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During face-to-face human interaction, nonverbal communication plays a fundamental role. A relevant
aspect that takes part during social interactions is represented by mirroring, in which a person tends to
mimic the non-verbal behavior (head and body gestures, vocal prosody, etc.) of the counterpart. In this
paper, we introduce a computer vision-based system to detect mirroring in dyadic social interactions
with the use of a wearable platform. In our context, mirroring is inferred as simultaneous head noddings
displayed by the interlocutors. Our approach consists of the following steps: (1) facial features extraction;
(2) facial features stabilization; (3) head nodding recognition; and (4) mirroring detection. Our system
achieves a mirroring detection accuracy of 72% on a custom mirroring dataset.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

During face-to-face human interaction, nonverbal commu-
nication plays a fundamental role, as it is used to support the
spoken message and to put special emphasis on certain aspects of
it [1]. Usually, nonverbal communication is manifested through a
multiplicity of behavioral cues including head movements, body
postures/gestures, facial expressions, winks, tone of voice, verbal
accent, and vocal utterances [2]. Sometimes, these cues are also
known as social signals, a term coined by Pentland [3], because
they are an undivided part of our social interaction. He was also
the first one to claim that they could be quantified automatically to
infer from them behavioral patterns in human interactions. The
first attempt to prove this theory was reported in Curhan and
Pentland [4], where the authors tried to predict the behavioral
outcome of employment selection interviews using non-verbal
audio cues. The same approach has also been applied for pre-
dicting salary negotiations [5] and speed-dating conversations [6].
Some research on behavior analysis during social interactions has
focused on different aspects such as the role of participants in
news broadcasts and movies [2,7], the detection of the leadership
role during meetings [8,9], the inference of personality traits
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[10,11], and the simultaneous prediction of a job interview out-
come and personality [12].

A very important aspect that takes part during social interac-
tion is represented by mirroring, i.e., when one interlocutor tries to
mimic the attitude of the counterpart [13], by imitating speech
patterns (accent, voice prosody), facial expressions, postures,
gestures, and idiosyncratic movements. The study of mirroring has
attracted the interest of psychologists for a long time [14]. Back
then, the analysis was based on the manually annotation of
videotapes for listener movements and the prosody of the
accompanying speech. It has not been until recently that the study
of mirroring captured the attention of the Human-Computer
Interaction (HCI) community. A comprehensive recent survey can
be found in Wagner et al. [15]. The mirroring behavior reveals very
important information regarding participants' inter-personal
states and attitudes and it represents a reliable indicator of
cooperativeness and empathy during interaction. Recent research
revealed that people who, even consciously, mimic the behavior of
others activate behavioral strategies which may increase their
chances to achieve their goals [16]. Thus, a social interaction pre-
senting a high number of mirroring behavior is perceived to run
more smoothly and the chances to reach a positive outcome or
agreement increase significantly.

On the other hand, a backchannel is defined as a modality used
by a listener to briefly intervene during the mainstream pre-
sentation given by a speaker in order to show his/her level of
support with respect to the topic being discussed. The definition of
a backchannel is relative and is strongly dependent on the
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particularity of the problem to be tackled. In the audio domain,
backchannels are represented as linguistic vocalization such as
hmmm, aha, uhhh, and yeah. In the visual domain, backchannels
are usually associated with gestures such as smiling, winking, and
head nodding; however, there could be more complex structures,
such as facial expressions. Sevin et al. [17] used multimodal fusion
of audio-visual backchannels in order to trigger the adequate
response in an avatar. In a similar approach the objective was to
compare the realization of the feedback signal in both an avatar
and a physical embodied robot (AIBO) based on audio-visual
backchannels fusion [18]. The improvement of head gestures
detection (nodding in particular) has been done not only con-
sidering the visual information, but also taking into account the
speaking status [19]. In addition, backchannels are usually studied
in the context of turn-taking [20].

