieve K-nearest neighbors (Ci)

and their predictions from memory bank
5: Update model by minimizing Eq. 7
6: end while

Regarding the SFDA as an unsupervised clustering problem,
we address SFDA problem by clustering target features
based on the proposed LPA. In additionally, we relate our
method with several existing DA, SFDA and contrastive
learning methods.

3.1. Local Prediction Aggregation for Source-free
Domain Adaptation

Since the source-pretrained model already learns a good
feature representation, it can provides a decent initialization
for target adaptation. We propose to achieve SFDA by
aggregating predictions for features that are located close in
feature space, while dispersing predictions of those features
farther away in feature space.

We define pij as the probability that the feature zi ∈ Rh has
similar (or the same) prediction to feature zj :

pij =
ep

T
i pj∑Nt

k=1 e
ptipk

(1)

This equation can be interpreted as the possibility that pj
is selected as the neighbor of pi in the output space (Gold-
berger et al., 2004).

We then define two sets for each feature zi: close neighbor
set Ci containing K-nearest neighbors of zi (with distances
as cosine similarity), and background set Bi which contains
the features that are not in Ci (features potentially from
different classes). To retrieve nearest neighbors for training,
we build two memory banks to store all target features along
with their predictions just like former works (Liang et al.,
2021a; Yang et al., 2021b;a; Saito et al., 2020), which is
efficient in both memory and computation, since only the
features along with their predictions already computed in
each mini-batch are used to update the memory bank.

Intuitively, for each feature zi, the features in Bi should
have less similar predictions than those in Ci1. To achieve

1For better understanding, we refer to Bi and Ci as index sets.

this, we first define two likelihood functions:

P (Ci|θ) =
∏
j∈Ci

pij =
∏
j∈Ci

ep
T
i pj∑Nt

k=1 e
pTi pk

(2)

P (Bi|θ) =
∏
j∈Bi

pij =
∏
j∈Bi

ep
T
i pj∑Nt

k=1 e
pTi pk

(3)

where θ denotes parameters of the model, for readability we
omit θ in following equations. The probability pj in Eq. 2
is the stored prediction for neighborhood feature zj , which
is retrieved from the memory bank.

We then propose to achieve target features clustering by
minimizing the following negative log-likelihood, denoted
as LPA (Local Prediction Aggregation):

L̃i(Ci,Bi) = − log
P (Ci)
P (Bi)

(4)

Noting that, if we only have P (Ci), it will be similar to In-
stance Discrimination (Wu et al., 2018), but we also consider
P (Bi) and we operate on predictions instead of features. If
regarding weights of the classifier g as classes prototypes,
optimizing Eq. 4 is not only pulling features towards their
closest neighbors and pushing them away from background
features, but also towards (or away from) corresponding
class prototypes. Therefore, we can achieve feature cluster-
ing and cluster assignment simultaneously.

To simplify the training, instead of manually and carefully
sampling background features, we use all other features
except zi in the mini-batch as Bi, which can be regarded as
an estimation of the distribution of the whole dataset. We
can reasonably believe that overall similarity of features
in Ci is potentially higher than that of Bi, even if Bi has
intersection with Ci since features in Ci are the closest ones
to feature zi. By optimizing Eq. 4, we are encouraging
features in Ci, which have a higher chance of belonging
to the same class, to have more similar predictions to zi
than those features in Bi, which have a lower chance of
belonging to the same class. Note all features will show up
in both the first and second term; intra-cluster alignment
and inter-cluster separability are expected to be achieved
after training.

The Eq. 4 is partly inspired by an unsupervised cluster-
ing method Local Aggregation (LA) (Zhuang et al., 2019),
which also defines two different feature sets and aims to clus-
ter neighbors together while dispersing background samples.
However LA defines Bi as a large amount of nearest neigh-
bors (4096 in their paper), and Ci as those features that
belong to the same cluster after several extra k-means clus-
tering. LA proposes to directly minimize − log P (Ci∩Bi)

P (Bi)

which is time consuming. While in our method, the defini-
tion of Bi and Ci is different and easy to implement. And
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unlike LA operating on features our method operates on the
prediction as mentioned above, more importantly we do not
optimize the original objective which is hard to train in large
scale, as we will illustrate below.

One problem optimizing Eq. 4 is that all target data are
needed to compute Eq. 2-3, which is infeasible in real-world
situation. Here we resort to get an upper-bound of Eq. 4:

L̃i(Ci,Bi) = − log
P (Ci)
P (Bi)

= −
∑
j∈Ci

[pTi pj − log(

Nt∑
k=1

ep
T
i pk )]

+
∑

m∈Bi

[pTi pm − log(

Nt∑
k=1

ep
T
i pk )]

= −
∑
j∈Ci

pTi pj +
∑

m∈Bi

pTi pm

+ (NCi −NBi) log(

Nt∑
k=1

ep
T
i pk )

(5)

Since we set NCi < NBi
, with Jensen’s inequality:

L̃i(Ci,Bi) ≤ −
∑
j∈Ci

pTi pj +
∑

m∈Bi

pTi pm

+ (NCi −NBi)(

Nt∑
k=1

1

Nt
pTi pk + logNt)

'
∑

m∈Bi

pTi pm −
∑
j∈Ci

pTi pj

+ (NCi −NBi)(
∑
k∈Bi

pTi pk
NBi

+ logNt)

= −
∑
j∈Ci

pTi pj +
NCi

NBi

∑
m∈Bi

pTi pm

+ (NCi −NBi) logNt

(6)

where NCi and NBi
is the number of features in Ci and Bi.

