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Abstract 

Hand-drawn symbols can take many different and dis- 
torted shapes from their ideal representation. Then, very 
jlexible methods are needed to be able to handle uncon- 
strained drawings. We propose here to extend our pre- 
vious work in hand-drawn symbol recognition based on 
a bayesian fi-amework and deformable template matching. 
This approach gets jexibility enough to fit distorted shapes 
in the drawing while keeping fidelity to the ideal shape of 
the symbol. In this work we define the similarity measure 
between an image and a symbol based on the distance from 
every pixel in the image to the lines in the symbol. Matching 
is carried out using an implementation of the EM algorithm. 
Thus, we can improve recognition rates and computation 
time with respect to our previous formulation based on a 
simulated annealing algorithm. 

1 Introduction 

Deformable template matching and bayesian inference 
are very well-known techniques which have been applied to 
a wide number of applications in computer vision where 
noise, shape distortion or uncertainty make it difficult to 
identify the objects in an image [ 2 ] .  

In document analysis, and up to now, their application 
has been restricted to hand-written character recognition 
[3, 51. In a previous work [7] ,  we have proposed the ap- 
plication of deformable template matching and bayesian in- 
ference to the recognition of hand-drawn graphic symbols, 
such as those found in many kinds of graphic documents. 
We argue that these techniques are well-suited methods to 
handle noise, imprecision and uncertainty inherent to hand- 
drawing. They can help to overcome some of the drawbacks 
of previous methods for symbol recognition, usually based 
on vectorization, feature extraction and structural matching 
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[l]. These methods decrease their efficiency and robust- 
ness as long as noise and distortion of hand-drawn sym- 
bols increase [6]. In deformable template matching, we 
work over the binary image. Therefore, we avoid errors 
and noise produced by vectorization and we can have more 
complete information. Matching is carried out by deform- 
ing the ideal shape of the symbol to get the best fit to the 
image while keeping some degree of fidelity to that ideal 
shape. Bayesian inference is used to model uncertainty in 
the shape of the symbols. 

In this work, we modify our previous approach introduc- 
ing a new similarity function between the symbol and the 
image based on the distance from every point in the image 
to the lines in the symbol. With this new measure we can 
formulate matching in a probabilistic way and we can solve 
it using an implementation of the EM algorithm. Then, we 
can achieve an stable solution in a lower time and we can 
improve recognition rates. 

2 Bayesian formulation of symbol recogni- 
tion 

Given an input image I and a set of symbols 
{SI, . . . , Sn}, the general problem of symbol recognition 
is stated as the problem of finding the symbol Si which 
maximises the probability P(Si II), i.e., the probability that 
given image I we can identify symbol Si in it. This prob- 
ability can be related, using the development explained in 
[8], to the maximum of this expression: 

where Di is any possible deformation of the ideal shape 
of symbol Si; P(DiISi) is the prior information about the 
symbol and it expresses the probability that deformation 
Di is a valid representation of it penalizing excessive dis- 
tortions; P(IIDi,  Si)  is the likelihood that image I corre- 



sponds to Di and it measures the distance between the im- 
age ,and each of the deformations of the symbol 
Di, the maximum of ( I ) ,  is usually found searching for 

the minimum of the negative log of it: 

f i i  = argmin(-logP(DiISi) - logP(IIDi,Si)) 
Di 

Di 
= argmin (Eint + E,,t) (2) 

The problem of symbol recognition is reduced to the prob- 
lem of minimising an energy function, E,  composed of two 
terms: extemal energy, Ee,tr which is related to likelihood 
and it represents a force which tries to deform the ideal sym- 
bol as much as possible to get the best match to the input 
image, and intemal energy, Eint, which is related to prior 
probability and it represents a force which tries to keep the 
deformed symbol as close as possible to the ideal shape. 
The minimum of E is the equilibrium point between these 
two opposite forces and it corresponds to the shape of the 
symbol that best fits the image with the minimum amount 
of deformation. As the final value of E at this point is re- 
lated to P(SilI), it can be seen as a measure of the degree 
of correspondence between the input image and the symbol. 

