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Abstract

Unsupervised domain adaptation (UDA) aims to transfer
the knowledge learned from a labeled source domain to an
unlabeled target domain. Existing UDA methods require
access to source data during adaptation, which may not
be feasible in some real-world applications. In this paper,
we address the source-free unsupervised domain adaptation
(SFUDA) problem, where only the source model is available
during the adaptation. We propose a method named BAIT to
address SFUDA. Specifically, given only the source model,
with the source classifier head fixed, we introduce a new
learnable classifier. When adapting to the target domain,
class prototypes of the new added classifier will act as a bait.
They will first approach the target features which deviate
from prototypes of the source classifier due to domain shift.
Then those target features are pulled towards the correspond-
ing prototypes of the source classifier, thus achieving feature
alignment with the source classifier in the absence of source
data. Experimental results show that the proposed method
achieves state-of-the-art performance on several benchmark
datasets compared with existing UDA and SFUDA methods.

1. Introduction
Though achieving great success, typically deep neural

networks demand a huge amount of labeled data for train-
ing. However, collecting labeled data is often laborious and
expensive. It would, therefore, be ideal if the knowledge
obtained on label-rich datasets can be transferred to unla-
beled data. For example, after training on synthetic images,
it would be beneficial to transfer the obtained knowledge to
the domain of real-world images. However, deep networks
are weak at generalizing to unseen domains, even when the
differences are only subtle between the datasets [25]. In
real-world situations, a typical factor impairing the model
generalization ability is the distribution shift between data
from different domains.
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Figure 1: Top: Unsupervised domain adaptation with source
data. Existing methods demand access to source data to align
the feature distribution of target domain with source domain.
Bottom: The proposed method BAIT only requires access
to the source model. It deploys bait prototypes (from newly
added bait classifier) to make target features cluster around
source prototypes, thus eliminating domain shift.

Unsupervised Domain Adaptation (UDA) aims to re-
duce the domain shift between labeled and unlabeled tar-
get domains. Early works [8, 26] learn domain-invariant
features to link the target domain to the source domain.
Along with the growing popularity of deep learning, many
works benefit from its powerful representation learning abil-
ity for domain adaptation [44, 20, 22, 36, 4, 23]. Those
methods typically minimize the distribution discrepancy be-
tween two domains [19, 20, 22], or deploy adversarial train-
ing [36, 44, 4, 23].

However, a crucial requirement in the methodology of
these methods is that they require access to the source do-
main data during the adaptation process to the target domain.
Accessibility to the source data of a trained source model
is often impossible in many real-world applications, for ex-
ample deploying domain adaptation algorithms on mobile
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Method Source-free Avg
CDAN [21] × 65.8

CDAN
√

60.7 (5.1%↓)
BNM [5] × 67.9

BNM
√

61.3 (6.6%↓)

Table 1: Accuracy on Office-Home under normal setting and
source-free setting. If only provided source model without
source data, the normal UDA method will get lower results.

devices where the computation capacity is limited, or in sit-
uations where data-privacy rules limit access to the source
domain. Without access to the source domain data, the above
methods suffer from inferior performance. For example, the
state-of-the-art methods CDAN [21] and BNM [5] will get
much lower performance (5.1% and 6.6% drop respectively,
as shown in Tab. 1), if only provided with source model
instead of source data during adaptation.

Because of its relevance and practical interest, the source-
free unsupervised domain adaptation (SFUDA) setting
where the model is first trained on the source domain and has
no longer access to the source data afterwards, has started
to get traction recently [13, 18, 17, 14]. Among theses meth-
ods, USFDA [13] addresses universal DA [42] and SF [14]
addresses for open-set DA [32]. Both have the drawback of
requiring to generate images or features of non-existing cat-
egories. SHOT [18] and MA [17] address close-set SFUDA.
MA [17] is based on target-style image generation by a con-
ditional GAN, which demands a large computation capacity
and is time-consuming. Meanwhile, SHOT [18] proposes to
transfer the source hypothesis, i.e. the fixed source classifier,
to the target data. The main gain in SHOT is from its pseudo-
labeling strategy. However, SHOT has two limitations. First,
it needs to access all target data for computing pseudo label,
only after this phase it can start the adaptation to the target
domain. This might be infeasible in some online streaming
applications, where target data cannot be revisited, for exam-
ple in robotics applications. Secondly, it heavily depends on
pseudo-labels being correct, but some wrong pseudo-labels
could compromise the training procedure.

