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Abstract A key topic in classification is the accuracy loss
produced when the data distribution in the training (source)
domain differs from that in the testing (target) domain. This
is being recognized as a very relevant problem for many
computer vision tasks such as image classification, object
detection, and object category recognition. In this paper, we
present a novel domain adaptation method that leverages
multiple target domains (or sub-domains) in a hierarchical
adaptation tree. The core idea is to exploit the commonali-
ties and differences of the jointly considered target domains.

Given the relevance of structural SVM (SSVM) classi-
fiers, we apply our idea to the adaptive SSVM (A-SSVM),
which only requires the target domain samples together with
the existing source-domain classifier for performing the de-
sired adaptation. Altogether, we term our proposal as hierar-
chical A-SSVM (HA-SSVM).

As proof of concept we use HA-SSVM for pedestrian
detection, object category recognition and face recognition.
In the former we apply HA-SSVM to the deformable part-
based model (DPM) while in the rest HA-SSVM is applied
to multi-category classifiers. We will show how HA-SSVM
is effective in increasing the detection/recognition accuracy
with respect to adaptation strategies that ignore the structure
of the target data. Since, the sub-domains of the target data
are not always known a priori, we shown how HA-SSVM
can incorporate sub-domain discovery for object category
recognition.
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1 Introduction

Besides the data representations and learning algorithms used
in classification tasks, other relevant fact that has been in-
creasingly considered within this context is the so denomi-
nated dataset bias. This is a very common problem in real-
world classification applications that makes the classifiers
suffer from loss in accuracy when the data distribution in
the training (source) domain differs from that in the test-
ing (target) domain. In order to face this domain adaptation
challenge a variety of methods have been increasingly ex-
plored within the machine learning field (Daumé III, 2007;
Yang et al., 2007; Mansour et al., 2008; Ben-David et al.,
2009; Duan et al., 2009; Pan and Yang, 2009) and most re-
cently within the computer vision one (Bergamo and Torre-
sani, 2010; Saenko et al., 2010; Gopalan et al., 2011; Duan
et al., 2012; Vázquez et al., 2012, 2014; Hoffman et al.,
2012, 2013; Kan et al., 2014) since image classification,
visual object detection and object category recognition are
tasks where dataset bias is usually relevant.

Many domain adaptation methods assume a single do-
main shift between the data, i.e., they perform the adapta-
tion from a single source domain to a single target domain
(Daumé III, 2007; Bergamo and Torresani, 2010; Saenko
et al., 2010; Duan et al., 2012; Vázquez et al., 2012, 2014;
Hoffman et al., 2013; Kan et al., 2014). Some others con-
sider multiple source domains (Yang et al., 2007; Mansour
et al., 2008; Duan et al., 2009; Gopalan et al., 2011; Hoff-
man et al., 2012) and propose to leverage labeled data from
them to perform the domain adaptation, i.e., the underlying
idea is to cover as much variability as possible at the source
level for making more accurate predictions given a partially
new domain (the target). In this paper we focus on the com-
plementary case to these works. In other words, the main
novelty is the study of the effectiveness of domain adapta-
tion when we can structure the target domain as a hierarchy
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Fig. 1 Domain adaptation methods: without losing generality we assume a single source domain and three correlated target domains (three
different datasets depicting the same object categories). (a) Single layer domain adaptation: adapting to each target domain wTj independently. (b)
Single layer domain adaptation: pooling multiple target domains. (c) Proposed hierarchical multi-layer domain adaptation. The target domains are
organized in an adaptation tree. Adaptation to intermediate nodes allows to exploit commonalities between children sub-domains, while adaptation
to final sub-domains allows to consider their differences. Each path from the root to a leaf of the hierarchy can be thought as a progressive
adaptation, but all models (intermediate and final) are learned jointly.

(e.g., leveraging multiple correlated target domains or using
some criteria to build sub-domain partitions). Moreover, due
to its practical implications, we focus on methods that do not
require to revisit the source data for the adaptation.

The main idea of our approach is illustrated in Fig. 1.
Without losing generality assume that we have a prior source
model wS (e.g. a SVM hyperplane) and we would like to
adapt it to multiple target domains (T1,T2,T3) from which
we have labeled data. Traditionally, wS is adapted to each
target domain separately, as illustrated in (a). Other option is
to pool multiple target domains into a single one and adapt
wS to a mixed target domain as in (b). We refer to these
strategies as single-layer domain adaptation.

Instead of performing isolated single-layer adaptations,
we propose to make use of the relatedness of the target do-
mains while exploiting their differences. Concretely, as it is
presented in (c), we organize multiple target domains into a
hierarchical structure (tree) and adapt the source model to
them jointly. The adaptation to intermediate nodes allows to
exploit commonalities between children sub-domains (e.g.,
approach (b) is considered thanks to the root node of the
hierarchy), while the adaptation to the final sub-domains al-
lows to consider their differences.

Each path from the root to a leaf of the hierarchy can
be thought as a progressive adaptation. However, as we will
see, the adaptation of the whole hierarchy is done at once un-
der the same objective function. This implies that our adap-

tation strategy is also useful in cases where the labeled data
from the target domain is scarce but at the same time presents
certain variability (sub-domains) worth to consider. Note that
by using the approach in (a) such a reduced target domain
dataset would be divided into even smaller target sub-domain
datasets, which in general would end up in a poorer adapta-
tion. On the other hand, following (b) the potential target
sub-domains would be just ignored.

Given the widely use of SVM classifiers, we focus on the
model-transform-based domain adaptation method known
as adaptive SVM (A-SVM) (Yang et al., 2007). A-SVM does
not require source domain samples, only target domain ones,
which can significantly reduce the training (adaptation) time.
In fact, since we will address problems requiring structural
SVM (SSVM), we will use the A-SVM variation for SSVM
that we introduced in (Xu et al., 2014a), namely the adap-
tive SSVM (A-SSVM). Altogether we term our approach as
hierarchical A-SSVM (HA-SSVM).

As proof of concept we apply our method in pedestrian
detection, object category recognition and face recognition.
The former requires to use HA-SSVM with the widespread
deformable part-based model (DPM) while the rest require
to use HA-SSVM with multi-category classifiers. We will
show how HA-SSVM is effective in increasing the classi-
fication accuracy with respect to state-of-the-art strategies
that ignore the structure of the target data. Moreover, focus-
ing on the object category recognition application, we will
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also evaluate HA-SSVM in an scenario were the target sub-
domains are not available a priori and must be discovered.

The rest of the paper is organized as follows. Section 2
overviews the related work. In section 3 we detail the gen-
eral formulation of the proposed approach and its optimiza-
tion method, as well as how to incorporate domain reshaping
for discovering latent domains. Sections 4, 5 and 6 present
the experimental results of HA-SSVM for pedestrian detec-
tion, object recognition and face recognition, respectively.
Finally, section 7 draws the conclusions and future research
lines.

2 Related Work

Despite the variety of domain adaptation methods proposed
in the last decades–see (Jiang, 2008) for a comprehensive
overview–, in computer vision, current methods can be broad-
ly categorized in two main groups, namely feature-transform-
based methods and model-transform-based methods.

Feature-transformation-based methods attempt to learn
a transformation matrix/kernel over the feature space of dif-
ferent domains, and then apply a classifier (Saenko et al.,
2010; Kulis et al., 2011; Gopalan et al., 2011; Gong et al.,
2013b; Hoffman et al., 2014; Gong et al., 2014). For in-
stance, the max-margin domain transforms method (Hoff-
man et al., 2013) jointly learns a feature transformation and
a discriminative classifier via multi-task learning. Feature
subspaces are generally used to connect the source and tar-
get domain, e.g., (Gopalan et al., 2011) proposed to sample
along the geodesic path using a few intermediate subspaces
and (Gong et al., 2013b) further integrated an infinite num-
ber of intermediate subspaces. As such subspaces obtained
using principle component analysis (PCA) may lose usefully
information, recent works use dictionary to represent each
domain and proposed domain-adaptive dictionary learning
methods (Lu et al., 2015; Xu et al., 2015).

On the other hand, model-transform-based approaches
concentrate on adapting the parameters of the classifiers, of-
ten SVM, including: weighted combination of source and
target SVMs, transductive SVM (Bergamo and Torresani,
2010; Vázquez et al., 2012), feature replication (Daumé III,
2007; Vázquez et al., 2014), and regularization-based meth-
ods as A-SVM (Yang et al., 2007), its successor the pro-
jective model transfer SVM (PMT-SVM) (Aytar and Zisser-
man, 2011) and its variant A-SSVM (Xu et al., 2014a).