As the vast literature on the subject suggests, mirroring is a
complex phenomena [13]. In this paper, we focus on the detection
of head-nodding as a relatively simple non-verbal communication
modality because of its significance as a gesture displayed during
social interactions. According to social psychology, head nodding
plays a very important role during social interactions. Apart from
the obvious function of signaling a yes, head nods are used as
backchannels to display interest, enhance communication or
anticipate the counterpart intention for turn claiming [21,20].
Additionally, head nods can be used during speaker turns to elicit
feedback from the listener [20]. The psychology literature suggests
that the frequency of head nod events in face-to-face interactions
can reveal personal characteristics or even predict outcomes. For
instance, job applicants producing more head nods in employment
interviews have been reported to be often perceived as more
employable than applicants who do not [22,23]. In this sense, the
ability to automatically detect head nods could be useful to build
automatic inference methods of high-level social constructs.
Therefore, in our context, mirroring will be inferred head noddings
displayed by the interlocutors. As our results show even this
reduced perspective of the problem is detect mirroring using a
wearable device.

Our main contributions are:

1. We introduce an approach to extract a visual backchannel ges-
ture (ie., nodding) from videos captured using wearable
devices.

2. We develop a computer vision-based method to detect mirror-
ing automatically, as an identical head gesture in a dyadic
conversation, using a wearable device.

3. We provide a recorded custom database, representing a dyadic
conversation setting, where each of the participants is wearing
a pair of smart glasses. Ground-truth is provided by annotated
head movements captured by a pair of fixed cameras facing
each participant.

To our knowledge, this is the first time smart glasses equipped
with a camera (see Fig. 2) have been used in such a setting.

The rest of the paper is structured as follows. Section 2 is
dedicated to a review of the state-of-the art in the study of mir-
roring behavior both from a psychological and computational
perspective. In Section 3, we describe the experimental setup and
scenario definition used in our study. Section 4 presents our
approach for automatic mirroring detection. In Section 5, we
present the experimental results (both quantitatively and quali-
tatively, in terms of user experiences). Finally, we present our
conclusion and provide guidelines for future work.

2. Related work

Perhaps because the study of mirroring can be approached by
different scientific disciplines, we have found that several terms
have been used to express its meaning. Pentland [24] stated that
“mirroring occurs when one participant subconsciously copies
another participant's prosody and gesture”. This definition has
been widely used to mean the display of similar postures while
people interact with one another [25], and has been exemplified
by situations where when “person A nods or smiles following
person B who has nodded or smiled too” [26]. Interestingly, some
researchers [27,26,28] give equivalent semantic meaning to mir-
roring and other words such as synchrony. However, in this
research we use the definitions stated by Burgoon et al. [29] where
mirroring involves visual behaviors identical in form, while
interpreting synchrony as “a smoothly meshed coordination
between the interactants”. This section provides an overview of
the mirroring behavior from the psychological and computational
perspectives.

2.1. Psychological perspective

The study of mirroring in psychology, as a nonverbal behavioral
process, dates back to the early 1970s. The researchers noticed that
during a conversation, the parties involved exchanged both words
and nonverbal cues, the latter as an effective form to adjust from
each other in order to reach convergence in communication. Thus,
early studies focused upon voice prosody such as accent imitation
[30], vocal intensity [31], pause frequency [32], speaking rate [33],
and speech patterns [34]. However, during a social interaction,
people not only tend to imitate vocal features, but also to match
each other's facial expressions and body gestures. For instance,
LaFrance [35] found that listeners tend to mirror a speaker's pos-
ture whom they find engaging. Another research concluded that
newborn babies [36] and adults [37] imitate facial gestures, while
infants imitate vocalic sounds [38].

A comprehensive analysis of the role of mirroring in social
interactions and how it affects our decisions and behavior can be
found in Guéguen [16]. At a cognitive level, the mirroring behavior
could be explained through the mind-body dualism, according to
which, the mental processes are closely related to the body (the
so-called relationship between thinking and action) [39]. In other
words, the transition between mental states could be understood
based on its analogy with the trajectory of a dynamic system
through a series of space-states. From the point of view of evolu-
tion, mirroring happened long before human developed their
linguistic capabilities, as a mechanism used by people to survive
by helping them to communicate and coordinate better [40]. This
explains why nowadays, due to the significant role played in
modern society by social interaction, mirroring constitutes an
automatic and unconscious act rooted in our brain [41]. Thus, seen
from this social perspective, mirroring arose from the need to
increase the social coherence among the members of a group and
to feel a sense of psychological connection between themselves. In
other words, individuals who were able to mimic each other had
more opportunities to experience this psychological connection
and would have had more probabilities to be kept within the
community. The experimental evidence for this statement is
ample. For instance, levels of mimicry are positively correlated
with sales rates [42], helping behavior to explicit verbal solicita-
tion [43], romantic interest [44], and success in patients under-
going psychotherapy [45]. Based on these research results, in our
study, we establish a link between the detected mirroring and the
level of satisfaction derived from the social interaction. This
highlights the usefulness of the proposed method in sociological
studies.
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2.2. Computational perspective