Note that we cannot get this upper-bound without P (Bi).
The approximation above in the penultimate line is to es-
timate the average dot product using the mini-batch data.
This leads to the surprisingly simple final objective for un-
supervised domain adaptation:

L = E[Li(Ci,Bi)] (7)

Li(Ci,Bi) = −
∑
j∈Ci

pTi pj + λ
∑
m∈Bi

pTi pm (8)

Note the gradient will come from both pi and pm. The first
term aims to enforce prediction consistency between local
neighbors, and the naive interpretation of second term is
to disperse the prediction of potential dissimilar features,
which are all other features in the mini-batch. Note that

Table 1. Decomposition of methods into two terms: discriminabil-
ity (dis) and diversity (div), which will be minimized for training.

Method task dis term div term
MI SFDA&Clustering H(Y |X) −H(Y )
BNM DA&SFDA −‖P‖F −rank(P )

NC SFDA −g(Wijp
T
i pj)

∑C
c=1 KL(p̄c||qc)

InfoNCE Contrastive −f(x)T f(y)/τ log( eτ +
∑
i e
f(x−

i )T f(x)/τ )
Ours SFDA −

∑
j∈Ci p

T
i pj

∑
m∈Bi

pTi pm

the dot product between two softmaxed predictions will be
maximal when two predictions have the same predicted class
and are close to one-hot vector. Our algorithm is illustrated
in Algorithm. 1.

Unlike using a constant for the second term in Eq. 6 we
empirically found that using a hyperparameter λ to decay
second term (starting from 1) works better. One reason
may be that the approximation inside Eq. 3.1 is not nec-
essarily accurate. And as training goes on, features are
gradually clustering, the role of the second term for dis-
persing should be weakened. Additionally, considering the
current mini-batch with the correctly predicted features zi
and zm belonging to the same class. In this case the second
term in both Li(Ci,Bi) and Lm(Cm,Bm) tends to push pm
to the wrong direction, while the first term in Lm(Cm,Bm)
can potentially keep current (correct) prediction unchanged.
Hence, this will suppress the negative impact of the second
term. We will further deepen the understanding of these two
terms in the next subsection.

3.2. Relation to Existing Works

In this section, we will relate several popular DA, SFDA
and contrastive learning methods through two objectives,
discriminability and diversity. This can improve our under-
standing of domain adaptation methods, as well as improve
the understanding of our method.

Mutual Information maximizing (MI). SHOT-
IM (Liang et al., 2020a) proposes to achieve source-free
domain adaptation by maximizing the mutual information,
which is actually widely used in unsupervised cluster-
ing (Gomes et al., 2010; Romano et al., 2014; Hu et al.,
2017):

LMI = H(Y |X)−H(Y ) (9)

which contains two terms: conditional entropy term
H(Y |X) to encourages unambiguous cluster assignments,
and marginal entropy term H(Y ) to encourage cluster sizes
to be uniform to avoid degeneracy. In practice, H(Y ) is
approximated by the current mini-batch instead of using
whole dataset (Springenberg, 2015; Hu et al., 2017).
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Batch Nuclear-norm Maximization (BNM). BNM (Cui
et al., 2020; 2021) aims to increase prediction discriminabil-
ity and diversity to tackle domain shift. It is originally
achieved by maximizing F -norm (for discriminability) and
rank of prediction matrix (for diversity) respectively:

L = −‖P‖F − rank(P ) (10)

In their paper, they further prove merely maximizing the
nuclear norm ‖P‖∗ can achieve these two goals simultane-
ously.

In relation to our method, if target features are well cluster-
ing during training, we can presume the K-nearest neigh-
bors of feature zi have the same prediction, the first term in
Eq. 7 can be seen as the summation of diagonal elements
of matrix PPT , which is actually the square of F -norm
(‖P‖F =

√
trace(PPT )), then it is actually minimizing

prediction entropy (Cui et al., 2020). As for second term,
we can regard it as the summation of non-diagonal element
of PPT , it encourages all these non-diagonal elements to be
0 thus the rank(PPT ) = rank(P ) is supposed to increase,
which indicates larger prediction diversity (Cui et al., 2020).
In a nutshell, compared to SHOT and BNM our method
first considers local feature structure to cluster target fea-
tures, which can be treated as an alternative way to increase
discriminability at the late training stage, meanwhile as
discussed above our method is also encouraging diversity.

Neighborhood Clustering (NC). G-SFDA (Yang et al.,
2021b) and NRC (Yang et al., 2021a) are based on neighbor-
hood clustering to tackle SFDA problem. Those works basi-
cally contain two major terms in their optimizing objective:
a neighborhood clustering term for prediction consistency
and a marginal entropy term H(Y ) for prediction diversity.
NRC (Yang et al., 2021a) further introduces neighborhood
reciprocity to weight the different neighbors. Their loss
objective can be written as:

Li = −
∑
j∈Ci

g(Wijp
T
i pj) +

C∑
c=1

KL(p̄c||qc), (11)

with p̄c =
1

nt

∑
i

p
(c)
i , and q{c=1,..,C} =

1

C

where Wij will weight the importance of neighbor and g(·)
is log or identity function. Although the first term of G-
SFDA and NRC is the same as that of our final loss objective
Eq. 7, note that our motivation is different as we simulta-
neously consider similar and dissimilar features, and Eq. 7
is deduced as an approximated upper-bound of our original
objective Eq. 4.