Existing UDA methods do not fully utilize the implicit
information inside the classifier. These methods aim to apply
the model to both labeled source and unlabeled target data,
where a domain shift exists. This means that the classifier
should correctly predict both source and target data. From
the perspective of linear classifiers as class prototypes (repre-
sented by the weights of the classifier), the source and target
features should cluster around their corresponding class pro-
totype, which is dominated by labeled source data. Based
on this analysis, instead of aligning features from two do-
mains leveraging all source and target data (as UDA methods
do), we propose to directly align the target features with the
source classifier. Thus, the adaptation to the target domain
can be achieved without accessing the source data. Although

SHOT also proposes to make target features match source
classifier, it achieves adaptation by utilizing source classifier
for pseudo labeling which may result in noisy information.

As illustrated in Fig. 1, in our method, after getting the
source model, we first propose to freeze the classifier head of
source model during the whole adaptation process. And then
we add an extra classifier (called bait classifier) initialized
from the source classifier (referred to as anchor classifier).
The class prototype (i.e. the weights of the classifier) of the
new added bait classifier will move towards the target fea-
tures, acting as an estimated prototype of target features. The
feature extractor then will drive target features towards the
prototype of the anchor classifier. Through this process, all
target features are expected to cluster around the correspond-
ing class prototype of the anchor classifier, thus achieving
the adaptation. In the experiment, we show that our method,
which is dubbed as BAIT, outperforms all existing normal
UDA methods, even though these methods can access source
data at all time. Moreover, we also show our proposed BAIT
surpasses other SFUDA methods.

We summarize our contributions as follows:

• We propose a new method for the challenging source-
free domain adaptation scenario. Our method does
neither require image generation as in [17, 13, 14] and
does not require the usage of pseudo-labeling [18].

• Our method prevents the need for source data by deploy-
ing an additional classifier to align target features with
the corresponding class prototypes of source classifier.

• We demonstrate that the proposed BAIT approach ob-
tains similar results or outperforms existing UDA and
SFUDA methods on several datasets, even without ac-
cess to source data. Notably, we obtain state-of-the-art
performance on the large domain adaptation dataset
VisDA.

2. Related Works
Domain adaptation with source data. Domain adapta-

tion aims to reduce the shift between the source and target
domains. Moment matching methods align feature distri-
butions by minimizing the feature distribution discrepancy,
including methods such as DAN [20] and DDC [37], which
deploy Maximum Mean Discrepancy. CORAL [34] matches
the second-order statistics of the source to target domain. In-
spired by adversarial learning, DANN [6] formulates domain
adaptation as an adversarial two-player game. CDAN [21]
trains a deep networks conditioned on several sources of
information. DIRT-T [33] performs domain adversarial train-
ing with an added term that penalizes violations of the cluster
assumption. Domain adaptation has also been tackled from
other perspectives. RCA [4] proposes a multi-classification
discriminator. DAMN [1] introduces a framework where
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each domain undergoes a different sequence of operations.
AFN [40] shows that the erratic discrimination of target fea-
tures stems from much smaller norms than those found in
source features.

Another set of methods also deploy two or multiple clas-
sifiers for domain adaptation, such as MCD [31], ADR [30],
SWD [15], CLAN [24] and STAR [23], but the motivations
are totally different. All those methods adopt prediction
diversity between multiple learnable classifiers to achieve
local or category-level feature alignment between source and
target domains, while our proposed BAIT uses the class pro-
totype of second classifier to estimate the centroid of target
features, aiming to align target features with the fixed source
classifier in the absence of source data.