Although psychological research on role analysis dates back to
the early 1970s, the computational approach for studying mirror-
ing behavior has only recently ed to address this problem. Several
technologies have been used, but the one represented by com-
puter vision occupies a central role. Some comprehensive surveys
on this topic could be found in Delaherche et al. [27] and Wagneret
al. [15]. For the remaining of this section we review only the most
relevant works related to our research.

Ramseyer and Tschacher [46] estimated mirroring based on the
cross-correlation of motion energy features computed over a
temporal window of a few seconds. Here, motion energy is defined
as the difference between consecutive frames and is used as global
value of activity. Their experiments demonstrated that nonverbal
synchrony is higher in genuine interactions contrasted with
pseudo-interactions. A similar approach has been reported with a
more sophisticated analysis [47]. The information provided by
motion energy is converted into histograms, but the image is not
processed holistically. Instead, the region containing the body
parts is divided in sub-regions through quad-tree decomposition
for more efficient feature extraction. Subsequently, they use a
traditional template-based action recognition approach to com-
pute behavior similarities of corresponding temporal windows
(sequence of frames). This approach has been tested upon a cus-
tom dataset containing people engaged in face-to-face
conversation.

The previous approach has been extended by incorporating
also the nonverbal information contained in the audio channel
[48]. More precisely, they extracted from the acoustic signal the
following prosodic features: pitch, intensity, energy and speaking
rate. Following a similar multimodal framework, Delaherche and
Chetouani [49] studied synchrony on a cooperative task where
both partners have to coordinate in order to build an assembled
object. In order to identify the coordination between demonstrator
and experimenter, they used the Pearson correlation and magni-
tude coherence between all pairs of features. For instance, they
found that the lowest percentage of coordination was obtained for
pitch and pause. On the other hand, regarding the visual domain, it
appeared that the image of motion history is the feature that best
captures the synchrony of actions. Also in a multimodal frame-
work, Bilakhia et al. [50] proposed a method to detect mimicry
behavior in audiovisual data. They used a corpus of naturalistic
dyadic interactions, and their approach was based on a temporal
regression model, represented by long short-term memory net-
works, in order to reproduce one subject's behavior from
the other.

Michelet et al. [51] presented an unsupervised method to
estimate mirroring. For this purpose, they computed Bag-of-Words
models [52] around some feature points from the spatio-temporal
analysis of the sequence. Then, similarity between bag-of-words
models is measured with dynamic-time-warping, giving an accu-
rate measure of imitation between partners. A threshold has been
used in order to discriminate between mimicry and non-mimicry.
A similar approach, based on time-series processing, has also been
pursued [53,54]. Cross-spectral and relative phase analysis
revealed that speakers' and listeners'’ movements contained
rhythms that were not only correlated in time but also exhibited
phase synchronization. Furthermore, the synchronization during
these interactive sessions suggests that similar organizational
processes constrain bodily activity in natural social interactions
and, hence, have implications for the understanding of joint action
in general. Barbosa et al. [55] used cross-correlation to measure
the motion coordination of lips and tongue during dyadic con-
versations (based on audio-features). Ashenfelter et al. [56] stu-
died the role of gender in the mimicry behavior. Their approach

was based on a windowed cross-correlation measure to quantify
the symmetry in head movement. The results revealed peaks of
high correlation over narrow time intervals (2 s) and a high degree
of nonstationarity, which was found to be related with the number
of men in a conversation. Messinger et al. [57] studied the face-to-
face interaction between infants and their parents. More con-
cretely, they introduced a machine learning framework to explore
the predictability of infant-mother behavior. For instance, it was
expected that mothers smiled predictably in response to the
smiles of the infants, and the initiation of the smiles of the infants
become more predictable over developmental time.