And note actually the marginal entropy term −H(Y ) =∑C
c=1 p̄c log p̄c =

∑C
c=1 KL(p̄c||qc) − logC. Although

the second term of those methods are favoring prediction

diversity to avoid the trivial solution where all images are
only assigned to some certain classes, the margin entropy
term presumes the prior that whole dataset or the mini-batch
is class balance/uniformly distributed, which is barely true
for current benchmarks or in real-world environment. In
conclusion, the above three types of methods are actually
all to increase discriminability and meanwhile maximize
diversity of the prediction, but through different ways.

Contrastive Learning. Here we also link our method to
InfoNCE (Oord et al., 2018)), which is widely used in con-
trastive learning. As a recent paper (Wang & Isola, 2020)
points out that InfoNCE loss can be decomposed into 2
terms:

LinfoNCE = E(x,y)∼ppos [−f(x)T f(y)/τ ]

+ E
x∼pdata

{x−
i }

M
i=1∼pdata

[log(e1/τ +
∑
i

ef(x
−
i )T f(x)/τ )] (12)

The first term is denoted as alignment term (with positive
pairs) is to make positive pairs of features similar, and the
second term denoted as uniformity term with negative pairs
encouraging all features to roughly uniformly distributed in
the feature space.

The Eq. 12 shares some similarity with all the above domain
adaptation methods in that the first term is for the alignment
with positive pairs and the second term is to encourage
diversity. But note that the remarkable difference is that
the above domain adaptation methods operate in the output
(prediction) space while contrastive learning is conducted
in the (spherical) feature space. Therefore, simultaneously
feature representation learning and cluster assignment can
be achieved for those domain adaptation methods.

Remark. The whole training process can be actually split
into 2 parts: training feature extractor and classifier. Here
we regard weights of classifier as prototypes. Training on
the feature extractor encourages similar features to move
towards corresponding class prototypes, since we force sim-
ilar features to have similar prediction. Training on the
classifier pushes class prototypes towards corresponding
feature clusters. Through this way we can simultaneously
achieve feature clustering and cluster assignment without
an extra process. Note in InstanceDiscrimination (Wu et al.,
2018) and LA (Zhuang et al., 2019), extra KNN or a linear
learnable classifier needs to be deployed for final classifica-
tion.

We list all above methods in Tab. 1. Finally, returning to
Eq. 7, we can also regard the second term as a variant of
diversity loss to avoid degeneration solution, but without
making any category prior assumption. Intuitively, with
target features forming groups during training, the second
term should play less and less important role, otherwise it
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Table 2. Accuracies (%) on Office-31 for ResNet50-based methods.
We highlight the best result and underline the second best one.

Method SFA→DA→WD→WW→DD→AW→AAvg
MCD (Saito et al., 2018) 7 92.2 88.6 98.5 100.0 69.5 69.7 86.5
CDAN (Long et al., 2018b) 7 92.9 94.1 98.6 100.0 71.0 69.3 87.7
MDD (Zhang et al., 2019a) 7 90.4 90.4 98.7 99.9 75.0 73.7 88.0
DMRL (Wu et al., 2020) 7 93.4 90.8 99.0 100.0 73.0 71.2 87.9
MCC (Jin et al., 2020) 7 95.6 95.4 98.6 100.0 72.6 73.9 89.4
SRDC (Tang et al., 2020) 7 95.8 95.7 99.2 100.0 76.7 77.1 90.8
RWOT (Xu et al., 2020) 7 94.5 95.1 99.5 100.0 77.5 77.9 90.8
LAMDA (Le et al., 2021) 7 96.0 95.2 98.5 100.0 87.3 84.4 93.0
SHOT (Liang et al., 2020a) 3 94.0 90.1 98.4 99.9 74.7 74.3 88.6
SHOT++ (Liang et al., 2021b) 3 94.3 90.4 98.7 99.9 76.2 75.8 89.2
3C-GAN (Li et al., 2020) 3 92.7 93.7 98.5 99.8 75.3 77.8 89.6
NRC (Yang et al., 2021a) 3 96.0 90.8 99.0 100.0 75.3 75.0 89.4
HCL (Huang et al., 2021a) 3 94.7 92.5 98.2 100.0 75.9 77.7 89.8
BNM-S (Cui et al., 2021) 3 93.0 92.9 98.2 99.9 75.4 75.0 89.1
Ours 3 94.8 93.7 98.4 100.0 75.8 76.8 89.9

may destabilize the training. This is similar to the class
collision issue in contrastive learning. If our second term
contains too many features belonging to the same class.
Thus it is reasonable to decay the second term.

4. Experiments
Datasets. We conduct experiments on three benchmark
datasets for image classification: Office-31, Office-Home
and VisDA-C 2017. Office-31 (Saenko et al., 2010) contains
3 domains (Amazon, Webcam, DSLR) with 31 classes and
4,652 images. Office-Home (Venkateswara et al., 2017)
contains 4 domains (Real, Clipart, Art, Product) with 65
classes and a total of 15,500 images. VisDA (VisDA-C
2017) (Peng et al., 2017) is a more challenging dataset, with
12-class synthetic-to-real object recognition tasks, its source
domain contains of 152k synthetic images while the target
domain has 55k real object images.