Domain adaptation without source data. All these
methods, however, require access to source data during
adaptation. Recently, USFDA [13] and FS [14] explore
the source-free setting, but they focus on the universal DA
task [42] and open-set DA [32], where the label spaces of
source and target domain are not identical. And their pro-
posed methods are based on generation of simulated negative
labeled samples during source straining period, in order to
increase the generalization ability for unknown class. Most
relevant works are SHOT [18] and MA [17], both are for
close-set DA. SHOT needs to compute and update pseudo
labels before updating model, which has to access all target
data and may also have negative impact on training from the
noisy pseudo labels, and MA needs to generate target-style
training images based on conditional GAN, which demands
large computation capacity.

Unlike these methods, our method introduces an addi-
tional classifier to achieve feature alignment with the fixed
source classifier. This idea is motivated from multiple classi-
fier based UDA methods [31, 30, 15, 24, 23], however there
the source data is crucial for the training of the second clas-
sifier. By using the entropy of the source classifier, we split
the target data in two groups, thereby allowing us to train
the second classifier without the need of source data. The
additional classifier is used to cluster target features around
the prototype of the fixed classifier. The idea of fixing the
classifier is also proposed in [18], but other then us they
utilize the fixed classifier to produce pseudo labels. This
allows us to avoid the negative impact of training with noisy
pseudo-labels.

3. BAIT for Source-Free Domain Adaptation
We denote the labeled source domain data with ns sam-

ples as Ds = {(xsi , ysi )}ns
i=1, where the ysi is the correspond-

ing label of xsi , and the unlabeled target domain data with nt
samples as Dt = {xtj}

nt
j=1, and the number of classes is K.

Usually UDA methods eliminate the domain shift by align-
ing the feature distribution between the source and target
domains. Unlike the normal setting, we consider the more

challenging SFUDA setting which during adaptation to the
target data has no longer access to the source data, and has
only access to the model trained on the source data. In the
following sections, we elaborate our method under SFUDA
setting.

3.1. Prototype of source classifier as anchor

We decompose the neural network into two parts: a fea-
ture extractor f , and a classifier headC1 which only contains
one fully connected layer (with weight normalization). We
first train the baseline model on the labeled source data Ds

with standard cross-entropy loss:

(1)LCE = − 1

ns

ns∑
i=1

K∑
k=1

I[k=ys
i ]

log pk(xsi )

where the pk is the k-th element of the softmax output, and
I[z] is the indicator function which is 1 if z is true, and 0
otherwise.

A closer look at the training process of UDA methods
unveils that the feature extractor aims to learn a discrimina-
tive representation, and the classifier strives to distinguish
the representations of the various classes. UDA methods
tackle domain shift by aligning the feature distribution (from
the feature extractor) of the source and target domains. A
successful alignment of the features means that the features
produced by the feature extractor f from both domains will
be classified correctly by the classifier head.

Since the k-th class prediction is computed by pk(x) =
σ(‖Wk

T‖f(x)) where the ‖Wk‖ is the L2 normalized
weight of classifier, similar to [2, 29], intuitively we can
regard the normalized weight of each class in the classi-
fier as a class prototype, as shown a in Fig 2(top). Due to
the domain shift, the cluster of target features generated by
the source-training feature extractor will deviate from the
source class prototype. So from the perspective of the class
prototype, a good model after domain adaptation should
have all source and target features gathering around their
corresponding class prototype.

We freeze the source-trained classifier C1. This implicitly
allows us to store the relevant information from the source
domain, i.e., the fixed source class prototypes in the feature
space, without actually accessing the source data. With the
source class prototype fixed as an anchor in the feature space,
target features should cluster around the corresponding pro-
totype. Since the source classifier is fixed all the time and the
features from target domain are expected to gather around
those class prototypes, we refer to classifier C1 as the anchor
classifier, and its class prototype as anchor prototype.