The smiles have been manually annotated in video data using
Facial Action Coding System (FACS) [58]. Two types of models have
been used: a causal and a temporal one which were characterized
in terms of turn-takings. A turn-taking was defined as a mother or
infant transition that was immediately preceded by the transition
of the other partner. In our case, gestures are recognized using 3D
face models to detect orientation, followed by Hidden Markov
Models to estimate behavior. Mirroring is measured with wearable
cameras that each partner is using during the conversation.

3. Experimental setup and scenario description

In this paper, we address the problem of automatic mirroring
detection in dyadic conversations using a computer-vision based
approach. We have opted for head nodding as a backchannel to
characterize the mirroring behavior. Our choice for computer
vision is due to its non-invasive nature, which increases the
chances of being accepted by people. In our opinion, this is a
requirement in applications related with social interaction analy-
sis, since it is based on people-centered technology. The main
novelty of our approach is that we propose a solution based on
wearable technology, i.e. smart glasses. These glasses possess a
high-definition video-camera located in the bridge between the
two lenses, as depicted in Fig. 2. The choice for this solution is
motivated by the fact that such device offers a first-person per-
spective, compared to the classical fixed cameras, which offer a
third-party perspective.

The experimental setup of our study consisted of two people
engaged in a social interaction, sitting at a table in a face-to-face
conversation, and wearing a pair of smart glasses. Additionally, we
have installed a pair of fixed cameras on the table which face the
participants. The role of these cameras is two-fold: (1) to compare
the performance of the system against stable video and (2) to
extract ground-truth for head nodding detection, since the video
stream provided by the wearable cameras is contaminated with
ego-motion.

We developed a conversational scenario in which a con-
federated psychologist interviewed students looking for academic
orientation and support. The students were informed about the
general aims and procedures of the research being carried out. In
order to create a realistic conversation scenario, the students were
instructed to ask a psychologist for advice regarding academic
orientation and support. The conversations were conducted
around three questions: (1) What to do in a given situation?
(2) What is the psychologist's experience with similar problems?
and, (3) How many sessions are needed? The confederated psy-
chologist answered the questions in the same verbal style but
controlling his nodding gestures in four occurrence levels, which
constitute the experimental cases: Low, the psychologist acts try-
ing not to make head gestures; No-control, the psychologist acts
normally; Confederated, the psychologist acts mirroring the client's
gestures; and Promoted, the psychologist acts trying to display
more gestures than usual (see Fig. 7).
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After the conversation, the students were asked to fill in a
questionnaire in order to evaluate the usefulness (O=bad;
10=excellent) of the conversation in terms of: (1) the attention
(understood as the sustained concentration of the psychologist on
the problem); (2) whether they felt listened to (understood as the
ability of the psychologist to pay attention to the student to hear
what is being said); (3) the psychologist's competence (under-
stood as the psychologist's capacity, skill, or ability to do the job
correctly or efficiently); (4) the level of satisfaction in the inter-
action (understood as the perception of social interaction perfor-
mance or outcome in relation to the expectations). In addition, the
questionnaire included open-ended questions for comments and
recommendations in order to improve the experience. Finally, the
students had an interview to assess the satisfaction of the
interaction.

4. Automatic mirroring detection

For automatic detection of the mirroring behavior, we rely on
the results of our previous work. In Terven et al. [59], we intro-
duced a robust head gesture recognition system based on multiple
Hidden-Markov Models (HMMs). In the current work, we extend
the experimental base of their use to measure their performance
in the context of mirroring behavior (as a consecutive sequence of
head noddings) for a wearable platform. In consequence, the
procedure for automatic detection of mirroring consists of the
following steps: (1) facial features extraction; (2) facial features
stabilization; (3) nodding recognition; and (4) mirroring detection.
For the remaining of the section, we will give a detailed expla-
nation of each of these steps.

4.1. Facial features extraction

Our head gestures recognition is based on non-rigid face
tracking with Active Appearance Models (AAM) [60], in which we
estimate a set of facial features in each frame of a video stream.
AAMs build a model that combines face appearance and shape

Facial
Feature
Extraction

>

Mirroring

Facial
Feature
Stabilization

P N

from a set of aligned training data. For tracking purposes, this
model is fit to the input image in order to find the position of the
face. To fit the AAM to the input image we use the Supervised
Descent Method (SDM) [61], which uses SIFT [62] to describe facial
features (see Fig. 1).