Among these methods, the SVM regularization-based
ones have a significant advantage as they do not require re-
visiting source domain data for the adaptation. This would
be favorable for many domain adaptation tasks in computer
vision, since the source datasets are typically large and com-
puting the features is expensive. Besides, it can even han-
dle the case where the source data is missing at the moment

of the adaptation. Basically, these methods learn the target
classifier f T (x) by adding a perturbation function ∆ f (x) to
the source classifier f S(x) so that f T (x) = f S(x)+∆ f (x).
Our approach can be regarded as a higher level model of A-
SSVM, as it considers the hierarchical relationship between
different domains, integrating multiple A-SSVM adaptations
in a hierarchical model.

In the context of domain adaptation between multiple
domains, several methods close to our work have been pro-
posed in the natural language processing (NLP) community
(Finkel and Christopher, 2009; Daumé III, 2009), which are
Bayesian-based approaches (hierarchical Bayesian models
and EM algorithm for inference). While for multi-domain
adaptation most of the focus is on multiple sources, little
attention is paid on the relationship of multiple target do-
mains. Our domain adaptation method aims to leverage mul-
tiple target domains by considering their hierarchical rela-
tionship.

Most of the domain adaptation algorithms are validated
assuming that the underlying domains are well-defined. How-
ever, multiple unknown domains may exist (Hoffman et al.,
2012). In fact, in some cases image data is difficult to man-
ually divide into discrete domains required by adaptation al-
gorithms (Gong et al., 2013b). In (Hoffman et al., 2012),
a sub-domain discovery algorithms is proposed, it focuses
on discovering multiple hidden source domains. The most
recent work of (Gong et al., 2013b) can discover domains
among both training and testing data, which benefits existing
multi-domain adaptation algorithms. In this paper, we also
include experiments where HA-SSVM is applied to discov-
ered target sub-domains for object category recognition.

One important feature of proposed hierarchical domain
adaptation is the use of progressive adaptation strategy, i.e.,
there are intermediate domains between source and target
domain. Analogue ideas can be found in some recent lit-
eratures, e.g., (Gong et al., 2013a) proposed to select land-
marks, which are a subset of source domain data instances
which are distributed most similarly to the target domain,
and use them to construct easier auxiliary DA tasks. Each
task represents different similarity level and thus provides
progressively easier adaptation. (Tang et al., 2012) employed
a self-paced learning strategy to gradually include more dif-
ficult examples from target domain and adapt the source
SVM classifier towards the target domain. (Lu et al., 2015)
proposed incremental dictionary learning which iteratively
finds supportive samples from target domain and add them
to source domain. The domain-adaptive dictionary learning
of (Xu et al., 2015) generates a set of intermediate domains
which bridge the gap between source and target domains.
Nguyen et al. (2015) proposed a joint hierarchical feature
learning method for domain adaptation, which learns com-
mon dictionary in multiple layers. The main difference be-
tween Nguyen et al. (2015) and our hierarchical domain
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adaptation is that Nguyen et al. (2015) learns hierarchical
features while our method learns hierarchical models.

The vision tasks where our method can be applied are
several, however, in this paper our experiments focus on
cross-domain multi-category object recognition and pedes-
trian detection based on the deformable part-based model
(DPM). The former has been a benchmark for the proof
of most domain adaptation methods developed for vision
tasks (Saenko et al., 2010; Kulis et al., 2011; Gong et al.,
2012). Despite its relevance, the latter has been just rarely
addressed in the literature (Vázquez et al., 2012, 2014; Xu
et al., 2014a) from the viewpoint of domain adaptation. How-
ever, it introduces the interesting challenges of dealing with
rather unbalanced classes (i.e., pedestrians vs background).
Face recognition experiments are also included by consider-
ing view angle and illumination source as producing differ-
ent domains with respect to a neutral pose and light.

Finally, it is worth to mention that the domain adaptation
methods can be also divided as supervised, unsupervised
and semi-supervised. In the supervised case it is assumed
that target-domain adaptation data is annotated, in the unsu-
pervised case it is assumed that target-domain data comes
without annotations, and in the semi-supervised case both
types of data are available (with and without annotations). It
is assumed that in the supervised and semi-supervised cases
the annotated target-domain data is relatively few, while in
both the unsupervised and semi-supervised cases we can
assume a relatively large amount of non-annotated target-
domain data. HA-SSVM is a supervised domain adaptation
method.

DASH-N: Joint Hierarchical Domain Adaptation and Fea-
ture Learning Nguyen et al. (2015)

Incremental Dictionary Learning for Unsupervised Do-
main Adaptation, (Lu et al., 2015)

Bridging the Domain Shift by Domain Adaptive Dictio-
nary Learning (Xu et al., 2015)

Progressive DA (Gong et al., 2013a)
Shifting Weights: Adapting Object Detectors from Im-

age to Video (Tang et al., 2012)

3 Proposed Method

3.1 General Model

Our proposal is illustrated in Fig. 1. Assume we have a prior
model wS from the source domain DS and multiple target
domains DTj , j ∈ [1,D]. Traditionally, wS is adapted to each
target domain independently, as illustrated in (a), or to the
pooled target domain as in (b), which we call single-layer
domain adaptation in this paper. In contrast, we propose
to make use of the relatedness of multiple target domains
by combining them into a hierarchical adaptation tree, and
adapt the prior model to them hierarchically, as in (c).

The proposed hierarchical model can be applied to any
supervised learning algorithm which can incorporate prior
information. In this work, we focus on the widely used SVM.
This learning method considers a loss term L (w;D) that
captures the error with respect to the training data D and
a regularization term R(w) that penalizes model complex-
ity. In fact, we will focus on domain adaptation with struc-
tural SVM (SSVM), giving rise to our hierarchical A-SSVM
(HA-SSVM) in Sect 3.2.

3.2 Domain Adaptation Methods

For the sake of a better understanding, in this subsection,
we introduce the involved concepts by progressive order of
complexity. In Sect. 3.2.1 we focus on single-layer domain
adaptation based on adaptive SVM (A-SVM). Then, in Sect.
3.2.2 we develop our hierarchical A-SVM (HA-SVM) model.
We show how to learn its parameters by using a multiple task
learning (MTL) paradigm. Finally, in Sect. 3.2.3 we con-
sider SSVM and, therefore, introduce HA-SSVM.

3.2.1 Adaptive SVM (A-SVM)

A-SVM is a model-transform-based method, which adapts
the model parameters from the source DS

l to the target do-
main DT

l (l indicates that the samples are labeled). Given
the source domain model wS, the target domain model wT is
learned by minimizing the following objective function:

min
wT

1
2
‖wT −wS‖2 +CL (wT ;DT

l ), (1)

where the regularization term ‖∆w‖2 = ‖wT −wS‖2 con-
strains the target model wT to be close to the source one wS.
Eq. (1) is also called one-to-one domain adaptation. At the
testing time, we apply the following decision function to the
target domain:

f T (x) = wT ′
Φ(x) = f S(x)+∆w′Φ(x), (2)

where Φ(x) is the feature vector for target domain sample x
and f S(x) is the output score from the source domain clas-
sifier. Thus, A-SVM is essentially learning a perturbation
function ∆ f (x) = ∆w′Φ(x) based on the source classifier.

3.2.2 Hierarchical Adaptive SVM (HA-SVM)

We first state the general form of HA-SSVM for an arbitrary
hierarchy of target domains. We assume that the depth of the
target domain hierarchy is L. In the ith target-domain layer,
i ∈ {1, . . . ,L}, there are Mi nodes (i.e. domains) enumerated
from left to right as {1, . . . ,Mi}. Thus, (i, j) uniquely in-
dexes the target-domain of layer i at position j∈{1, . . . ,Mi}.
We assume M1 = 1, i.e. there is a single target-domain acting
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as root of the hierarchy of target sub-domains; the source do-
main is connected to it. The objective function of HA-SVM
can be written as:

J(w) =

∑
L
i=1 ∑

Mi
j=1[

1
2
‖wi, j−wp(i, j)‖2 +CL (wi, j;D i, j

l )],
(3)

where wi, j stands for the parameters at target-domain (i, j),
w is the concatenation of all such parameters, p(i, j) indexes
the parent domain of (i, j), where p(1,1) is the source S, and
D i, j

l contains the training samples of the target domain (i, j),
i.e. the union of the training samples in the child target sub-
domains of (i, j).