3.2. Prototype of second classifier as bait

For the fixed anchor classifier to be successful for source-
free domain adaptation we require to address two problems.
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Figure 2: Illustration of training process. The top shows that the source-training model fails on target domain due to domain
shift. The bottom illustrates our adaptation process. Bottom (a): splitting feature into certain set and uncertain set by whether
the prediction entropy H is above the threshold τ , then casting the bait prototype towards uncertain set while also staying close
to certain set. Bottom (b): training feature extractor push all features towards both prototypes of C1 and C2, thus achieving
aligning target features with source classifier.

First, part of the target data will not be well classified (have
uncertain predictions) due to the domain shift, and this data
needs to be identified. Secondly, we have to adapt the feature
extractor in such a way that this data can subsequently be
classified correctly by the anchor classifier. Therefore, we
propose the BAIT method that is a two-step algorithm which
exactly addresses these two problems. Our method is shown
in Fig. 2(bottom). After training the model on the source
data, we get a feature extractor f , and an anchor classifier
C1. We fix C1 in the subsequent training periods, and use
it to initialize an extra classifier C2. The prototypes of the
extra classifier C2 are optimised to approach target features
which are not clearly classified by C1. Next those target
features are to be pulled towards the source class prototype.
Hereafter we refer to the classifier C2 as the bait classifier,
and its class prototype as bait prototype.

In order to train the desired C2, we propose a 2-step
training policy which alternately trains bait classifier C2 and
feature extractor f .
Step 1: casting the bait. In step 1, we only train bait
classifier C2, and freeze feature extractor f . As shown in
Fig. 2(top), due to domain shift, some target features will not
locate around the source prototype, which is also referred
to as misalignment [4, 10]. In order to pull target features
towards the anchor prototype, i.e., aligning target features

Algorithm 1 Unsupervised domain adaptation with BAIT
Require: Dt . unlabeled target data
Require: f, C1 . network trained with source data Ds

1: C2 ← C1

2: while not done do
3: Sample batch T from Dt

4: Entropy based splitting: U and C . Eq. 2
5: C2 ← argminC2 Lcast (C2) . Eq. 3
6: f ← argminf Lbite (f) + Lb(f) . Eq. 4& 5
7: end while

with the source classifier, we deploy bait prototypes to find
those features far away from the anchor prototypes. In order
words, the bait classifier aims to estimate the centroid of
target features for which the anchor classifier has uncertain
predictions. Therefore before adaptation, we split the fea-
tures of the current batch of data into two sets: the uncertain
U and certain set C, as shown in Fig. 2 (a), according to their
prediction entropy:

U =
{
x|x ∈ Dt, H

(
p(1) (x)

)
> τ

}
C =

{
x|x ∈ Dt, H

(
p(1) (x)

)
≤ τ

} (2)

where p(1) (x) = σ(C1(f(x)) is the prediction of the an-

4



chor classifier (σ represents the softmax operation) and
H(p(x)) = −

∑K
i=1 pi log pi. The threshold τ is estimated

as a percentile of the entropy of p1 (x) in T , set to 50% (i.e.
the median).

Then, we make the bait prototype move toward those
higher entropy features, but still stay nearby target features
with lower entropy. We achieve this by increasing symmetric
KL-divergence between predictions on U from C1 and C2,
while decreasing it on C:

(3)

Lcast (C2) =
∑
x∈C

DSKL

(
p(1) (x) , p(2) (x)

)
−
∑
x∈U

DSKL

(
p(1) (x) , p(2) (x)

)
where DSKL is the symmetric KL divergence:
DSKL(a, b) = 1

2 (DKL(a|b) +DKL(b|a)).
As shown in Fig. 2 (a), given that C2 is initialized from

C1, increasing the KL-divergence on the uncertain set be-
tween two classifiers will drive the prototype of C2 to those
features with higher entropy. Decreasing it on the certain
set encourages the two classifiers have similar prediction for
those features. This will ensure that the bait prototype will
not go too far.
Step 2: biting the bait. In this stage, we only train the
feature extractor f , aiming to pull target features towards
anchor prototypes. While it is hard to directly drive all
target features to the correct anchor prototype, we seek to
make target features cluster around both anchor and bait
prototypes.