3 Definition of energy 

3.1 Prior information 

As we are concemed with the recognition of lineal sym- 
bols we represent the ideal shape of a symbol as a set of 
straight lines, not necessarily connected. We deform the 
shape of the symbol applying two kinds of transformations 
to these lines: global &d local deformations, Global de- 
formations translate, rotate and scale all the lines in the 
same way. They do not change the global shape of the sym- 
bol. Local deformations are generated by translating, rotat- 
ing and scaling each of the lines of the symbol separately. 
They change the global shape of the symbol, adjusting it in 
a natural and intuitive way to the shapes produced by hand- 
drawing. 

Prior probability and internal energy are defined assum- 
ing that each local deformation of every line follows a gaus- 
sian distribution of zero mean over the amount of deforma- 
tion applied to the line, and that all local deformations of 
each line are independent. Then, we get the following ex- 
pression for internal energy: 

+- 
where n is the number of lines in the symbol: t Z i ,  t,;, Bi and 
si are the amount of translation, rotation and scaling applied 
to line i; ut,,, ag, and osi are the standard deviations 
for translation, rotation and scaling for line i; and K is a 
constant. 

Figure 1. Compoments of distance function. 

3.2 Likelihood 

We define the similarity measure between an image and a 
symbol as an explanation measure, i.e, we try to explain all 
the pixels in the image with some nearby line of the symbol. 
In this way, we get the maximum exploration ability as we 
try to deform the symbol to get the best possible fit to all the 
pixels in the image. Because of this property we must seg- 
ment the image in advance to avoid noisy pixels introduced 
by other elements or symbols in the drawing. 

Then, likelihood is defined based on the distance be- 
tween a point and a line. This distance can be expressed, 
as it is shown in figure 1, as the combination of two terms, 
d, and dh,  which can be easily derived from the coordinates 
of the point p and the parameters defining the line 1. We add 
to this definition a factor taking into account the similarity 
in orientation between the symbol line and the line in which 
the image point is located: 

d’(p, Z) = (1 + k ,  . sin2(a - p))  . d ( p ,  Z) (4) 

where LY is the orientation of line 1 and p is the orientation 
of the image at point p ,  measured from the analysis of the 
neighborhood of p ;  k ,  is a factor which controls the influ- 
ence of the orientation difference in the distance function. 

To define likelihood we consider each of the symbol lines 
( I )  as a generator of pixels in the image (p) with a gaussian 
distribution based on d’(p, 1 ) .  Then, each pixel has a global 
probability of being generated equal to the sum of genera- 
tion probabilities for each of the lines. Assuming indepen- 
dence in the probability of every pixel, we get the following 
expression for likelihood: 

n n m  

i=l i=l j=1 

where I stands for the image, S’ for any possible deforma- 
tion of symbol S ,  pi for every pixel in the image, Zj for 
every line in S’ and P(piIZj) is a normal distribution based 
on d’(pi ,  l j ) .  

4 Energy minimisation with the EM algo- 
rithm 

Combining prior information (3) and likelihood (5) and 
following the formulation described in section 2 we get this 
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Figure 2. Aproximation of a line to a set of points: (a) Ini- 
tial configuration. (b) Orientation. (c) Position. (d) Length 

energy function to be minimised: 
n m 

i= l  j=1 

where y is a factor which measures the relative weighting 
between internal and external energy. Higher influence of 
internal energy will derive in more rigid models. 

Minimisation of this function is not a straightforward 
problem, although it can be seen as a problem with incom- 
plete or missing information and then, an implementation 
of the EM algorithm [4] can be used to solve it, reformu- 
lating it as a problem with complete information. Here, the 
missing information is the correct association of each point 
in the image with its generating line. Knowing this infor- 
mation we could reformulate likelihood as the distance of 
each point to its generating line. 

Then, in the expectation step of the algorithm, we can 
estimate association between points and lines from the gen- 
erating probability of each pixel by every line, normalized 
to sum up to 1 for each pixel: 

(7) 

pij  is the probability of correspondence between point pi 
and line l j .  