4.2. Facial features stabilization

In order to recognize head gestures correctly from wearable
videos, we need to apply a stabilization step, in order to com-
pensate for ego-motion. Unlike traditional video stabilization
approaches where the whole frame is warped and smoothed in
order to create a stable version of the video [63-65], in our case
we only needed to stabilize the tracked facial features by com-
pensating for camera motion. Fig. 3 illustrates a comparison of the
facial features position from a static camera, a wearable camera,
and the stabilized version. The three graphs display the facial
features changes in the horizontal and vertical directions (orange
and blue respectively). The first graph is from video taken with a
static camera displaying the and end of head gestures (nods) as
red vertical lines. The second graph shows the result of processing
the frames in the same time interval taken with a wearable cam-
era. In this graph, it is possible to appreciate that the facial features
motion is highly contaminated by camera's ego-motion. These

|

Fig. 2. Smart glasses used as wearable technology. The glasses have embedded in
them a high-definition camera in the bridge connecting the two lenses.

Nodding L
Recognition

Detection

Fig. 1. Head-gestures mirroring detection using wearable devices in dyadic interactions. In our method, visual characteristics are extracted from an image stream Z, to both
detect facial features F and compensate for egomotion F'. The latter is necessary because the images are captured using wearable devices. Face activity £ is modeled using a
HMM, which in turn is analyzed temporarily to detect mirroring. The figures are described in detail in Sections 4.1-4.4 in the paper.
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Fig. 3. Stabilized sequence (best seen in color). These graphs show the horizontal and vertical changes in position (in orange and blue respectively) of the head position in
ten seconds of video. The first graph was taken from a static camera where vertical red lines indicate the start and end of a gesture. The second graph shows the same ten
seconds of video from a wearable camera highly affected by camera motion. The third graph shows the stabilized sequence where the camera motion is attenuated while
preserving head motion for gestures recognition. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 4. Hidden Markov model (HMM) designed for head gestures recognition. The
model states correspond to LEFT, RIGHT, STABLE, UP, and DOwWN detected
movements. Each gesture is recognized as the evaluation of a particular sequence
of detected movements on a specifically trained HMM.

abrupt changes can trigger false detections of head gestures. The
third graph shows the results for the same time interval frame
from the wearable video but with motion stabilization. The sta-
bilization process attenuates the camera motion while preserves
the head motion for gesture recognition. Overall, the steps to
stabilize the facial features are the following: (1) detecting and
tracking of background features, (2) fitting a motion model for the
camera, and (3) compensating for camera motion.

We estimate camera motion by detecting and matching SURF
features [66] from the background in consecutive frames. We
discard the SURF features from the face region to prevent the use
of head motion as background motion. More formally, we create a
set of n matched keypoint pairs (x’;_py’t_]) and (x,,y)), for
j=1,...,n, from the previous and current frame. Using this set of
keypoints, we estimate the interframe motion represented as a
two-dimensional linear model with four parameters similar to the
one proposed in Battiato et al. [63]:

Xt =X 1A cos O—y,;_4A sin O+ Ty,

Ye=2X;_1A sin O+y,_4 cos O+Ty, 1
where @ is the rotation angle, T, and T, are the translation in the x
and y directions, and A is a scale parameter. In order to estimate

these parameters, we need at least four equations, so with two
pairs of matched features it is possible to solve the system.

However, due to noise in the coordinates of the features, it is more
convenient to solve an over-constrained system of equations.
Moreover, some of the features may have different motion due to
wrong matches or moving objects in the background. To remove
these outliers from the set of features, we use localized RANSAC as
described by Grundmann et al. [64]. Once we remove the outliers,
we are left with a set of k feature pairs and solve for the four
variables using linear Least Squares to get the motion matrix:

Acos@ —Asin@ Ty
C=|Asin@ Acos® T,|. (2)
0 0 1

The non-stabilized position of the facial features x% =
[x*,y",1]" can be described as the transformation due to the
camera motion C of the static facial feature position x° = [x*,y%, 1]":

