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Abstract. Fisher Linear Discriminant Analysis (FLDA) is one of the most 
popular techniques used in classification applying dimensional reduction. The 
numerical scheme involves the inversion of the within-class scatter matrix, which 
makes FLDA potentially ill-conditioned when it becomes singular. In this paper we 
present a novel explicit formulation of FLDA in terms of the eccentricity ratio and 
eigenvector orientations of the within-class scatter matrix. An analysis of this 
function will characterize those situations where FLDA response is not reliable 
because of numerical instability. This can solve common situations of poor 
classification performance in computer vision. 
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1 Introduction 

FISHER Linear Discriminant Analysis (FLDA) is a well known technique used in 
classification problems applying dimensional reduction of high-dimensional feature spaces. 
The main idea of this dimensional reduction is to seek for a feature subspace in which the 
classification problem is more manageable. In the case of linear discriminant analysis 
(LDA), this is achieved through a linear transformation. FLDA approach looks for a 
compromise in which the class clusters are mapped onto a reduced space maximizing its 
distance, while trying to keep the class clusters as compact as possible. In this subspace, the 
projected samples are labeled to their corresponding class by standard assignment criteria 
(defined metrics, nearest neighborhood, etc.). Because of its simplicity, FLDA has been 
widely used in the fields of face recognition [19], [18], [1] and automatic speech 
recognition [13] (just to mention a few). Further, FLDA is used in more sophisticated 
discriminant schema, such as Discriminant Component Analysis (DCA) [21], and non-
linear classification using kernels [15], [16]. 

The FLDA scheme encodes distance between clusters and its compactness into the 
between- and within-class scatter matrices. In the solution to the FLDA problem, this set of 
matrices can be found as a part of a generalized eigenvalue problem [4], or as part of a two 
step-wise orthogonalization procedure, as pointed out by Fukunaga [6]. In any case, FLDA 
numerical scheme involves the inversion, either explicitly [4] or implicitly [6], of the 
within-class scatter matrix. Therefore, special attention should be paid to those situations 
where the latter matrix becomes non-invertible, as they turn the scheme ill-posed and lead 



 

to numerical instability. This phenomenon is produced by two main reasons: a low number 
of samples in comparison to the feature space dimensionality, and a low scatter for certain 
directions. 

On one hand, working with a large set of samples is not always possible, and it is a 
requirement rarely met in very high dimensional spaces [17], as it occurs in the framework 
of face recognition [3]. On the other hand, sample distributions with few scatter in some 
dimensions are frequent when directional filter banks are used for feature extraction [5], 
[20] and [8]. Further, low scatter directions are generally related to noise. Hence, they 
constitute a main hindrance in a whitening scheme [6], because they are amplified and lead 
to undesired overfitting [1]. Among the different solutions to the former non-invertibility 
problems ([1],[3], [14], [18], [11]) the most popular are those that use a previous PCA in 
order to discard low scatter directions [1],[18] and [11]. Special care must be taken in this 
step, since FLDA projection space might include directions of small scatter rejected by 
PCA. This dichotomy is explained in [18], where it is shown that PCA is suitable for 
encoding the Most Expressive Features, while FLDA is related to the Most Discriminant 
Features. In those situations where the former spaces are complementary, a previous PCA 
step will eliminate the features that actually should efficiently discriminate. Most 
approaches look for a compromise between the number of dimensions rejected and the 
efficiency of the remaining set to discriminate [11], [12], [10]. Besides, they assume that it 
is achieved in terms of spectral energy criteria, regardless of whether there has been any 
real improvement in the numerical stability. 