Specifically, we update the feature extractor f to move
target featurses towards both the bait and anchor prototype
by minimizing the proposed bite loss:

Lbite (f) =

nt∑
i=1

K∑
k=1

[−p(2)i,k log p
(1)
i,k − p

(1)
i,k log p

(2)
i,k ] (4)

By minimizing this loss, the prediction distribution of the
bait classifier should be similar to that of the anchor classifier
and vice verse, which means target features are excepted to
get closer to both bait and anchor prototypes.

Intuitively, as shown in Fig. 2 (b), minimizing the bite loss
Lbite will push target features towards prototypes of the two
classifiers. Metaphorically, in this stage target features bite
the bait (prototype) and be pulled towards anchor (prototype),
indicating they are clustering around both bait and anchor
prototypes.

Additionally, in order to avoid the degenerate solu-
tions [7], which allocate all uncertain features to a few anchor
class prototype, we adopt the class balance loss (CB loss)
Lb to regularize the feature extractor:

(5)Lb (f) =

K∑
k=1

[KL(p̄
(1)
k (x))||qk)+KL(p̄

(2)
k (x))||qk)]

(a) source model on source data (b) source model on target data

(c) after stage 1 adaptation on target data (d) after stage 2 adaptation on target data

Figure 3: Toy experiment on the twinning moon 2D dataset.
The blue points refer to target data. The green and grey refer
to source data. Decision boundaries after training model
only on the source data and testing on source (a) and target
(b) data. (c) After stage 1 training in the middle of adaptation
with only target data. The two borderlines denote two deci-
sion boundaries (with C1 in red). (d) After stage 2 training,
the two decision boundaries almost coincide.

where p̄k = 1
nt

∑
x∈Dt

pk(x) is the empirical label distribu-

tion, and q is uniform distribution qk = 1
K ,
∑K

k=1 qk = 1.
With the class balance loss Lb, the model is expected to have
more balanced prediction.

Overall, the whole adaptation process is illustrated in
Algorithm 1. Note that this 2-step training happens in every
mini-batch iteration during adaptation.

4. Experiments
4.1. Experiment on Twinning moon dataset

We carry out our experiment on the twinning moon
dataset. For this data set, the data samples from the source
domain are represented by two inter-twinning moons, which
contain 300 samples each. We generate the data in the target
domain by rotating the source data by 30◦. Here the rotation
degree can be regarded as the domain shift. First we train the
model only on the source domain, and test the model on all
domains. As shown in Fig. 3(a) and (b), due to the domain
shift the model performs worse on the target data. Then
we adapt the model to the target domain with the anchor
and bait classifiers, without access to any source data. As
shown in Fig 3(c) during adaptation the bait loss moves the
decision boundary1 of the bait classifier to different regions
than the anchor classifier. After adaptation the two decision
boundaries almost coincide and both classifiers give the cor-
rect prediction, as shown in Fig. 3(d), indicating that target

1Note here the decision boundary is from the whole model, since the
input are data instead of features.
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(b) (c)(a)

Figure 4: Visualization on twinning-moon after adaptation on target data, but without weight normalization on classifier. All
data are target data. (a) Using τ (threshold for splitting) with the median of prediction entropy, as in the paper. (b) Decaying
the τ (from the median to 0) during adaptation. (c) Not using splitting.