Evaluation. The column SF in the tables denotes source-
free. For Office-31 and Office-Home, we show the results of
each task and the average accuracy over all tasks (Avg in the
tables). For VisDA, we show accuracy for all classes and av-
erage over those classes (Per-class in the table). All results
are the average of three random runs for target adaptation.

Model details. To ensure fair comparison with related
methods, we adopt the backbone of a ResNet-50 (He et al.,
2016) for Office-Home and ResNet-101 for VisDA. Specifi-
cally, we use the same network architecture as SHOT (Liang
et al., 2020a), BNM-S (Cui et al., 2021), G-SFDA (Yang
et al., 2021b) and NRC (Yang et al., 2021a), i.e., the final
part of the network is: fully connected layer - Batch Nor-
malization (Ioffe & Szegedy, 2015) - fully connected layer
with weight normalization (Salimans & Kingma, 2016). We
adopt SGD with momentum 0.9 and batch size of 64 for all

datasets. The learning rate for Office-31 and Office-Home is
set to 1e-3 for all layers, except for the last two newly added
fc layers, where we apply 1e-2. Learning rates are set 10
times smaller for VisDA. We train 40 epochs for Office-31
and Office-Home while 15 epochs for VisDA.

There are two hyperparameters NCi (K which is number of
nearest neighbors) and λ, to ensure fair comparison we set
NCi to the same number as previous works G-SFDA (Yang
et al., 2021b) and NRC (Yang et al., 2021a), which also
resort to nearest neighbors. That is, we set K to 3 on Office-
31 and Office-Home, 5 on VisDA. For λ, we set it as λ =
(1+10∗ iter

max iter )−β , where the decay factor β controls the
decaying speed. β is set to 0 on Office-Home, 1 on Office-31
and 5 on VisDA, we will analyse these hyperparameters in
the following section.

4.1. Results and Analysis

Quantitative Results. As shown in Tables 2-4, where the
top part shows results for the source-present methods that
use source data during adaptation, and the bottom part shows
results for the source-free DA methods. On Office-31 and
VisDA, our method gets state-of-the-art performance com-
pared to existing source-free domain adaptation methods,
especially on VisDA our method outperforms others by a
large margin (2.1% compared to NRC). And our method
achieves similar results on Office-Home compared to the
more complex A2Net method (which combines three clas-
sifiers and five objective functions). The reported results
clearly demonstrate the efficiency of the proposed method
for source-free domain adaptation. It also achieves similar
or better results compared to domain adaptation methods
with access to source data on both Office-Home and VisDA.
SHOT++ (Liang et al., 2021b) deploys extra self-supervised
training and semi-supervised learning, which are general to
improve the results (an evidence is that the source model
after these 2 tricks gets huge improvement, e.g., 60.2% im-
proves to 66.6% on Office-Home.), however, our method is
still higher than SHOT++ on VisDA (88.0% versus 87.3%)
even when starting from the inferior source model.

Toy dataset. We carry out an experiment on the twinning
moona dataset to ablate the influence of two terms in our ob-
jective Eq. 7. For the twinning moons dataset, the data from
the source domain are represented by two inter-twinning
moons, which contain 300 samples each. Data in the target
domain are generated through rotating source data by 30◦.
The domain shift here is instantiated as the rotation degree.
First we train the model only on the source domain, and
test the model on all domains. As shown in the first image
in Fig. 1, the source model performs badly on target data.
Then we conduct several variants of our method to train the
model. Note here we treat these 2D samples as (fixed) fea-
tures and only train a classifier which consists of three fully
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Table 3. Accuracies (%) on Office-Home for ResNet50-based methods. We highlight the best result and underline the second best one.

Method SF Ar→ClAr→PrAr→RwCl→ArCl→PrCl→RwPr→ArPr→ClPr→RwRw→ArRw→ClRw→Pr Avg
ResNet-50 (He et al., 2016) 7 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
MCD (Saito et al., 2018) 7 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
CDAN (Long et al., 2018b) 7 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
SAFN (Xu et al., 2019) 7 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
MDD (Zhang et al., 2019a) 7 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
TADA (Wang et al., 2019) 7 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
SRDC (Tang et al., 2020) 7 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
LAMDA (Le et al., 2021) 7 57.2 78.4 82.6 66.1 80.2 81.2 65.6 55.1 82.8 71.6 59.2 83.9 72.0
SHOT (Liang et al., 2020a) 3 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
SHOT++ (Liang et al., 2021b) 3 57.9 79.7 82.5 68.5 79.6 79.3 68.5 57.0 83.0 73.7 60.7 84.9 73.0
A2Net (Xia et al., 2021) 3 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
G-SFDA (Yang et al., 2021b) 3 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
NRC (Yang et al., 2021a) 3 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
BNM-S (Cui et al., 2021) 3 57.4 77.8 81.7 67.8 77.6 79.3 67.6 55.7 82.2 73.5 59.5 84.7 72.1
Ours 3 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7

Table 4. Accuracies (%) on VisDA-C (Synthesis→ Real) for ResNet101-based methods. We highlight the best result and underline the
second best one.