Our effort has been focused on characterizing those situations such that FLDA 
presents numerical instability by means of error propagation principles [2]. Following the 
latter, we will establish a stability criterion in terms of output precision, considering that a 
generic procedure is non reliable if little changes in the input data yield a significant 
variation in the resulting response. This ratio of variation is measured by the first 
derivatives of the function encoding such procedure. Therefore, in this paper we will 
develop an explicit formulation for FLDA response in terms of the eccentricity ratio -
related to the eigenvalues magnitude- as well as eigenvectors orientations of the within-
class matrix. On one hand, bounds on the first derivatives serve to delimit the non-stability 
regions (NSR) in the former configuration space, where the FLDA approach yields non 
reliable results. This criterion assures that we can apply the FLDA robustly from a 
numerical point of view. On the other hand, a study of the formula in the two-dimensional 
case yields that not only eigenvalues induce numerical errors, but also orientation of 
eigenvectors. In fact, we will show that the angular orientation of the within-class 
eigenvectors plays a decisive role in numerical stability. Further, we will link our numerical 
stability scheme to PCA dimensionality reduction used as a previous step to FLDA. Our 
novel point of view will provide with an efficient criterion for choosing the number of 
dimensions rejected by PCA. 

The organization of the paper is as follows: Section II presents the general FLDA 
formulation and a geometrical interpretation of the mathematical objects present on it. In 
section III, we describe the propose an explicit formula for FLDA based on geometric 
parameters: the orientation angle of the within-class scatter matrix and the eccentricity ratio 
In the conclusions of section IV, we address the explicit characterization of the stability 
configuration space, based on the angular and eccentricity parameters derived exclusively 
from the within-class scatter matrix for the analysis of numerical stability, for being 
exhaustively presented in future papers.  
 

 
 



 

 

2. Linear Discriminant Analysis Formulation 

Given a set of samples, X, in an n-dimensional feature space that can be labeled into 
c classes, a discriminant analysis seeks for a transformation to another feature space so that 
the classes are best separated. In classical Linear Discriminant Analysis transformations are 
assumed to be linear. Under this assumption, the problem reduces to finding an m-
dimensional subspace, W, and a corresponding linear manifold achieving the optimal 
separability between the projected classes. That is, we look for a matrix Wmxn such that 
we can perform the optimal separation between classes in the subspace where we have the 
projected samples Y = WX. In the case of FLDA, this optimal separation is based in two 
expectations: 1) to maximize distance between class means and 2) to get the concentration 
of all of the samples that belong to the same class around its mean. Applying this 
separability criterion, FLDA looks for the subspace, W, that maximizes the Fisher ratio 
quotient: 

 
 
 

                                                                                     (1) 
 
 

 
where SB is the between-class scatter matrix and SW is the within-class scatter matrix. 
Under the assumption of normal distributions, SB and SW are built as follows: 

 
1.                                                         with sub index i for the mean vector for 

the i-class, is symmetric and positive semi definite. Since it is the sum of c 
outer products of vectors, its rank is at most c-1 and it is quite singular [17] 
 

2.                                                                     with Ni the number of samples for 
class i, is the sum of the scatter matrices for the c-classes. It is symmetric 
and positive semi definite, but when dealing with a large set of samples (in 
comparison to the dimension, n, of the feature space) it is in general positive 
definite, and so, non-singular. 

 
           Notice that once we have the projected data, Y = WX, our classification problem 
becomes a problem of finding minimum distance to the projected mean, nearest neighbor 
assignment, etc. In order to give an interpretation to the ratio J(W), we analyze each of the 
matrices in the next section. 
 

 

2.1 Geometrical interpretation 

The matrix SB, as a linear application, encodes the projection from the n-
dimensional space into an affine variety M generated by the c-classes mean vectors. Its at 
most c-1 non-null eigenvectors define this variety and correspond to the main scatter 
directions of the mean points set. Since the product WtSBW cancels for vectors 
perpendicular to M, the subspace maximizing this quantity is a basis of the vector subspace 
that defines M. Hence, maximizing the numerator of (1) implies giving the projection onto 
the linear variety that maximizes distances between classes mean points. 