Method (Synthesis→ Real) Source-free plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class
ADR [30] × 94.2 48.5 84.0 72.9 90.1 74.2 92.6 72.5 80.8 61.8 82.2 28.8 73.5
CDAN [21] × 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
CDAN+BSP [3] × 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SWD [16] × 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
MDD [43] × - - - - - - - - - - - - 74.6
IA [10] × - - - - - - - - - - - - 75.8
DMRL [39] × - - - - - - - - - - - - 75.5
MCC [11] × 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
SHOT [18]

√
92.6 81.1 80.1 58.5 89.7 86.1 81.5 77.8 89.5 84.9 84.3 49.3 79.6

SFDA [12]
√

86.9 81.7 84.6 63.9 93.1 91.4 86.6 71.9 84.5 58.2 74.5 42.7 76.7
*MA [17]

√
94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6

BAIT (ours)
√

93.7 83.2 84.5 65.0 92.9 95.4 88.1 80.8 90.0 89.0 84.0 45.3 82.7

Table 2: Accuracies (%) on VisDA-C for ResNet101-based unsupervised domain adaptation methods. Source-free means
setting without access to source data during adaptation. Underlined results are second highest result. * means method needs to
generate extra images.

Method Source-freeA→DA→WD→WW→DD→AW→AAvg
MCD [31] × 92.2 88.6 98.5 100.0 69.5 69.7 86.5
CDAN [21] × 92.9 94.1 98.6 100.0 71.0 69.3 87.7
MDD [43] × 90.4 90.4 98.7 99.9 75.0 73.7 88.0
MDD+IA [10] × 92.1 90.3 98.7 99.8 75.3 74.9 88.8
BNM [5] × 90.3 91.5 98.5 100.0 70.9 71.6 87.1
DMRL [39] × 93.4 90.8 99.0 100.0 73.0 71.2 87.9
BDG [41] × 93.6 93.6 99.0 100.0 73.2 72.0 88.5
MCC [11] × 95.6 95.4 98.6 100.0 72.6 73.9 89.4
SRDC [35] × 95.8 95.7 99.2 100.0 76.7 77.1 90.8
*USFDA [13]

√
- - - - - - 85.4

SHOT [18]
√

93.1 90.9 98.8 99.9 74.5 74.8 88.7
SFDA [12]

√
92.2 91.1 98.2 99.5 71.0 71.2 87.2

*MA [17]
√

92.7 93.7 98.5 99.8 75.3 77.8 89.6
BAIT (ours)

√
92.0 94.6 98.1 100.0 74.6 75.2 89.1

Table 3: Accuracies (%) on Office-31 for ResNet50-based
unsupervised domain adaptation methods. Source-free
means setting without access to source data during adap-
tation. Underline means the second highest result. * means
method needs to generate extra images.

features cluster around both the anchor and bait prototypes.
Importance of entropy based splitting. In the paper,

we propose to split the data in a certain/uncertain set (see
Eq. 2) to avoid the trivial solution that the bait prototypes
move to a position faraway from the anchor prototypes and
target features, which may lead to failure of the model. Al-

though in the following experiment, we find splitting the
batch into certain/uncertain set only improves the results a
bit, we conjecture the reasons are twofold: (a) the Lcast is
only applied on the current batch data instead of all data, (b)
we also apply weight normalization on the classifier, which
will ensure that the prototypes will remain close to each
other.

To prove importance of this splitting, we conduct addi-
tional experiments on the twining-moon dataset, where one
batch contains all target data and there is no weight normal-
ization inside the classifier. As shown in Fig. 4, we visualize
the decision boundaries after adaptation with different set-
tings for the certain/uncertain splitting: (a) the same splitting
as proposed in our paper, (b) expanding the uncertain set dur-
ing the adaptation (τ decaying from the median entropy) and
(c) no splitting. First, we find that expanding the uncertain
set can also work as shown in Fig 4(b), since features from
the certain set are already pulled quite close to the anchor
prototypes in the earlier stages of training. And as shown in
Fig. 4 (c), when not splitting the data, this will damage the
training, as the decision boundary crosses the data.