At testing time, for a given sample x that we consider as
belonging to target domain (i, j), we can directly consider
the learned parameters w(i, j) and apply the linear decision
function:

f i, j(x) = wi, j ′
Φ(x) . (4)

The domain (i, j) can be a leaf of the hierarchy or an in-
termediate node, depending on the capability to discern the
target domain of the given testing sample. In the worst case
the root of the hierarchy can be used, i.e. w1,1. Note that,
in this way, the hierarchy allows to classify a given sample
with the model that is the most specific for the domain in-
formation that it has been possible to infer for the sample
at testing time. For instance, imagine that we must detect
an object in a sequence with a new camera sensor (differ-
ent from the one used to train the source model) and we
have organized the target domain by aspect. Then, this as-
pect can be tracked with an associated uncertainty. There-
fore, we can apply a more specific sub-domain model (leaf)
if the uncertainty is low, and a more general sub-domain
model (intermediate/root) otherwise. In general terms, if the
criterion used to determine the target domain for a given
sample comes with an uncertainty value, we could design
an application-dependent strategy for classifying the sample
using the model of one target sub-domain or another (root,
leaf, intermediate), so that the same sample could be classi-
fied according to different models of the hierarchy just de-
pending on the mentioned certainty value.

For the sake of simplicity but without losing generality,
in the following we analyze the formulation of HA-SVM
for the hierarchy of three layers illustrated in Fig. 1 (c), us-
ing the notation of this figure too (note that (1,1) ↔ N0,
(2,1)↔ T1, (2,2)↔ N1, (3,1)↔ T2, (3,2)↔ T3). Accord-
ingly, the objective function of this three-layers HA-SVM

can be written as follows:

J(w) =
1
2
‖wN0 −wS‖2 +CL (wN0 ;∪3

j=1D
Tj
l )

+
1
2
‖wN1 −wN0‖2 +CL (wN1 ;∪3

j=2D
Tj
l )

+
1
2
‖wT1 −wN0‖2 +CL (wT1 ;DT1

l )

+
1
2
‖wT2 −wN1‖2 +CL (wT2 ;DT2

l )

+
1
2
‖wT3 −wN1‖2 +CL (wT3 ;DT3

l )

(5)

Eq. (5) is in a multi-task learning paradigm form, where the
optimization of each wTj can be understood as an individual
task. The key issue of the multi-task learning lies in how the
relationships between tasks are incorporated. As we can see
from Eq. (5), each task is related by the regularization term,
e.g., T2 and T3 are connected by ‖wTj −wN1‖2, while T1 is
directly connected to N0, which is adapted from wS.

Comparing to the single-layer adaptation ‖wTj −wS‖2

as in Fig. 1 (a), HA-SVM has several advantages. First, HA-
SVM can make use of training samples from multiple re-
lated target domains instead of just one. For example, a single-
layer domain adaptation only uses the training samples from
Tj, j ∈ {1,2,3} in three different optimization runs, while
HA-SVM can integrate the samples from the three target
domains accounting for their hierarchical structure. Second,
the target model wTj is not directly regularized by wS but
some shared intermediate models wNi , which allows wTj to
be regularized in a way less constrained by the source model.
As wTj goes down apart from wS further in the adaptation
tree, less constrain from wS is imposed. This can be inter-
preted as a progressive adaptation.

For single-layer domain adaptation, another straightfor-
ward strategy is to pool all target domains and train a sin-
gle adaptive SVM with all available target samples, as il-
lustrated in Fig. 1 (b). Comparing to this method, HA-SVM
can take the same advantage of using all available labeled
data while allows each target domain model to be more dis-
criminative in its own domain. The pooling-based method
requires the final model to compromise to each domain in
order to minimize the training error, and thus such model
may lose the discriminative power in the individual target
domains. Our experimental results in Sect. 4.1 and Sect. 5.1
confirm this observation.

To minimize Eq. (3), we employ Quasi-Newton LBFGS
method, which requires the objective function and the partial
derivatives of its parameters. For instance, for our guiding
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example of Eq. (5), these partial derivatives are:

∂J(w)

∂wN0
= 3wN0 −wS−wN1 −wT1 +C

∂L (wN0 ;∪3
j=1D

Tj
l )

∂wN0
,

∂J(w)

∂wN1
= 3wN1 −wN0 −wT1 −wT2 +C

∂L (wN1 ;∪3
j=2D

Tj
l )

∂wN1
,

∂J(w)

∂wT1
= wT1 −wN0 +C ∂L (wT1 ;D

T1
l )

∂wT1
,

∂J(w)

∂wT2
= wT2 −wN1 +C ∂L (wT2 ;D

T2
l )

∂wT2
,

∂J(w)

∂wT3
= wT3 −wN1 +C ∂L (wT3 ;D

T3
l )

∂wT3
.

(6)

In our implementation, the LBFGS based optimization
converges to the optimum efficiently for both single-layer A-
SVM and HA-SVM (as well as for the HA-SSVM defined
in next subsection).

3.2.3 Hierarchical Adaptive Structured SVM (HA-SSVM)

The proposed HA-SVM can be extended for SSVM, giving
rise to our HA-SSVM. SSVM generalized SVM and allows
the training of a classifier for general structured output la-
bels. In this work, we use SSVM as an unified classifier for
both multiple category classification and part-based object
detection. SSVM minimizes the following regularized risk
function:

minw
1
2
‖w‖2

+C ∑
N
i=1[maxy w′Φ(xi,y)+∆(yi,y)−Φ(xi,yi)] ,

(7)

where yi is the ground truth output (label) of sample xi, and
y runs on the alternative outputs. ∆(yi,y) is a distance in out-
put space. Φ(x,y) is the feature vector from a given sample x
of label y. Accordingly, Eq. (1) can be extended to A-SSVM
as follows:

minwT
1
2
‖wT −wS‖2

+C ∑
N
i=1[maxy wT ′Φ(xi,y)+∆(yi,y)−Φ(xi,yi)] .

(8)

Correspondingly, the final adapted classifier f T can be writ-
ten as:

f T (x) = max
y

[wS′
Φ(x,y)+∆w′Φ(x,y)︸ ︷︷ ︸

∆ f (x)

] , (9)

where ∆w = wT −wS. Therefore, Eq. (8) can be integrated
into the proposed hierarchical adaptation framework descri-
bed in Section 3.2.2. In particular, we must proceed in the
same way than going from (1) to (3), but now starting with
(8); thus, giving rise to HA-SSVM.

4 Domain Adaptation of DPMs

In this section we apply HA-SSVM in the popular deformable
part-based model (DPM) framework (Felzenszwalb et al.,
2010), focusing on pedestrian detection. The DPM learns a
linear classification parameter w, which parametrizes a set
of parts and deformations, to decide whether a detection
window contains a pedestrian or background. The learning
of a DPM is usually formulated as the latent SVM (LSVM)
framework (Felzenszwalb et al., 2010). However, it is also
possible to use a latent structural SVM (LSSVM) formula-
tion (Zhu et al., 2010; Girshick, 2012), which can be solved
by the Convex-Concave Procedure (CCCP). The LSSVM
form of a DPM objective function can be written as:

minw
1
2
‖w‖2 +C ∑

N
i=1[maxh(w′Φ(xi,h)

+∆(y,yi))−w′Φ(xi,h∗)],
(10)

where h is the latent variable which defines the object hy-
pothesis, e.g., the alignment of parts, Φ(x,h) concatenates
HOG-based (Dalal and Triggs, 2005; Felzenszwalb et al.,
2010) appearance features and part spatial alignment fea-
tures, ∆(y,yi) is the 0-1 loss function that returns 0 if the
binary label y equals yi, and 1 otherwise. h∗ plays the role
of ground truth output of example i and it is computed at the
concave stage of CCCP. We refer to (Zhu et al., 2010) (Gir-
shick, 2012) for more details. A-SSVM can be applied to
DPM according to Eq. (8). For example, A-SSVM for DPM
can be written as:

minw
1
2
‖wT −wS‖2 +C ∑

N
i=1[maxh(wT ′Φ(xi,h)

+∆(y,yi))−wT ′Φ(xi,h∗)].
(11)

Thus, we can build HA-SSVM for DPM. We implemented
it in the DPM 5.0 framework (Girshick et al., 2012), which
is the latest at the moment of doing this research. When ap-
plying an adapted DPM in a particular target domain (i.e.,
in testing time), we do not use the full vector of parameters
jointly learned for all the hierarchy of target domains, in-
stead we only use the sub-vector of parameters correspond-
ing to such particular target domain (i.e. as mentioned for
Eq. (4)).