 

Statistically, SW is the scatter matrix of a normal distribution equivalent to the one 
build up as the sum of the c-classes scatter matrices. The resulting distribution takes into 
account the scatter of each class, but not their spatial location -this information is 
incorporated in SB-.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. a) Two normal distributions with different orientations and eccentricity ratio. b) Sw geometrical 
interpretation. The axes of the ellipses has been drawn with standard deviation length. 
 
 

Thus, Sw cannot be viewed as the total scatter matrix for all samples, but as a 
weighted mean of the classes scatter, as the graphical representation of Fig. 1b shows. The 
quadratic form associated to SW can be represented by an ellipsoid. As a linear application, 
SW transforms vectors from the unitary sphere onto this associated ellipsoid. Its n non-null 
orthogonal eigenvectors describe the directions of maximum scatter of the distribution 
associated to SW, which coincide with the principal axes of the ellipsoid representing the 
quadratic form. The corresponding eigenvalues, larger for sparser data, are the length of the 
ellipsoid axes. The determinant |WtSWW| is minimum for the scatter direction of lowest 
scatter and maximum for the highest one. Hence, |WtSBW| is minimum for the direction in 
which the data projection minimizes the projected points scatter, and maximum for the 
direction of maximum scatter. 

Notice that the quotient J(.) is maximum for the subspace that maximizes the 
numerator and minimizes the denominator. Consequently, by the former analysis, 
maximizing (1) is equivalent to finding the projection subspace, W, that satisfies a 
compromise between maximizing the distance between class means and comprising the 
projected classes [17]. 

An example of FLDA solution for the case of two normal distributions is shown in 
Fig. 2. The green and blue normal distributions of Fig.2a have different orientations and 
eccentricities. The yellow ellipse represents the distribution associated to SW. The dashed 
line shows the projecting line of the FLDA solution. Plot 2b shows the value of J(.) as a 
function of the solution vector orientation. Notice that, by its own definition as scalar 
products of unitary vectors, both numerator and denominator of J(.) are periodic functions, 
with a phase delay depending on the relative orientations between the principal 
eigenvectors SW and SB. On one hand, the magnitude of |WSBW| is a function of the 
distance between lass means, and its phase delay depends on the orientation of M. On the 
other hand, the magnitude of |WtSWW| is related to the eccentricity ratio of SW, tending to 
be constant for an isotropic –spherical distribution. Its phase delay depends on the 
orientation of the major axis. When the major axis of SW is perpendicular to M, we reach 
the optimal classification outcome for FLDA: maximum between-class distance and 
minimum within-class scatter. 



 

 

 

 

 

 

 

 

 

Fig. 2. a) SW orientation and FLDA response. b) Plot of J(.) vs. angle . 

 

2.2 Fisher eigenvector solution 

It can be proved [4], [9] that J(.) is maximized when the column vectors of SW are 
the eigenvectors of SW

-1SB associated with the largest eigenvalues. In fact, the eigenvalue 
solution  is exactly the value of J(W) = , for the W that maximizes J(.). 

We may find numerical problems with this eigenvalue scheme when SW becomes 
singular due to -i,e., with low sample scatter in some direction-. One possible solution is to 
perform an intermediate dimensional reduction with a principal component analysis [19]. 
PCA seeks for the most representative features in the statistical scatter sense, taking apart 
those features with the lowest statistical scatter. In general, these taken-apart features are 
assumed to be useless for class representation, or simply noisy features. Unfortunately, 
when our class samples are defined in the rejected feature space, the criterion of 
maximizing J(.) will not give optimal solutions in terms of class separability. An alternative 
formulation to cope with SW invertibility problems is to state a generalized eigenvalue 
problem SBW = SWW. 

However, numerical instability is still present, since it comes from both the 
eigenvalue ratio and the orientation of its corresponding eigenvectors. 