4.2. Experiments on recognition benchmarks

Datasets. We use three benchmark datasets. Office-31 [28]
contains 3 domains (Amazon, Webcam, DSLR) with 31
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Method Source-free Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
MCD [31] × 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
CDAN [21] × 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MDD [43] × 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
MDD+IA [10] × 56.0 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
BNM [5] × 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
BDG [41] × 51.5 73.4 78.7 65.3 71.5 73.7 65.1 49.7 81.1 74.6 55.1 84.8 68.7
SRDC [35] × 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
SHOT [18]

√
56.9 78.1 81.0 67.9 78.4 78.1 67.0 54.6 81.8 73.4 58.1 84.5 71.6

SFDA [12]
√

48.4 73.4 76.9 64.3 69.8 71.7 62.7 45.3 76.6 69.8 50.5 79.0 65.7
BAIT (ours)

√
57.4 77.5 82.4 68.0 77.2 75.1 67.1 55.5 81.9 73.9 59.5 84.2 71.6

Table 4: Accuracies (%) on Office-Home for ResNet50-based unsupervised domain adaptation methods. Source-free means
source-free setting without access to source data during adaptation. Underline means the second highest result.

classes and 4,652 images. Office-Home [38] contains 4
domains (Real, Clipart, Art, Product) with 65 classes and a
total of 15,500 images. VisDA [27] is a more challenging
datasets, with 12-class synthesis-to-real object recognition
tasks, its source domain contains 152k synthetic images
while the target domain has 55k real object images.
Baseline methods On all these three datasets, we com-
pare our BAIT with normal UDA methods which have ac-
cess to source data, including MCD [31], CDAN [21], Im-
plicit Alignment [10], BNM [5], MDD [43], DMRL [39],
BDG [41], MCC [11] and SRDC [35]. We will compare
with the recent SFUDA methods, including USFDA [13],
SHOT [18], SFDA [12] and MA [17].
Model details We adopt the backbone of ResNet-50 [9] (for
office datasets) or ResNet-101 (for VisDA) along with an
extra fully connected (fc) layer as feature extractor, and a fc
layer as classifier head. We adopt SGD with momentum 0.9
and batch size of 128 on all datasets. On the source domain,
the learning of the ImageNet pretrained backbone and the
newly added layers are 1e-3 and 1e-2 respectively, except for
the ones on VisDA, which are 1e-4 and 1e-3 respectively. We
further reduce the learning rate 10 times training on the target
domain. We train 20 epochs on the source domain, and 30
epochs on the target domain. All experiments are conducted
on a single RTX 6000 GPU. All results are reported from the
classifier C1. We attach our code in supplemental material.
Quantitative Results. The results on the VisDA, Office-31
and Office-Home dataset are shown in Tab. 2-4. In these
tables, the top part (denoted by × on source-free column)
shows results for the normal setting with access to source
data during adaptation. The bottom one (denoted by

√
on

source-free column) shows results for the source-free setting.
As reported in Tab. 2 and Tab. 4, our method outperforms
state-of-the-art methods which have access to source data on
VisDA and Office-Home, and achieves competitive results
on Office-31 (Tab. 3).

The proposed method still obtains the best performance
when comparing with current source-free methods. In partic-
ular, our method surpasses SFDA [12] by 6.0%, SHOT [18]

Method Avg.
Source only 46.1

Single classifier (w/ Lb) 52.4
BAIT (w/o Lb, w/ splitting) 64.5
BAIT (w/ Lb, w/o splitting ) 70.6

BAIT 71.6

Table 5: Ablation study on Office-Home dataset in the
source-free setting. Single classifier (w-Lb) is to adapt the
source model to target domain by optimizing Lb. Splitting
is performed according to Eq. 2.