Method SF plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class
ResNet-101 (He et al., 2016) 7 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
CDAN+BSP (Chen et al., 2019) 7 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SAFN (Xu et al., 2019) 7 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
SWD (Lee et al., 2019) 7 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
MCC (Jin et al., 2020) 7 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
STAR (Lu et al., 2020) 7 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
RWOT (Xu et al., 2020) 7 95.1 80.3 83.7 90.0 92.4 68.0 92.5 82.2 87.9 78.4 90.4 68.2 84.0
3C-GAN (Li et al., 2020) 3 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
SHOT (Liang et al., 2020a) 3 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
SHOT++ (Liang et al., 2021b) 3 97.7 88.4 90.2 86.3 97.9 98.6 92.9 84.1 97.1 92.2 93.6 28.8 87.3
A2Net (Xia et al., 2021) 3 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
G-SFDA (Yang et al., 2021b) 3 96.1 88.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4
NRC (Yang et al., 2021a) 3 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
HCL (Huang et al., 2021a) 3 93.3 85.4 80.7 68.5 91.0 88.1 86.0 78.6 86.6 88.8 80.0 74.7 83.5
Ours 3 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0

Source model only first term without decay with decay

Figure 1. Visualization of decision boundary on target data with different training objective. The twin moons dataset is balanced.

Source model only first term K=3 K=3 K=16

Figure 2. Visualization of decision boundary on target data with different training objective and K, The twin moons dataset is imbalanced
with class ratio 2:1.
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Table 5. Ablation study on number of nearest neighbors K (NCi )
and decay coefficient β, where bs means batch-size (64 on all
datasets) and nc means number of classes. We highlight the best
score and underline the second best one for each dataset.

bs/C K β Avg
Office-31

2.1 1 1 89.1
2.1 2 1 89.5
2.1 2 2 89.5
2.1 3 0.25 89.1
2.1 3 1 89.9
2.1 3 2 89.8

Office-Home
1 1 0 72.2
1 1 0.25 72.2
1 1 1 71.6
1 2 0 72.6
1 2 0.25 72.7
1 2 1 71.8
1 3 0 72.7
1 3 0.25 72.6

bs/C K β Per-class
VisDA

5.3 3 5 86.7
5.3 4 5 87.4
5.3 5 5 88.0
5.3 6 5 88.0
5.3 7 5 88.0
5.3 5 0 77.5
5.3 5 1 83.8
5.3 5 2 86.7
5.3 5 3 87.6
5.3 5 4 88.0
5.3 5 6 88.1
5.3 5 7 88.1
5.3 6 4 88.0
5.3 6 5 88.0

connected layers, with batch-size set to 32, NCi/K is set to
3 and β as 2. The visualization of the decision boundary in
Fig. 1 indicates that both terms in Eq. 7 are necessary, and
decay of second term is also shown to be important.

Number of nearest neighbors (NCi or K). Here we dis-
cuss the choice of NCi/K, the number of retrieved nearest
neighbors for Ci. We posit that the element amount of the
first term in Eq. 7 ideally should be larger than the num-
ber of features belonging to the same class in the second
term. Since we cannot know the class distribution in the
mini-batch, we estimate that there could be bs/C images
per class (where bs is the batch size). To avoid that the
supervision signal from the first term gets neutralized by the
second term, we posit that it is better that NCi ≥ bs/C.

Although in the previous experiment on the twinning moons
dataset, it also works when NCi is set to 3, which is much
smaller than bs/C = 16. We conduct another experiment
on a new twinning moons dataset which is imbalanced (300
and 150 samples per class), since existing benchmarks and
data in the real-world are barely class balanced. As shown
in Fig. 2, adopting a small NCi = 3 cannot perform well.
We conjecture that the reason may be that for features from
the majority category (green) there are more samples in the
current mini-batch (Bi) belonging to the same class, leading
to a too strong supervision from the second term and poor
clustering. Simply increasing NCi to bs/C = 16 can lead
to good performance. Although we cannot know the real
category distribution, we empirically find that setting NCi
to bs/C (or larger) achieves good performance.

Figure 3. 10/20 largest singular values (max-normalized, the first
one is 1) of features of VisDA (Left) and Pr→Ar on Office-Home
(Right).

Figure 4. (Left) Ratio of features which have 3 nearest neighbor
features sharing the same predicted label. (Right) Ratio among
above features which have 3 nearest neighbor features sharing the
same and correct predicted label.

Decaying factor β. According to the analysis in Sec. 3.2,
the second term acts like a diversity term to avoid that all
target features collapse to a limited set of categories. The
role of the second term should be weakened during the
training, but how to decay the second term is non-trivial.
We conduct the ablation study for the decay factor β along
with NCi in Tab. 5. Note that with larger β the second
term decays faster. From the table we can roughly draw the
conclusion that β is also related to bs/C. With larger bs/C,
the second term will have more chance to contain features in
the same class, thus the second term should decay quickly.

Transferability and Discriminability. A recent
work (Chen et al., 2019) adopts singular value de-
composition to analyze the spectral properties of feature
representations for domain adaptation. It proves that a
sharp distribution of singular values intuitively implies
deteriorated discriminability, since the eigenvectors
corresponding to smaller singular values are related to
discriminability, while the eigenvectors with the top
singular values dominate the transferability. We conduct
this analysis trying to understand how different decaying
terms β influence these different properties. As shown in
Fig. 3 where we plot singular values vectors with different
β, it shows that on both datasets a larger decaying factor
will lead to a sharp distribution of singular values which
means favouring transferability. However, when it comes
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Table 6. Accuracy(%) on Office-Home using ResNet-50 as backbone for open-set DA. |Cs| = 25, |Ct| = 65, |Cs| ∩ |Ct| = 25. OS*
means average per-class accuracy across known classes, UNK means unknown accuracy and HOS means harmonic mean between known
and unknown accuracy. All results are picked from the last iteration.