4.1 Experiments on Pedestrian Detection

Fig. 2 illustrates two different cases of DPM domain adapta-
tion using HA-SSVM that we evaluate here. In (a) the source
classifier is adapted to three different target domains (differ-
ent datasets in this case). In (b) we adapt the source classifier
to detect pedestrians from image windows of two different
resolution categories. The main idea is to divide the target
domain into sub-domains according to the resolution of the
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(a) (b)

Fig. 2 HA-SSVM applied to DPM: (a) adaptation to three related
datasets (domains), namely ETH0, ETH1 and ETH2, which were ac-
quired with the same camera but different environments; (b) adaptation
of a single resolution detector for applying different detectors when
processing small and large image windows, which would correspond
to pedestrians imaged with low (LRes) and high (HRes) resolution re-
spectively.

Fig. 3 (a) Original feature pyramid in DPM. (b) The extended feature
pyramid for multi-resolution adaptive DPM.

pedestrian samples, i.e., different resolutions are regarded as
different domains. Here we consider only two resolutions,
low and high. Note that low resolution pedestrians tend to
be blur and their poses are less discriminative than for high
resolution ones.

4.1.1 Datasets

As source-domain virtual-world dataset1 (Fig. 4) we use the
same as in (Vázquez et al., 2014; Xu et al., 2014a,b). The
target-domain real-world datasets that we use are ETH (Ess
et al., 2007), Caltech (Dollár et al., 2012) and KITTI (Geiger
et al., 2012). The ETH dataset consists of three sub-datasets,
namely ETH0 (BAHNHOF), ETH1 (JELMOLI) and ETH2
(SUNNY DAY), and is used to evaluate the setting of Fig. 2(a).
These sub-datasets are collected from different environments

1 It is publicly available under the name CVC-07 DPM Virtual-
World Pedestrian Dataset at www.cvc.uab.es/adas

Fig. 4 Virtual-world pedestrians and background images.

SRC Classifier trained with only the source (virtual-world)
domain samples.

TAR Classifier trained with only a relatively low number of
target domain (real-world) samples.

MIX Classifier trained with source samples used for SRC and the
target domain samples used for TAR.

A-SSVM Classifier adapted with A-SSVM using the SRC model and
the target domain samples used for TAR.

A-SSVM-
ALL As before but pooling all the considered target domains.

Table 1 Different types of learned DPM classifiers.

0 100 200 300 400 500 600 700 800
0

250

500

750

1000

1250

1500

1750

2000

Pedestrian Height

N
u
m

b
e
r 

o
f 
P

e
d
e
s
tr

ia
n
s

 

 

KITTI Training Set (Mandatory pedestrians)
Caltech Training Set (Mandatory pedestrians)
Virtual−world Training Set

Fig. 5 Cumulative histogram of the pedestrians’ height in Caltech,
KITTI and virtual-world training dataset. The virtual-world dataset
contains less low-resolution pedestrians than the real-world ones.

but with the same camera sensor and pose, thus, we consider
them as related sub-domains. Caltech and KITTI are used in
two different experiments, both for evaluating the setting of
Fig. 2(b).

4.1.2 Setup

In supervised domain adaptation it is assumed that there
are available just a few labeled data from the different tar-
get domains. In order to emulate this setting, we selected
only 100 pedestrians for the experiments with ETH0, ETH1,
ETH2 and Caltech, which roughly correspond to the 6%,
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Fig. 6 Average miss rate among the FPPI range from 0.01 to 1. ETH0, ETH1 and ETH2 show the adaptation results from virtual-world to ETH
three sub-datasets. Caltech shows results of adapting virtual-world DPM detector to a multi-resolution detector in Caltech pedestrian dataset.
A-SSVM is trained with mixed high and low resolution samples. HA-SSVM-N0 corresponds to W N0 in the multi-resolution adaptation tree and
HA-SSVM-MRES is the adapted multi-resolution detector. MultiResC is the multi-resolution DPM proposed in (Park et al., 2010).

1.5%,3%,5%, respectively, of the available pedestrians for
training. We use all the training pedestrian-free images of
these datasets, i.e., 999,451,354,1,824 images, respectively.
We follow the Caltech evaluation criterion (Dollár et al.,
2012) and plot the average miss rate vs false positive per im-
age (FPPI) curve. We use the suggested reasonable setting
and therefore test on the pedestrians taller than 50 pixels.
Each train-test experiment is repeated five times and we re-
port the mean and standard deviation of the repetitions. To
ensure fair comparisons, we use the same random samples
for different training methods. To evaluate the performance
of HA-SSVM, we compare it to the baselines described in
Table 1.

In fact, as touchstone of HA-SSVM for pedestrian de-
tection, our first test was the participation in the Pedestrian
Detection Challenge of the KITTI benchmark2 as part of
the Reconstruction Meets Recognition Challenge (RMRC)
held in conjunction with the ICCV’2013 celebrated in Syd-
ney. At that time we did not have written neither a report

2 www.cvlibs.net/datasets/kitti/

nor this paper, so we participated with the multi-resolution
HA-SSVM DPM described here, but with the generic name
of DA-DPM (domain adaptive DPM). In this case, we used
200 pedestrians of the KITTI training set, roughly the 11%
of the available ones, as well as 2,000 pedestrian-free im-
ages of the 7,518 available for training. We note that under
the KITTI benchmark, the object detection evaluation crite-
rion is different from the Caltech one. Accuracy is measured
as precision vs recall instead of miss rate vs FPPI. Note also
that, in order to avoid parameter tuning, the ground truth of
the KITTI testing data is not available.

For all the experiments, the SRC classifier (see Table 1)
is the same DPM, trained with the virtual-world dataset. It
is worth to mention that we use a DPM root filter of 12×6
HOG cells (each cell is of 8× 8 pixels), i.e., the minimum
size of the detectable pedestrians is 96×48 pixels. Then, for
the multi-resolution adaptation (to Caltech and KITTI), we
build the two-layer hierarchical model of Fig. 2(b). When
computing features, we add an extra octave at the bottom
of the feature pyramid and then divide the pyramid into two
pyramids: high resolution pyramid which contains pedestri-
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Rank Method Moderate Easy Hard
1 HA-SSVM 45.51 % 56.36 % 41.08 %
2 LSVM-MDPM-sv 39.36 % 47.74 % 35.95 %
3 LSVM-MDPM-us 38.35 % 45.50 % 34.78 %
4 mBoW (LP) 31.37 % 44.28 % 30.62 %

Table 2 Evaluation on KITTI pedestrian detection benchmark during
the RMRC’2013. Results are given as average precision (AP). Our
method HA-SSVM (which is actually the application of HA-SSVM
to a DPM trained with virtual-world data) outperforms the previous
best method LSVM-MDPM-sv by 5 ∼ 8 points in average precision.
”LP” means that the method uses point clouds from a Velodyne laser
scanner.

ans taller than 96 pixels, and low resolution pyramid which
contains pedestrians lower than 96 pixels. The extended fea-
ture pyramid is illustrated in Fig. 3(b). During training time,
we assign the training pedestrians to the high and low res-
olution domains according to the height of their bounding
boxes, while the background samples are shared by both
domains. In figure Fig. 5 we show the pedestrian height
distribution of the virtual- and real-world training datasets.
Note that the virtual-world dataset has few low resolution
pedestrians compared with the real-world ones, thus making
the pursued adaptation challenging. In testing time, we ap-
ply the two adapted models to the corresponding resolution
pyramid and finally we combine their detections and apply
non-maximum suppression to obtain the final detections.

Note that in the particular case of using virtual-data we
have the chance of generating the desired number of pedes-
trians at any given resolution. However, with this experiment
we want to illustrate how HA-SSVM can be used for simul-
taneously adapting to a new sensor and new predominant
resolutions, irrespectively of the origin of the source data.
On the other hand, in the general case, it is not always pos-
sible improving the source model in terms of the resolution
discrepancy before sensor adaptation. The reason is that the
user of the model may not be the owner of the source data
used to train it. Moreover, in this case seems to be worth to
expend our resources in annotating the target-domain data
rather than collecting and annotating source-domain data.

4.1.3 Results

In Fig. 6 we can see the results for the setting of Fig. 2(a). It
can be appreciated that pooling-all-target-domains strategy
(A-SSVM-ALL) can have better adaptation accuracy than
using single target domain data (A-SSVM). However, HA-
SSVM achieves even better accuracy when trained with the
same samples as A-SSVM-ALL, which demonstrates the
importance of leveraging multiple target domains in a hi-
erarchy.