In [6] it is shown that solving the generalized eigenvalue problem is equivalent to 
finding the eigenvectors of the transformation Y = A'X, where A = -1/2 . This 
transformation diagonalizes both SW and SB, and can be performed in two steps. The first 
step -namely the whitening transform- transforms SW into the identity matrix applying Y = 
A1'X, where A1= -1/2 , for   and  the eigenvector and eigenvalue matrices of SW. The 
second step applies Z = A2'Y where A2 = , with  the eigenvectors of A1'SBA, 
transforming SB into a diagonal matrix –Sw keeps the identity so it is invariant to orthogonal 
transforms-. We may notice the reader that, in this framework, numerical instability 
problems hide in the  whitening transformation itself rather than in the transformed feature 
domain. Our numerical stability approach applies to FLDA solution based on the primitive 
feature space. 

From now on, we will focus in the qualitative study of FLDA for the 2-class 
classification problem in a two dimensional feature space. The goal is to present the 
solution vector for FLDA as a function of the eccentricity ratio of SW and the orientation of 



 

the main axes of the normal distribution associated. The following section will use this 
result to analyze the situations where FLDA presents non-optimal solutions.  
 

3 Geometrical FLDA Formulation 

 
In the problem of 2 classes, we have rank(SB) = 1, and the solution for the FLDA is 

defined by the unique eigenvector w of non-null eigenvalue , given by the generalized 
eigenvector formulation: 

 
 

(2) 
 
Further, since we can assume that ||w|| = 1 and we work in a 2D space, we have that 

w=(cos , sin ) and, so, solving (2) reduces to finding the angular orientation of w with 
respect to the line connecting the class mean points, M. The main steps in the deduction of 
a formula for , are the following. 

First, since the eigenvalue solution is invariant under orthogonal transforms -see [6] 
for an analysis of its derived consequences-, we can assume, without lost of generality, that 
the line connecting the class means is parallel to the x-axis. This step, that only requires a 
rotation of the main coordinate frame, implies that  
 
 
 
 
 
and that angles (including the solution ) are defined with respect to the x-axis. 
Second, since Sw is symmetric, it can be expressed in diagonal form [7] as: 
 
 
 

                                                                                                                                    (3)           
 
 
where i are the eigenvalues of SW in increasing order ( 1 <= 2),   is the angle of the 
ellipse minor axis and C ; S  are abbreviations for cos  and sin  -see Fig. 3 for a 
graphical representation-. 

Using the above notation, we can express the tangent of the angle solution to (2) in 
terms of the eccentricity ratio of SW, defined by e = 1/ 2, and  by the function: 
 
 
 

                                                                                                    (4) 
 
 
 
 
 
 
 



 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Distributions and angles: The system is rotated to make the line that passes through the mean points 
parallel to the x-axis, the yellow ellipse represents SW,  is the angle of the minor axis of SW and  is the angle 
of w. 

 
Therefore, studding numerical properties of FLDA reduces to analyzing the 

properties of (4) as a function of the two variables (e, ). Defining an stability criterion 
based on this geometrical parameters, as also empirical results based in real world data,  is 
related to our next publications. 

 
 

4 Conclusions 

 
In this paper we have presented a novel formulation for FLDA based on a geometric 

interpretation of the parameters. This formulation takes into account only the angle of 
orientation of the within-class scatter matrix and the eccentricity ratio for the 2-class 
problem in 2D. One of its main advantages is that it relates very closely geometrical 
distribution of data with the mathematical arguments passed to the formula, making more 
clear the interpretation of results. We base our outcome in a deep explanation of 
geometrical and mathematical issues around the Fisher discriminant quotient. The main 
objective of this result is to apply this formulation to the calculus of numerical stability of 
FLDA –work to be done in next papers-. The mathematical development of the formula 
will be deeply presented as an extended publication. This results are useful for poor 
classification performance in computer vision problems –face recognition, speech 
recognition, medical imaging, etc- in order to detect the numerical instability due to the 
high eccentric geometrical distribution of samples sets. 
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