Now, external energy can be defined as the sum of dis- 
tances between the points in the image and the lines in the 
symbol weighted by the probability of correspondence pij : 

In the maximisation step we must minimise the function 
resulting from intemal and external energy defined in ex- 
pressions 3 and 8. This function can be splitted in inde- 
pendent terms for each of the lines. Then, minimisation is 
done separately for each of them by successively finding the 
orientation, position and length of the line which minimise 
the energy funnction, as it is shown in figure 2. Each of 
these steps can be easily solved by deriving analiticallly the 
contribution of the line to the energy function. 

These two steps are applied iteratively until convergence 
is reached, Le, when the difference in the parameters of lines 
in two successive steps are small enough. At each step, the 
variance used in calculating pij  is decreased based on the 
mean distance between the pixels and the symbol lines. 
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Figure 3. Matching of images (in gray) with their corre- 
sponding symbol (in black). 
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Figure 4. Recognition rate for each symbol. 

Results and discussion 

We have applied this method to the recognition of object 
and dimension symbols that can be found in architectural 
hand-drawn drawings. These symbols must be accurately 
identified to be able to get a complete semantic description 
of the drawing. We have worked with a sample set consist- 
ing of fifty images of each symbol drawn by ten different 
people without any drawing constraints in order to repre- 
sent the greatest number of symbol distortions. 

Figure 3 shows some representative examples of the 
matching for images of all the symbols. In it, we can see 
the different kinds of distortions yielded by hand-drawing. 
They include disconnected lines, non-straight lines, changes 
in orientation of lines, distortions at crossing points or cor- 
ners, etc. The figure illustrates how the ideal model of the 
symbol (in black) is deformed in order to fit the pixels in the 
image (in gray). 

Identification of an image with a symbol is done, as ex- 
plained in section 2 classifying each image with the symbol 
with lowest energy value after matching it with all the sym- 
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I Method 1 1 Method 2 
Obiect Symbols I 96.75% I 85.25% -~ 
Dimension Symbols 
Dimension Symbols (*) 

83% 52% 
96% 88 % 

Table 1. Recognition rates for object and dimension sym- 
hnlo 
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Figure 5. Recognition time for each symbol. 

bok. Figure 4 shows the recognition rates for each symbol 
obtained after applying this criterion to all sample images. 
Table 1 shows the global recognition rates for all the sym- 
bols. It compares recognition rates for the method described 
on this paper (method 1) with results from our pervious ap- 
proach (method 2) [7]. We have signifficantly improved 
them getting a 96.75% of global accuracy for object sym- 
bols. For dimension symbols, accuracy is lower due to the 
similarity among the three arrow symbols as it is shown in 
figure 3. To overcome this problem, we have done an ex- 
periment consisting of taking the three arrow symbols as 
the same symbol and classifying each image only as a bar 
or as an arrow. Results are showed in the last line. Ac- 
cuacy increases to 96%, showing that although the method 
is confused with very similar symbols, it could be used to 
discriminate among different kinds of similar symbols. 

Finally, in figure 5 we analyze the computation time of 
the algorithm. It shows the average time of matching all 
sample images with each symbol. Computational complex- 
ity is approximately linear in the number of lines of the sym- 
bol and computation time is lower than computation time 
with our previous approach. This is due to the fact that en- 
ergy minimisation is easier in this new approach. 

6 Conclusions and open issues 

We have developed a new approach to deformable tem- 
plate matching for symbol recognition which improves our 
previous results in terms of recognition rates, computation 
time and stability of final solution. We have got an 96.75% 
of overall recognition accuracy over a set of 400 unscon- 
strained images of eight symbols with a linear computa- 
tional complexity in the number of lines of the symbol. This 
rate shows the feasibility of deformable template match- 
ing and bayesian inference to handle distortion produced in 
hand-drawn symbols. 

Difference with our previous approach comes from the 
definition of a new similarity measure between an image 
and a symbol. This new measure allows to use the EM 
algorithm to minimize the energy function and therefore, 
stability of final solution is assured and computation time 
decreases. Working with all pixels in the skeleton of the 
image we can avoid a previous vectorization step which can 
introduce noise and errors in the representation of the im- 
age. 

Open issues to be developed include the extension of this 
method to other kinds of primitives apart of straight lines, 
segmentation of the symbols in a whole drawing and vali- 
dation of scalability of the method with a greater number of 
symbols and sample images and with more similar symbols, 
as it is the case of arrow symbols. 
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