In Fig. 6 we can also see the results of applying set-
ting Fig. 2(a) to Caltech. We additionally assessed the ac-
curacy provided by the intermediate model wN0, which is
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Fig. 8 Pedestrian detection results on KITTI benchmark.

denoted by HA-SSVM-N0 in contrast to HA-SSVM-MRes
which corresponds to the full multi-resolution adaptation.
Note how even HA-SSVM-N0 shows better classification
accuracy than A-SSVM. It demonstrates the effectiveness of
the progressive adaptation in HA-SSVM, which can be ex-
plained by the fact that the multi-task training learns general
shared parameters for multiple target domains (i.e. high- and
low-resolution domains), while single-task A-SSVM does
not take into account the differences of multi-resolution sam-
ples. Of course, HA-SSVM-MRes is providing the best ac-
curacy. Quantitative results are shown in Fig. 7, where it can
be seen that HA-SSVM-MRes is capable of detecting lower
resolution pedestrians.

Finally, as can be see in Table 2, we won the pedestrian
detection challenge of the RMRC’20133, i.e., we outper-
formed LSVM-MDPM-sv (A.Geiger et al., 2011), LSVM-
MDPM-us (Felzenszwalb et al., 2010) and mBoW (Behley
et al., 2013). Our precision-recall curves can be seen in Fig. 8.

We think that this was a quite remarkable result because,
as we mentioned before, in order to adapt our virtual-world
based pedestrian DPM we only used the∼ 11% of the KITTI
training pedestrians and the ∼ 27% of the available pedes-
trian-free images. This implies that the adaptation took 20
minutes approximately in our 1 core @ 3.5 Ghz desktop
computer, while training the original DPM (Felzenszwalb
et al., 2010) with all the full KITTI training set may need
around 10 hours in the same conditions. It is also worth to
point out that, as can be deduced from Fig. 5, the number
of (virtual-world) pedestrians used for building our source
model plus the 200 pedestrians selected from the KITTI
training dataset is still lower than the total number of pedes-
trians in the KITTI dataset. Similarly for the pedestrian-free
images, since we use 2,000 from the virtual world to build
the source model and 2,000 from the KITTI training set to
do the adaptation, while there are around 7,500 available
for training. Moreover, as to the best of our knowledge, this

3 In the RMRC’2013 program it can be checked that we
did a talk as winners of the pedestrian detection challenge, see
http://ttic.uchicago.edu/~rurtasun/rmrc/program.php
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Fig. 7 Pedestrian detection on Caltech dataset for SRC, A-SSVM and HA-SSVM based models. The results are drawn at FPPI = 0.1. HA-SSVM
improves SRC and A-SSVM not only by low resolution detection but also by other factors, e.g., reducing false positives (column 2) and better
localization accuracy (column 4).

was the first time that a domain adapted object detector wins
such a challenge.

Of course, after RMRC’2013 we were completing the
work presented in this paper for the initial and following
submission, many other proposals have been submitted to
the pedestrian detection challenge4, some of them comple-
menting RGB information with LIDAR or Stereo data, or
using Deep Learning techniques, other are just anonymous.
As a result our HA-SSVM is now roughly in the middle of
the classification. However, it is still the first method based
on the DPM applied to only RGB data, even performing bet-
ter than submissions done after ours based on DPM, see
DPM-VOC+VP (Pepikj et al., 2015) which improves the
DPM considering 3D view pose, and DPM-C8B1 (Yebes
et al., 2015) which even uses 3D stereo information to com-
plement RGB data. Among DPM methods it is just slightly
outperformed by Fusion-DPM (Premebida et al., 2014) which
makes use of LIDAR and RGB data, and it slower too. We
plan to improve our detector in terms of used features and
pedestrian model; however, this is out of the scope of this
paper since these improvements are not related to the do-
main adaptation process itself. In spited of this, we tried to
improve our result just by using all the available training
data of KITTI for the domain adaptation. However, the re-
sult was not significantly better. We think that is because the
standard DPM cannot learn more from this data. In fact, as
we have mentioned, there is just one DPM based method
above ours and it is because the use of an additional data
modality (LIDAR).

4 www.cvlibs.net/datasets/kitti/eval object.php

5 Domain Adaptation of Multi-category Classifiers

In the following, we evaluate HA-SSVM on multi-category
classifiers. We begin with the scenario in which the target
sub-domains are given a priori. After we assess the scenario
in which such sub-domains must be discovered. For illustrat-
ing how HA-SSVM operates with multi-category classifiers,
we focus on object category recognition.

Assume we are given an set of N examples, D , each one
labeled as belonging to a category among K possible ones,
i.e. D = {(xi,yi)|xi ∈Rn,yi ∈{1, . . . ,K}}N

i=1. Let w1, . . . ,wK
be the parameters of K linear category classifiers, so that a
new example x is assigned to a category according to the
rule f (x) = argmaxk∈{1,...,K}w′kx. Let w = [w′1, . . . ,w

′
K ]
′ in

RKn, and a feature map Φ(x,y) = [0′, . . . ,x′, . . . ,0′]′, where
0 ∈ Rn is the zero vector and x is located at the y-th slot in
Φ(x,y). Now the multi-category classification problem can
be treated as a special case of structure output prediction:

f (x) = argmax
y∈{1,...,K}

w′Φ(x,y). (12)

In order to apply HA-SSVM, Eq. (8) can be directly used as
a basic adaptation unit by writing the loss term as:

∑
N
i=1[maxŷ∈{1,...,K}(w′Φ(x, ŷ) +∆(ŷ,yi))−w′Φ(xi,yi)],

(13)

where ∆(ŷ,yi) is the 0-1 loss function.

5.1 Known Target Sub-Domains
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A→W A→ D A→ C W→ A W→ D W→ C
ASVM(Yang et al., 2007) 65.0 ± 1.0 51.6 ± 1.1 30.9 ± 0.6 48.6 ± 1.1 54.4 ± 1.5 29.8 ± 1.0

PMT-SVM(Aytar and Zisserman, 2011) 65.9 ± 1.0 52.6 ± 1.1 32.3 ± 0.6 49.0 ± 1.1 57.9 ± 1.6 30.4 ± 0.9
GFK(Gong et al., 2012) 56.5 ± 0.8 45.3 ± 0.9 38.6 ± 0.4 45.8 ± 0.6 73.8 ± 0.7 32.6 ± 0.6

MMDT(Hoffman et al., 2013) 65.1 ± 1.2 54.5 ± 1.0 39.7 ± 0.5 50.6 ± 0.8 62.5 ± 1.0 34.8 ± 0.8
A-SSVM 60.0 ± 0.9 49.7 ± 0.8 42.6 ± 0.5 49.5 ± 0.5 67.4 ± 0.7 37.3 ± 0.5

A-SSVM-ALL 64.5 ± 0.7 55.1 ± 0.8 42.6 ± 0.3 49.8 ± 0.5 67.8 ± 0.8 39.0 ± 0.3
HA-SSVM 69.8 ± 0.7 59.7 ± 0.9 42.1 ± 0.4 54.4 ± 0.6 66.1 ± 1.1 39.4 ± 0.3

D→ A D→W D→ C C→ A C→W C→ D
ASVM(Yang et al., 2007) 48.0 ± 1.1 63.5 ± 1.1 29.9 ± 0.8 49.5 ± 1.0 63.2 ± 1.2 52.7 ± 1.3

PMT-SVM(Aytar and Zisserman, 2011) 48.6 ± 1.1 66.5 ± 1.2 30.9 ± 0.8 50.0 ± 1.0 64.3 ± 1.2 52.2 ± 1.3
GFK(Gong et al., 2012) 45.8 ± 0.4 80.3 ± 0.7 33.3 ± 0.5 46.4 ± 0.7 61.0 ± 1.4 52.7 ± 1.2

MMDT(Hoffman et al., 2013) 50.4 ± 0.7 74.2 ± 0.7 35.7 ± 0.7 51.1 ± 0.7 62.9 ± 1.1 53.0 ± 1.0
A-SSVM 48.6 ± 0.5 74.6 ± 0.6 35.5 ± 0.5 53.4 ± 0.7 63.6 ± 1.2 52.7 ± 1.0

A-SSVM-ALL 49.0 ± 0.5 73.2 ± 0.7 37.8 ± 0.4 50.6 ± 0.6 66.2 ± 0.6 57.5 ± 0.9
HA-SSVM 52.6 ± 0.5 73.0 ± 0.5 39.2 ± 0.6 53.4 ± 0.8 69.6 ± 0.7 61.2 ± 0.9

Table 4 Multi-category recognition accuracy on target domains. Bold indicates the best result for each domain split. Underline indicates the
second best result. The domains are: A: amazon, W: webcam, D: dslr, C: Caltech256. We use the nomenclature Source→Target.