by 3.1%, and MA [17] by 1.1% on the more challenging
VisDA dataset (Tab. 2). Note that MA highly relies on the
extra synthesized data. On Office-31 (Tab. 3), the proposed
BAIT achieves better result than SFDA and SHOT, and com-
petitive result to MA. Our BAIT surpasses SFDA by a large
margin, and is on par with SHOT on Office-Home (Tab. 4).
The reported results clearly demonstrate the efficacy of the
proposed method without access to the source data during
adaptation.
Ablation Study. We conduct an ablation study to isolate
the validity of the key components of our method: the bait
classifier and the splitting mechanism. As reported in the
second row of Tab. 5 on the Office-Home dataset, directly
testing the model on target domain shows the worst perfor-
mance. Adapting the model trained on the source domain to
the target domain with one classifier (the third row of Tab. 5),
we are able to improve the result, but still obtain relatively
low accuracy. Adding the second classifier and applying
the splitting mechanism results in much better results. Also
leveraging the Lb loss improves results significantly. Finally,
combining both the Lb loss and the splitting mechanism, we
achieve the best score.
Evolution of the accuracy over time. Fig. 5 shows the evo-
lution of the accuracy during adaptation to the target domain
of Office-Home for a single classifier (only minimizing the
class balance loss Lb), and the two classifiers of BAIT (C1

and C2). The starting point is the accuracy after training on
the source data. The single classifier has an ephemeral im-
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Cl->Ar Pr->Ar Rw->Ar

Single classifier
C1 in BAIT
C2 in BAIT

C1 in BAIT
C2 in BAIT

C1 in BAIT
C2 in BAIT

Single classifier Single classifier

Figure 5: Accuracy curves when training on target data, on three subtasks of Office-Home: Cl→Ar, Pr→Ar and Rw→Ar. The
three curves correspond to the accuracy with C1, C2 in BAIT and only one classifier with class balance loss respectively.

Source Only: A->W BAIT: A->W Source Only: W->A BAIT: W->A

Figure 6: Top: t-SNE visualization for features from the target domain. The red points are the class prototype from C1. Zoom
in for better inspection. Bottom: Confusion matrix for A→W and W→A (Office-31) of the source model and BAIT. The
Y-axis shows the ground truth labels while the X-axis shows the predicted labels.

provement (about 2 epochs), followed by an abrupt change
towards a progressive decline. This may imply that target
features are randomly grouped around a few anchor proto-
types. The two classifiers of BAIT, however, have faster and
more stable convergence, thanks to the bait classifier trying
to find and push target features towards the corresponding
anchor prototypes.
Embedding visualization. Fig. 6 (top) shows the t-SNE vi-
sualization of target features obtained with the source model
and after adaptation with BAIT. Target features form more
compact and clear clusters after BAIT than in the source
model, indicating that BAIT produces more discriminative
features. We also show the class prototype (red points),
which shows target features indeed cluster around the corre-
sponding prototypes.
Confusion matrices. Fig. 6 (bottom) shows the confusion
matrices of both the source model and BAIT for the two

subtasks A→W and W→A on Office-31. They show that
BAIT results in significantly fewer misclassifications, further
verifying the effectiveness of our method.

5. Conclusion

There are many practical scenarios where source data
may not be available (e.g. due to privacy or availability
restrictions) or may be expensive to process. In this paper we
study this challenging yet promising unsupervised domain
adaptation setting (i.e. SFUDA), and propose BAIT, a fast
and effective approach. BAIT considers the source classifier
as a (fixed) collection of anchor class prototypes, and aligns
target features with them via an extra bait classifier that
locates uncertain target features and drags them towards
those anchor prototypes. The experimental results show
that BAIT achieves state-of-the-art SFUDA performance on

8



several datasets, even outperforming other UDA methods
with access to source data.
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Supplementary Material for ”Unsupervised Domain
Adaptation without Source Data by Casting a BAIT”

1 Visualization on bite loss Lbite

Fig. 1. Visualization on bite loss. The red and blue points are two class prototypes from two
classifiers. The surface denotes the value of Lbite (higher altitude means higher values). Lower Lbite

means features are clustering around the prototypes.
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