Ar→ Cl Ar→ Pr Ar→ Rw Cl→ Ar Cl→ Pr Cl→ Rw
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

SHOT 67.0 28.0 39.5 81.8 26.3 39.8 87.5 32.1 47.0 66.8 46.2 54.6 77.5 27.2 40.2 80.0 25.9 39.1
LPA 50.7 66.4 57.6 64.6 69.4 66.9 73.1 66.9 69.9 48.2 81.1 60.5 59.5 63.5 61.4 67.4 68.3 67.8

Pr→ Ar Pr→ Cl Pr→ Rw Rw→ Ar Rw→ Cl Rw→ Pr Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

SHOT 66.3 51.1 57.7 59.3 31.0 40.8 85.8 31.6 46.2 73.5 50.6 59.9 65.3 28.9 40.1 84.4 28.2 42.3 74.6 33.9 45.6
LPA 47.3 82.4 60.1 45.4 72.8 55.9 68.4 72.8 70.6 54.5 79.0 64.6 49.0 69.6 57.5 69.7 70.6 70.1 58.2 71.9 63.6

Table 7. Accuracy(%) on Office-Home using ResNet-50 as backbone under partial-set DA. |Cs| = 65, |Ct| = 25, |Cs| ∩ |Ct| = 25.

Partial-set DA Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg.
SHOT-IM 57.9 83.6 88.8 72.4 74.0 79.0 76.1 60.6 90.1 81.9 68.3 88.5 76.8
SHOT 64.8 85.2 92.7 76.3 77.6 88.8 79.7 64.3 89.5 80.6 66.4 85.8 79.3
LPA 67.0 83.5 93.1 80.5 76.0 87.6 78.1 65.6 90.2 83.5 64.3 87.3 79.7

to performance, conclusions are totally on the contrary as
the sharp distribution for VisDA gets better results while
the flat one for Office-Home gets better results. Note
that also the curves of the source model are located on
different sites of the target curves when comparing the two
datasets. The results indicate that for different datasets
the priority of discriminability or transferability may be
different: discriminability dominates for Office-Home and
transferability for VisDA. And the optimal β is empirically
found to be with the singular values curve which is the
farthest from the source model.

Degree of clustering during training. We also plot how
features are clustered with different decaying factors β on
VisDA in Fig. 4. The left one shows the ratio of features
which have 3-nearest neighbors all sharing the same pre-
diction, which indicates the degree of clustering during
training, and the right one shows the ratio among above
features which have 3-nearest neighbor features sharing the
same and correct predicted label. Those curves in Fig. 4
left show that the target features are clustering, and those
in Fig. 4 right indicate that clear category boundaries are
emerging. The numbers in the legends denote the deployed
β and the corresponding final accuracy. From the figures
we can draw the conclusion that with a larger decay factor β
on VisDA, features are quickly clustering and forming inter-
class boundaries, since the ratio of features which share the
same and correct prediction with neighbors are increasing
faster. When decaying factor β is too small, meaning train-
ing signal from the second term is strong, the clustering
process is actually impeded.

5. Conclusion
We proposed to tackle source-free domain adaptation by
encouraging similar features in feature space to have sim-

Figure 5. Training curves on Ar→Cl task (Office-Home) of SHOT
(left) and LPA (Right) under ODA setting.

ilar predictions while dispersing predictions of dissimilar
features in feature space, to achieve simultaneously feature
clustering and cluster assignment. We introduced an upper
bound to our proposed objective, resulting in two simple
terms. Further we showed that we can unify several popular
domain adaptation, source-free domain adaptation and con-
trastive learning methods from the perspective of discrim-
inability and diversity. The approach is simple but achieves
state-of-the-art performance on several benchmarks.
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Appendix
Partial and open set DA. We provide additional results
under ODA and PDA setting in Tab. 6 and Tab. 3 (Left) re-
spectively, where the open-set detection in ODA follows the
same protocol as SHOT. For the hyperparameter β, it works
well for ODA with set to 1, and it can be set to 2 3 to achieve
good performance for PDA. On ODA, instead of reporting
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average per-class accuracy OS = |Cs|×OS∗

|Cs|+1 + 1×UNK
|Cs|+1

where |Cs| is the number of known categories on source
domain, we report results of HOS = 2×OS∗×UNK

OS∗+UNK , which
is harmonic mean between known categories accuracy OS∗

and unknown accuracy UNK. As pointed out by (Bucci
et al., 2020), OS is problematic since this metric can be
quite high even when unknown class accuracy UNK is 0,
while unknown category detection is the key part in open-
set DA. We reproduce SHOT under open-set DA and report
results of OS∗, UNK and HOS in Tab. 6, which shows our
method gets much better balance between known and un-
known accuracy. In Fig. 5, we plot the training curve of
these accuracy metrics for SHOT and our LPA, it shows
the unknown accuracy of SHOT is degrading significantly
during training resulting in a lower HOS metric.

References
Bucci, S., Loghmani, M. R., and Tommasi, T. On the effec-

tiveness of image rotation for open set domain adaptation.
In European Conference on Computer Vision, pp. 422–
438. Springer, 2020.