ASVM PMT-SVM GFK MMDT A-SSVM A-SSVM-ALL HA-SSVM
48.9 ± 1.1 48.9 ± 1.1 51.0 ± 0.7 52.9 ± 0.9 52.9 ± 0.7 54.4 ± 0.6 56.7 ± 0.7

Table 5 Multi-category recognition accuracy averaged across all domain splits, with the corresponding standard deviation.

ASVM

Adaptive SVM (Yang et al., 2007). It does not require the
source domain data, only the learned source classifier. In
contrast to A-SSVM, ASVM does not consider structural
information.

PMT-SVM Projective model transfer SVM (Aytar and Zisserman,
2011), which is a variant of ASVM.

GFK
The geodesic flow kernel method (Gong et al., 2012), which
requires both source and target domain data (including
testing data). Labels of target training data are not required.

MMDT

Max-margin domain transfer method of (Hoffman et al.,
2013), which learns a mapping from target domain to
source domain as well as a discriminative classifier using
the mapped target and source domain features.

A-SSVM Analogous to Table 1.
A-SSVM-
ALL Analogous to Table 1.

Table 3 Different types of learned multi-category classifiers.

5.1.1 Datasets

We evaluate HA-SSVM for object category recognition us-
ing the benchmark domain adaptation dataset known as Office-
Caltech (Gong et al., 2012; Hoffman et al., 2013). This dataset
combines the Office (Saenko et al., 2010) and Caltech256
(Griffin et al., 2007) datasets. In particular, Office-Caltech
consists of the 10 overlapping object categories between Of-
fice and Caltech256, which are backpack, calculator,
coffee-mug, computer-keyboard, computer-monitor,
computer-mouse, head-phones, laptop-101, touring-
-bike and video-projector in the terminology of Cal-
tech256.

From the viewpoint of domain adaptation, Office-Caltech
consists of four domains. One domain, called caltech (C),

corresponds to the images of Caltech256, which were col-
lected from the internet using Google. The other three do-
mains come from Office, namely the amazon (A), webcam
(W) and dslr (D) domains. The amazon domain is a col-
lection of product images from amazon.com. The webcam
and dslr domains contain images taken by a (low resolu-
tion) webcam and a (high resolution) digital single-lens re-
flex camera, respectively. Cross-domain variations are not
the only ones, but for a particular domain and category, the
objects are imaged under different poses and illumination
conditions.

5.1.2 Setup

We follow the experimental setup of (Saenko et al., 2010;
Gong et al., 2012; Hoffman et al., 2013), which we summa-
rize in the following. We have four domains (A, W, D, C)
and the same 10 object categories per domain. For each ex-
periment, one domain is selected as source domain and the
other three as target domains. The number of examples per
category varies from domain to domain and from category to
category. When A is the source, 20 examples are randomly
selected per category for training, while when the sources
are either W, D or C, only 8 examples are selected per cat-
egory. When a domain plays the role of target, only 3 ex-
amples are selected per category for performing the domain
adaptation (training). All the examples of the target domains
not used for training are used for testing. The accuracy of the
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classification is measured as the number of correctly clas-
sified test examples divided by the total number of them
(i.e., without distinguishing object categories). In fact, since
the splitting of the available examples into training (source
and target) and testing (target) is based on random selection,
each experiment is repeated 20 times. Therefore, the aver-
age of the 20 obtained accuracy values is actually used as
final accuracy measure together with its associated standard
deviation.

In order to make easier across-paper comparisons, we
use the same 20 random train/test splits available from (Hoff-
man et al., 2013). Moreover, rather than using our own fea-
ture computation software, we use the pre-computed SURF-
based bag of (visual) words (BoW) available for the im-
ages of Office-Caltech. Then, following (Gong et al., 2012),
we apply PCA to such original SURF-BoW to obtain his-
tograms of 20 visual words (bins).

5.1.3 Baselines

We compare our algorithm to the baselines summarized in
Table 3. A-SVM, PMT-SVM, A-SSVM and A-SSVM-ALL
are adapted with the target domain examples and the source
classifiers, the rest of methods require the target domain ex-
amples and the original source domain ones for retraining.
For the A-SVM and PMT-SVM methods we use the imple-
mentation provided by (Aytar and Zisserman, 2011), includ-
ing MOSEK optimization (Mosek, 2013). We run GFK and
MMDT using the code of (Hoffman et al., 2013). Note that
in (Hoffman et al., 2013), GFK and MMDT are the best
performing methods among others, including ARCT (Kulis
et al., 2011) and HFA (Duan et al., 2012) methods. All these
methods, except A-SSVM-ALL, follow the one-to-one do-
main adaptation style (Fig. 1(a)), i.e., an independent do-
main adapation is performed for each target domain.

5.1.4 Results

We first evaluate the accuracy of HA-SSVM with a two-
layer adaptation tree, i.e., all the target domain datasets are
at the same layer and connected to the source domain dataset
by an intermediate node, similar to Fig. 2(a). The accuracy
for each source/targets split is shown in Table 4. Table 5
shows the accuracy of each algorithm averaged over all do-
main splits. It is worth to note that our results for GFK and
MMDT are totally in agreement with the ones presented in
(Hoffman et al., 2013) for the same experiments and set-
tings.

From Table 4 and Table 5, it is clear the importance of
using all the available target-domain examples. Note that the
best performing methods, A-SSVM-ALL (Fig. 1(b) style)
and HA-SSVM (Fig. 1(c) style), do so in contrast to the rest
of methods, which follow the one-to-one domain adaptation

Adaptation Tree A→W A→D A→C Avg.
A→[W, D, C] 69.8 ± 0.7 59.7 ± 0.9 42.1 ± 0.4 48.4
A→[W, [D, C]] 69.8 ± 0.7 59.5 ± 1.0 40.1 ± 0.4 47.7
A→[D, [W, C]] 69.8 ± 0.6 59.1 ± 0.8 40.9 ± 0.4 47.8
A→[C, [D, W]] 72.7 ± 0.7 63.4 ± 1.2 42.1 ± 0.4 49.5
Adaptation Tree W→A W→D W→C Avg.
W→[A, D, C] 54.4 ± 0.6 66.1 ± 1.1 39.4 ± 0.3 47.3
W→[A, [D, C]] 54.3 ± 0.5 63.3 ± 1.3 38.7 ± 0.5 46.9
W→[D, [A, C]] 55.7 ± 0.6 65.8 ± 1.0 39.5 ± 0.4 48.1
W→[C, [A, D]] 54.2 ± 0.6 63.5 ± 1.0 39.5 ± 0.4 47.3
Adaptation Tree D→A D→W D→C Avg.
D→[A, W, C] 52.6 ± 0.5 73.0 ± 0.5 39.2 ± 0.6 48.7
D→[A, [W, C]] 52.6 ± 0.6 71.8 ± 0.7 39.4 ± 0.6 48.5
D→[W, [A, C]] 54.0 ± 0.6 73.0 ± 0.8 39.9 ± 0.6 49.6
D→[C, [A, W]] 53.0 ± 0.6 71.0 ± 0.7 38.9 ± 0.6 48.3
Adaptation Tree C→A C→W C→D Avg.
C→[A, W, D] 53.4 ± 0.8 69.6 ± 0.7 61.2 ± 0.9 57.3
C→[A, [W, D]] 53.2 ± 0.7 71.2 ± 0.7 63.0 ± 1.1 57.8
C→[W, [A, D]] 53.2 ± 0.6 69.5 ± 0.6 59.7 ± 1.3 57.1
C→[D, [A, W]] 52.4 ± 0.6 68.9 ± 1.0 61.0 ± 1.1 56.5

Table 6 HA-SSVM trained with various adaptation trees. The first col-
umn illustrates the tree structure. A two-layer adaptation tree is repre-
sented by X→[Y,Z,T], where X is the source domain and Y, Z and T are
sibling target domains. These results are just a copy of the HA-SSVM
ones shown in Table 4. A three-layer adaptation tree is represented by
X→[Y,[Z,T]], where Z and T are siblings on the third layer and Y is
located on the second layer.

Amazon DSLR Webcam Caltech256
Amazon — 8.13 9.03 9.78
DSLR 8.13 — 9.60 8.25
WebCam 9.03 9.60 — 8.96
Caltech256 9.78 8.25 8.96 —

Table 7 Domain similarities in terms of QDS values (Ni et al., 2013).
Lager values indicate higher similarity.

style (Fig. 1(a)). For instance, if we focus in the A→[W,D,C]
case, both A-SSVM-ALL and HA-SSVM use 90 target do-
main examples simultaneously, i.e. 3 target domains × 10
object categories per target domain × 3 examples per cate-
gory. 1-to-1 domain adaptation style methods use 30 W ex-
amples for performing the A→W domain adaptation, and
analogously for A→D and A→C. Therefore, potential com-
monalities between W, D, and C domains are not used. More-
over, HA-SSVM outperforms A-SSVM-ALL, in agreement
with our hypothesis that using the underlying hierarchical
structure of the target domains is better than just mixing
them blindly.