Chang, J., Wang, L., Meng, G., Xiang, S., and Pan, C.
Deep adaptive image clustering. In ICCV, pp. 5879–5887,
2017.

Chen, X., Wang, S., Long, M., and Wang, J. Transferabil-
ity vs. discriminability: Batch spectral penalization for
adversarial domain adaptation. In ICML, pp. 1081–1090,
2019.

Cicek, S. and Soatto, S. Unsupervised domain adaptation
via regularized conditional alignment. In ICCV, pp. 1416–
1425, 2019.

Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., and Tian,
Q. Towards discriminability and diversity: Batch nuclear-
norm maximization under label insufficient situations.
CVPR, 2020.

Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., and Tian,
Q. Fast batch nuclear-norm maximization and mini-
mization for robust domain adaptation. arXiv preprint
arXiv:2107.06154, 2021.

Deng, Z., Luo, Y., and Zhu, J. Cluster alignment with a
teacher for unsupervised domain adaptation. In ICCV, pp.
9944–9953, 2019.

Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., and
Zisserman, A. With a little help from my friends: Nearest-
neighbor contrastive learning of visual representations.
ICCV, 2021.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.

Domain-adversarial training of neural networks. JMLR,
17(1):2096–2030, 2016.

Goldberger, J., Hinton, G. E., Roweis, S., and Salakhutdinov,
R. R. Neighbourhood components analysis. NIPS, 17,
2004.

Gomes, R., Krause, A., and Perona, P. Discriminative clus-
tering by regularized information maximization. In NIPS,
2010.

Gong, B., Shi, Y., Sha, F., and Grauman, K. Geodesic flow
kernel for unsupervised domain adaptation. In CVPR, pp.
2066–2073. IEEE, 2012.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, pp. 770–778,
2016.

Hu, W., Miyato, T., Tokui, S., Matsumoto, E., and Sugiyama,
M. Learning discrete representations via information
maximizing self-augmented training. In ICML, pp. 1558–
1567, 2017.

Huang, J., Guan, D., Xiao, A., and Lu, S. Model adaptation:
Historical contrastive learning for unsupervised domain
adaptation without source data. NeurIPS, 34, 2021a.

Huang, Z., Chen, J., Zhang, J., and Shan, H. Exploring non-
contrastive representation learning for deep clustering.
arXiv preprint arXiv:2111.11821, 2021b.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Ji, X., Henriques, J. F., and Vedaldi, A. Invariant informa-
tion clustering for unsupervised image classification and
segmentation. In ICCV, pp. 9865–9874, 2019.

Jin, Y., Wang, X., Long, M., and Wang, J. Minimum class
confusion for versatile domain adaptation. ECCV, 2020.

Kundu, J. N., Venkat, N., and Babu, R. V. Universal source-
free domain adaptation. CVPR, 2020a.

Kundu, J. N., Venkat, N., Revanur, A., Babu, R. V., et al. To-
wards inheritable models for open-set domain adaptation.
In CVPR, pp. 12376–12385, 2020b.

Le, T., Nguyen, T., Ho, N., Bui, H., and Phung, D. Lamda:
Label matching deep domain adaptation. In ICML, pp.
6043–6054. PMLR, 2021.

Lee, C.-Y., Batra, T., Baig, M. H., and Ulbricht, D. Sliced
wasserstein discrepancy for unsupervised domain adapta-
tion. In CVPR, pp. 10285–10295, 2019.



Local Prediction Aggregation for Source-free Domain Adaptation

Li, J., Zhou, P., Xiong, C., and Hoi, S. Prototypical con-
trastive learning of unsupervised representations. In ICLR,
2021a.

Li, R., Jiao, Q., Cao, W., Wong, H.-S., and Wu, S. Model
adaptation: Unsupervised domain adaptation without
source data. In CVPR, pp. 9641–9650, 2020.

Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J. T., and Peng, X.
Contrastive clustering. In AAAI, 2021b.

Liang, J., Hu, D., and Feng, J. Do we really need to access
the source data? source hypothesis transfer for unsuper-
vised domain adaptation. ICML, 2020a.

Liang, J., Hu, D., Wang, Y., He, R., and Feng, J. Source
data-absent unsupervised domain adaptation through hy-
pothesis transfer and labeling transfer. arXiv preprint
arXiv:2012.07297, 2020b.

Liang, J., Hu, D., and Feng, J. Domain adaptation with
auxiliary target domain-oriented classifier. In CVPR, pp.
16632–16642, 2021a.

Liang, J., Hu, D., Wang, Y., He, R., and Feng, J. Source
data-absent unsupervised domain adaptation through hy-
pothesis transfer and labeling transfer. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021b.

Liu, H., Wang, J., and Long, M. Cycle self-training for
domain adaptation. In NeurIPS, 2021.

Long, M., Cao, Y., Wang, J., and Jordan, M. I. Learn-
ing transferable features with deep adaptation networks.
ICML, 2015.

Long, M., Zhu, H., Wang, J., and Jordan, M. I. Unsupervised
domain adaptation with residual transfer networks. In
NIPS, pp. 136–144, 2016.

Long, M., Cao, Y., Cao, Z., Wang, J., and Jordan, M. I.
Transferable representation learning with deep adaptation
networks. TPAMI, 41(12):3071–3085, 2018a.

Long, M., Cao, Z., Wang, J., and Jordan, M. I. Conditional
adversarial domain adaptation. In NIPS, pp. 1647–1657,
2018b.