Focusing then on HA-SSVM, it is also interesting to see
if other target domain structure (e.g., a three-layer hierarchy)
can improve the domain adaptation accuracy obtained so far.
We test HA-SSVM with various three-layer adaptation trees.
Table 6 shows the results. The three-layer adaptation tree
achieves results as good as the ones of the two-layer tree
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and some of them are even better. By further analyzing the
domain relationships of the Office and Caltech256 datasets,
we found that there are strong connections to previous stud-
ies on domain similarity. In particular, to the rank of domain
(ROD) (Gong et al., 2012) and the quantification of domain
shift (QDS) (Ni et al., 2013). We show the domain simi-
larities in Table 7 using QDS measurement. We note that
the three-layer hierarchies which yield to best accuracies are
those that best capture the underlying domain relationship.
For instance, in the first group of Table 6, A→[C, [D, W]]
achieves better accuracy than other adaptation trees, which
is in agreement with the fact that [D, W] show higher simi-
larity than [D, C] and [C, W] (see Table 7).

5.2 Latent Target Sub-Domains

Now we consider the scenario where the domain labels are
not given a priori for the target data. In particular, we use
again the Office-Caltech dataset with the same settings than
in Sect. 5.1.2. However, we mix the target datasets by re-
moving the domain labels. In these experiments, we first
compare two recent domain discovery algorithms, in par-
ticular, latent domain discovery (Hoffman et al., 2012) (we
call it LatDD), and domain reshaping (Gong et al., 2013b)
(we call it Reshape). Finally, we evaluate the adaptation ac-
curacies with the discovered domains, using HA-SSVM.

LatDD and Reshape require category labels to operate.
However, in our domain adaptation setting we assume that
only a few target domain examples have category label, which
may be a handicap for such domain discovery methods. In
this point, as proof-of-concept, we assumed that the target
domain data does not have category labels. Therefore, we
first applied the source domain model to predict the cate-
gory labels in the unlabeled target domain (i.e., the domain
obtained by mixing the three domains not used as source).
We denote by LatDD-Pr and Reshape-Pr the cases where
we use predicted category labels instead of the groundtruth
category labels.

LatDD requires as input the number of sub-domains to
be discovered (originally this method has been developed
to discover source domains), while Reshape involves an it-
erative process to search for the optimum number of sub-
domains. We want to compare the HA-SSVM results in terms
of discovered sub-domains vs a priori given ones, but only
from the point of view of how the target data is distributed
among a predefined number of target sub-domains. In other
words, in these experiments we do not want the number of
domains to be discovered. Therefore, we set this value to
3 for fair comparison with the experiments in Sect. 5.1. It
is worth to note that for Reshape/Reshape-Pr we only use
the so-called distinctiveness maximization step (Gong et al.,
2013b).

Fig. 9 depicts the domain discovery results. It can be
seen that Reshape and Reshape-Pr are clearly more accurate
than LatDD and LatDD-Pr predicting the domains. Compar-
ing Reshape and Reshape-Pr, we see that the former is more
accurate as should be expected since it relies on groundtruth
data. Comparing LatDD with LatDD-Pr, the accuracy dif-
ferences are smaller than for Reshape and Reshape-Pr.

Now, for applying HA-SSVM, LatDD-Pr and Reshape-
Pr are treated equally and as follows. For each discovered
sub-domain, we assume that 3 examples are category-labeled
for each category. Since our experiments are with 10 cate-
gories, as in Sect. 5.1, 90 target-domain examples must be
available for performing domain adaptation (training) and
the rest are used for testing. Since this train/test split is based
on random selection, we repeat each experiment 20 times
in order to emulate the setting of Sect. 5.1. Note that for
LatDD-Pr and Reshape-Pr this means that we discard the
predicted category labels, but we require only 90 examples
to be labeled. In fact, LatDD and Reshape are not considered
for HA-SSVM since these methods would require the cate-
gory labels of all the target data (we included them in Fig. 9
just as reference to compare with their predicted counter-
parts).

Table 8 shows the final domain adaptation accuracies.
As in Sect. 5.1 we evaluate two- and three-layer hierarchies,
for the latter we only show the best obtained result among all
possible configurations. We see that these results are compa-
rable to the best obtained in Sect. 5.1 (also included in Ta-
ble 8 as ’Given’ for the reader convenience). Although we
work with discovered sub-domains, HA-SSVM still outper-
forms the single-layer adaptation pooling-all strategy. Resha-
pe-Pr outperforms LatDD-Pr as expected given the domain
discovery accuracies seen in Fig. 9. However, the differ-
ences in accuracy are much larger for domain discovery than
for the final object category classification, which may be
due to the fact that HA-SSVM trains all the object category
classifiers simultaneously for all domains in the hierarchy;
thus, partially compensating domain assignment errors. Fi-
nally, for illustration purposes, Fig. 10 shows object exam-
ples within the domains discovered by Reshape-Pr and some
of the three-layer adaptation trees used by HA-SSVM.

6 Domain Adaptation for Face Recognition

In this section, we apply HA-SSVM to the task of face recog-
nition, where we aim to identify the person shown in a face-
style image; thus it is similar to the task of multiple object
recognition. We use Eq. (12) as the classifier. We evaluate
domain adaptation algorithms on two different scenarios: (1)
domain adaptation across pose variations, where the source
and target domains correspond to different head poses; (2)
domain adaptation across illumination variations, where the
source and target domains contain face images with different
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Fig. 9 Visualization of domain discovery results. The vertical axis indicates the indexes of the examples. Each color represents a different domain.
For each sub-figure, the first column shows the original domain (groundtruth). The following columns are domain reshaping with predicted
category labels (’Reshape-Pr’), domain reshaping with groundtruth category labels (’Reshape’), latent domain discovery with predicted category
labels (’LatDD-Pr’) and latent domain discovery with groundtruth category labels (’LatDD’). Within the brackets we show the estimated domain
discovery accuracy running in [0,1].

Source Domain A W D C
Original Target Domains W, D, C A, D, C A, W, C A, W, D

Method Hierarchy Domain Discovery
A-SSVM-ALL — — 47.6 ± 0.4 45.4 ± 0.4 46.5 ± 0.5 54.4 ± 0.6
HA-SSVM 2 Layers Given 48.4 ± 0.5 47.3 ± 0.5 48.7 ± 0.6 57.3 ± 0.8
HA-SSVM 3 Layers Given 49.5 ± 0.4 48.1 ± 0.6 49.6 ± 0.5 57.8 ± 0.7
HA-SSVM 2 Layers LatDD-Pr 46.2 ± 0.3 45.2 ± 0.4 45.9 ± 0.4 53.1 ± 0.6
HA-SSVM 3 Layers LatDD-Pr 46.3 ± 0.4 45.1 ± 1.4 45.8 ± 0.4 53.0 ± 0.7
HA-SSVM 2 Layers Reshape-Pr 49.0 ± 0.6 47.0 ± 0.5 48.0 ± 0.5 59.4 ± 0.5
HA-SSVM 3 Layers Reshape-Pr 49.1 ± 0.6 47.9 ± 0.5 48.2 ± 0.5 59.1 ± 0.5

Table 8 The average multi-category recognition accuracy for a single target domain, for a priori ’Given’ domains (Sect. 5.1), and for discovered
latent domains (LatDD-Pr and Reshape-Pr). For the three-layer hierarchies we only show the best result among all possible three-layer adaptation
trees.

illumination conditions. For each scenario, we investigate
two types of features: (1) Similarly to the Office-Caltech
dataset, we use SURF-BoW features (800 visual words of
128 dimensions); (2) As features learned by deep convolu-
tional neural networks (CNN) has shown superior accuracy
to the hand-crafted ones (e.g., HOG, SURF), we also com-
pute deep-learned features. Caffe deep learning framework

(Jia et al., 2014) is used to extract 4096 dimensional features
in our experiments.
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Original target domains: [A,D,C]

Original target domains: [A,W,D]

Fig. 10 Reshape-Pr + HA-SSVM qualitative results. Three exemplars for two categories are shown for each domain discovered by Reshape-Pr.
The three-layer hierarchy used by HA-SSVM is also indicated for the underlying domains [A,D,C] (top) and [A,W,D] (bottom). In both cases, it
correspond to the most accurate HA-SSVM-based multi-category classifier among the different ones that can be obtained for different three-layer
hierarchy configurations.