Lu, Z., Yang, Y., Zhu, X., Liu, C., Song, Y.-Z., and Xiang, T.
Stochastic classifiers for unsupervised domain adaptation.
In CVPR, pp. 9111–9120, 2020.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Pan, S. J. and Yang, Q. A survey on transfer learning. TKDE,
22(10):1345–1359, 2009.

Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D.,
and Saenko, K. Visda: The visual domain adaptation
challenge. arXiv preprint arXiv:1710.06924, 2017.

Romano, S., Bailey, J., Nguyen, V., and Verspoor, K. Stan-
dardized mutual information for clustering comparisons:
one step further in adjustment for chance. In ICML, pp.
1143–1151, 2014.

Saenko, K., Kulis, B., Fritz, M., and Darrell, T. Adapting
visual category models to new domains. In ECCV, pp.
213–226. Springer, 2010.

Saito, K., Watanabe, K., Ushiku, Y., and Harada, T. Max-
imum classifier discrepancy for unsupervised domain
adaptation. In CVPR, pp. 3723–3732, 2018.

Saito, K., Kim, D., Sclaroff, S., and Saenko, K. Universal
domain adaptation through self supervision. NeurIPS, 33,
2020.

Salimans, T. and Kingma, D. P. Weight normalization: A
simple reparameterization to accelerate training of deep
neural networks. arXiv preprint arXiv:1602.07868, 2016.

Shen, Y., Shen, Z., Wang, M., Qin, J., Torr, P. H., and Shao,
L. You never cluster alone. In NeurIPS, 2021.

Shu, R., Bui, H. H., Narui, H., and Ermon, S. A dirt-
t approach to unsupervised domain adaptation. ICLR,
2018.

Springenberg, J. T. Unsupervised and semi-supervised learn-
ing with categorical generative adversarial networks. In
ICLR, 2015.

Sun, B., Feng, J., and Saenko, K. Return of frustratingly
easy domain adaptation. In AAAI, 2016.

Tang, H., Chen, K., and Jia, K. Unsupervised domain
adaptation via structurally regularized deep clustering. In
CVPR, pp. 8725–8735, 2020.

Tsai, T. W., Li, C., and Zhu, J. Mice: Mixture of contrastive
experts for unsupervised image clustering. In ICLR, 2021.

Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell,
T. Deep domain confusion: Maximizing for domain
invariance. arXiv preprint arXiv:1412.3474, 2014.

Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. Adver-
sarial discriminative domain adaptation. In CVPR, pp.
7167–7176, 2017.

Venkateswara, H., Eusebio, J., Chakraborty, S., and Pan-
chanathan, S. Deep hashing network for unsupervised
domain adaptation. In CVPR, pp. 5018–5027, 2017.



Local Prediction Aggregation for Source-free Domain Adaptation

Wang, T. and Isola, P. Understanding contrastive represen-
tation learning through alignment and uniformity on the
hypersphere. In ICML, pp. 9929–9939. PMLR, 2020.

Wang, X., Li, L., Ye, W., Long, M., and Wang, J. Transfer-
able attention for domain adaptation. In AAAI, volume 33,
pp. 5345–5352, 2019.

Wu, J., Long, K., Wang, F., Qian, C., Li, C., Lin, Z., and Zha,
H. Deep comprehensive correlation mining for image
clustering. In ICCV, pp. 8150–8159, 2019.

Wu, Y., Inkpen, D., and El-Roby, A. Dual mixup regularized
learning for adversarial domain adaptation. ECCV, 2020.

Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. Unsupervised fea-
ture learning via non-parametric instance discrimination.
In CVPR, pp. 3733–3742, 2018.

Xia, H., Zhao, H., and Ding, Z. Adaptive adversarial net-
work for source-free domain adaptation. In ICCV, pp.
9010–9019, 2021.

Xu, R., Li, G., Yang, J., and Lin, L. Larger norm more
transferable: An adaptive feature norm approach for un-
supervised domain adaptation. In ICCV, October 2019.

Xu, R., Liu, P., Wang, L., Chen, C., and Wang, J. Reli-
able weighted optimal transport for unsupervised domain
adaptation. In CVPR, pp. 4394–4403, 2020.

Yang, S., van de Weijer, J., Herranz, L., Jui, S., et al. Exploit-
ing the intrinsic neighborhood structure for source-free
domain adaptation. NeurIPS, 34, 2021a.

Yang, S., Wang, Y., van de Weijer, J., Herranz, L., and Jui,
S. Generalized source-free domain adaptation. In ICCV,
pp. 8978–8987, 2021b.

Zhang, Y., Liu, T., Long, M., and Jordan, M. Bridging
theory and algorithm for domain adaptation. In ICML,
pp. 7404–7413, 2019a.

Zhang, Y., Tang, H., Jia, K., and Tan, M. Domain-symmetric
networks for adversarial domain adaptation. In CVPR,
pp. 5031–5040, 2019b.

Zhang, Y., Deng, B., Jia, K., and Zhang, L. Label propaga-
tion with augmented anchors: A simple semi-supervised
learning baseline for unsupervised domain adaptation. In
ECCV, pp. 781–797, 2020.

Zhuang, C., Zhai, A. L., and Yamins, D. Local aggregation
for unsupervised learning of visual embeddings. In ICCV,
pp. 6002–6012, 2019.