6.1 Domain Adaptation Across Pose Variations

In this case, we use the head pose data in (Gourier et al.,
2004)5. It consists of 15 different sets of images, each set
corresponds to a different person. Globally there are per-
sons with different skin color, and the same person appears
with and without glasses. Each set contains images of the
same person captured at various poses. The pose, or head
orientation is determined by two angles (h,v), which varies
from −90 degrees to +90 degrees. We split the dataset into
different domains according to the horizontal angles h. To
challenge domain adaptation, we select 3 domains which
have large gap in horizontal angles. The selected angles and
domains are illustrated in Table 9. For each target domain,
we randomly select 3 examples per subject for DA training
and the rest are used for testing. Since we repeat each type
of experiment 5 times for obtaining a mean and standard
derivation of the adaptation accuracy, such a random selec-
tion brings different adaptation-testing partitions per experi-
ment. We build the two-layer hierarchical adaptation tree for
HA-SSVM that is shown in Fig. 11. The results of the source
and adapted classifiers are shown in Table 11 and Table 12,
where HA-SSVM-N0 is the intermediate adaptation node.

Table 11 shows that using SURF features HA-SSVM
outperforms HA-SSVM-N0 and A-SSVM-ALL, these two

5 www-prima.inrialpes.fr/Pointing04/data-face.html

Domain Source T1 T2
Horizontal angle 0 -75,-90 75,90
# training examples per subject 20 3 3
# testing examples per subject — 25 25

Table 9 Head pose data: horizontal angles and number of training and
testing examples per subject in each domain. We have selected three
very different pose ranges with respect to the horizontal angle (0◦,
[−75◦,−90◦], [75◦,90◦]), just for challenging more the domain adap-
tation methods.

Domain Source T1 T2
Illumination direction Frontal Left Right
# training examples per subject 32 3 3
# testing examples per subject — 13 13

Table 10 YaleB dataset: the illumination direction and the number of
training and testing examples per subject in each domain.

performing very similarly. Note that depending on the appli-
cation we can either apply HA-SSVM-N0 (the root target-
domain model) or HA-SSVM (the corresponding leaf target-
domain model). For instance, if we are in an application
where we cannot know a priori the horizontal angle range
of the face, then we apply HA-SSVM-N0, while if we know
it (e.g. the image is taken in a control point by a human
and send it to a face recognition system, or different cam-
eras capture different angles) then we can apply HA-SSVM.
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Fig. 11 Head pose dataset and the hierarchical adaptation tree. We split the dataset into 3 domains according to the horizontal angle of the head.
The front view poses are used as source domain and the remaining two domains are used as target domains.

Test domain SRC A-SSVM-ALL HA-SSVM-N0 HA-SSVM
Pose-T1 72.1 ± 0.2 88.9 ± 1.9 88.9 ± 1.6 91.2 ± 1.1
Pose-T2 72.6 ± 0.9 88.4 ± 1.9 88.7 ± 1.4 89.9 ± 1.6

Table 11 Head pose variation domain adaptation using SURF features, the average precision and standard deviations of the adapted classifiers.
HA-SSVM-N0 is the intermediate adaptation node.

Test domain SRC A-SSVM-ALL HA-SSVM-N0 HA-SSVM
Pose-T1 86.5 ± 0.3 95.9 ± 0.7 96.2 ± 0.3 95.7 ± 1.1
Pose-T2 82.4 ± 0.4 97.8 ± 1.1 97.8 ± 1.2 98.5 ± 0.4

Table 12 Head pose variation domain adaptation using Caffe features, the average precision and standard deviations of the adapted classifiers.
HA-SSVM-N0 is the intermediate adaptation node.

Thus, in the worst case our method would perform as A-
SSVM-ALL, while it is able to improve if target-domain in-
formation is available.

When using Caffe features (Table 12), the accuracy of
all these classifiers are greatly improved and the differences
of these DA algorithms become unclear. This is because, in
this particular example, the domain shift is already largely
reduced by the deep learned features and there is little space
to improve.

6.2 Domain Adaptation Across Illumination Variations

In this case, we use the extended Yale Face dataset B (YaleB)
(Georghiades et al., 2001; Lee et al., 2005). The YaleB dataset
contains human subjects under 9 poses and 64 illumination
conditions. We use the 10 subjects and split the dataset into
three domains according to the illumination conditions, i.e.
frontal, left side and right side lightening. The domain splits
and the number of training and testing images are described
in Table 10. Sample images are depicted in Fig. 12. Simi-
lar to the pose variation experiments, we build two layers

hierarchical adaptation tree for HA-SSVM (see Fig. 12) and
assess the accuracy of the intermediate adaptation node HA-
SSVM-N0. Again, 5 rounds are executed per type of exper-
iment, randomly selecting 3 target-domain images for the
adaptation; then, the mean and standard derivation of the ac-
curacy are computed as shown in Table 13 and Table 14.

Table 13 shows that using SURF features HA-SSVM-N0
outperforms A-SSVM-ALL, and HA-SSVM clearly outper-
forms them. The standard deviation of HA-SSVM and HA-
SSVM-N0 accuracy is relatively high in this case. This indi-
cates that in this experiments not all target-domain examples
were equally useful (something that could be taking into ac-
count by using active learning as in (Vázquez et al., 2014));
however, in the individual experiments A-SSVM-ALL pro-
vided a worse accuracy than HA-SSVM and HA-SSVM-N0.
Again, when using Caffe features (Table 14), the accuracy
of all these classifiers is boosted so that the overall model
is saturated and there is no room for domain adaptation in
general.
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Fig. 12 YaleB dataset and the hierarchical adaptation tree. We split the dataset into 3 domains according to the illumination directions. The frontal
illumination corresponds to the source domain and left and right illumination correspond to two target domains.

Test domain SRC A-SSVM-ALL HA-SSVM-N0 HA-SSVM
YaleB-T1 20.3 ± 1.7 26.8 ± 2.0 38.2 ± 8.6 40.0 ± 8.1
YaleB-T2 20.6 ± 1.3 23.5 ± 3.6 35.6 ± 8.5 37.6 ± 9.6

Table 13 Illumination variation domain adaptation using SURF features, the average precision and standard deviations of the adapted classifiers.
HA-SSVM-N0 is the intermediate adaptation node.

Test domain SRC A-SSVM-ALL HA-SSVM-N0 HA-SSVM
YaleB-T1 52.3 ± 2.3 69.7 ± 3.0 70.2 ± 3.8 70.2 ± 5.3
YaleB-T2 53.6 ± 2.9 64.4 ± 3.4 65.0 ± 3.7 65.0 ± 5.9

Table 14 Illumination variation domain adaptation using Caffe features, the average precision and standard deviations of the adapted classifiers.
HA-SSVM-N0 is the intermediate adaptation node.

7 Conclusions

In this paper, we present a novel domain adaptation method
which leverages multiple target domains (or sub-domains)
in a hierarchical adaptation tree. The key idea of the method
is to exploit the commonalities and differences of the jointly
considered target domains. Given the increasing interest on
structural SVM (SSVM) classifiers, we have applied this
idea to the domain adaptation method known as adaptive
SSVM (A-SSVM), which only requires the target domain
samples together with the existing source-domain classifier
for performing the desired adaptation. Thus, in contrast with
many other methods, the source domain samples are not re-
quired. Altogether, we term the presented domain adaptation
technique as hierarchical A-SSVM (HA-SSVM).

As proof of concept we have applied HA-SSVM to pedes-
trian detection, object category recognition, and face recog-
nition. The former involved to apply HA-SSVM to the de-
formable part-based model (DPM) while the others implied
their application to multi-category classifiers. We showed
how HA-SSVM is effective in improving the classification
accuracy with respect to state-of-the-art strategies that ig-

nore the structure of the target data. Moreover, focusing on
the object category recognition application, we have evalu-
ated HA-SSVM assuming that the target domains are dis-
covered, obtaining comparable results to the case in which
such domains are known a priori. In fact, we have seen that,
thanks to such hierarchy of models, we can apply one sub-
domain model or another (from the root to the leafs) depend-
ing on the target-domain a priori information that we have
for a sample that must be classified.

As future work we would like to incorporate some re-
cent advances in domain adaptation within the HA-SSVM
framework. In particular, our structure-aware A-SSVM (SA-
SSVM) approach (Xu et al., 2014a), as well as the cross-
domain attribute codes (Mirrashed and Rastegar, 2013). Ad-
ditionally, we want to explore how to incorporate this hier-
archical adaptation withing deep architectures.
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