XY =Cx°. 3)

In order to obtain a stable position of the facial features we apply
the inverse transformation to the non-stabilize facial features:

X =C'av. )

4.3. Head gestures modeling

Following the approach described in Terven et al. [59], we
created six fully connected Hidden Markov Models (HMMs) (see
Fig. 4). Each HMMs is trained to recognize one of the following
gestures: nodding, shaking, turning left, turning right, looking up,
and looking down. Although we are interested only in nodding
recognition, we still need a mechanism to discriminate between
different gestures. During a conversation, many times, we display
involuntary gestures which are not related with the context of the
social interaction. For this reason, we need a robust nodding
recognition system, which is not affected by false positives.

4.3.1. Training

The goal of the training phase is to estimate the parameters of
the HMMs (state transition and observation probability distribu-
tions) from data with known gestures. For this purpose, we used
the head gestures dataset from Terven et al. [59] consisting in 30
annotated videos taken with a static camera and 10 annotated
videos taken with a wearable camera. In total, this dataset contains
100 samples of each gesture. We used 70% of the gestures for
training and 30% for validation. Each gesture in the training set is
translated into a sequence of values containing the vertical and
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Fig. 5. Horizontal and vertical changes for typical nodding and shaking sequences. Solid lines represent the horizontal movement, dotted lines represent the vertical
movement. (a) Motion changes in pixels for a nodding gesture. (b) Motion changes in pixels for a shaking gesture.

horizontal changes in consecutive frames. Fig. 5 shows a typical
nodding and shaking sequences from our database. From these
graphs, we see that a nodding gesture exhibits larger changes in
the vertical direction than in the horizontal direction. Conversely,
a shaking gesture exhibits larger changes in the horizontal direc-
tion than in the vertical direction. These clear distinctions make it
easier to extract simple movements from the time series.

We defined five observation movements: STABLE, UP, DOWN,
LEFT, and RIGHT. Each of these is coded with a number from 1 to
5. Then, for each training sequence, we extracted the observations
from the horizontal and vertical changes using the following
procedure: let Ax represent horizontal change in two consecutive
frames. Likewise, Ay represents vertical change in two consecutive
frames. If | Ay|>| Ax| then the observation is UP or DowN (i.e. 2 or
3) depending on the sign. Also if | Ax|>| Ay| then the observation
is LEFT or RIGHT (ie. 4 or 5) depending on the sign. If none of
these conditions are true, the observation is declared as stable.
After this procedure, we are left with a sequence of values. For
example, a nodding gesture is represented as a sequence of
observations in the form (1,2,2,1,3,3,1) after removing the
STABLE repetitions. This example sequence stands for a STABLE
observation followed by up then sTaBLE followed by pown. To
select the optimal threshold for discriminating between vertical
and horizontal movements (the > threshold), we tested different
models in the validation set (each model with a different thresh-
old). For each model, we calculated precision and recall and picked
the model with the highest F-score.

4.3.2. Recognition

Given an observation sequence extracted from video, the goal
of recognition is to determine which one of the six HMMs is more
likely to have generated the sequence. We used the Baum-Welch
algorithm [67] to obtain the probabilities of the observation
sequence given in each model. To determine the gesture, we
selected the model with the highest probability. The head gesture
recognition procedure is applied to the videos of both participants
(both videos are synchronized in time) providing the following
information: (1) type of gesture, (2) frame, and (3) end frame of
each gesture.

4.4. Mirroring detection

Following an approach similar to Feese et al. [68], but mea-
suring mirroring in both directions, we define two events: Person
A is mirroring Person B or (m.AB); and Person B is mirroring Person
A or (mBA). To count an mAB event, person A needs to start
displaying gesture & after person B started and within a time At
after person B stopped displaying gesture &. In case that person .A
displays £ multiple times while 3 is displaying &, only one event is
counted. Similarly, a mBA event is triggered when person B starts
displaying gesture & after person A started and within A after

person A stopped displaying gesture £. Gestures repetitions are
treated the same way. More formally, given a sequence of gestures

gf NE of person 4, the start and end times of each gesture is given

by t; (gft and t» (gf) respectively. An mAB event is triggered if
(following Feese et al. [68]):

g'=gf,
ti(g) > t1 ().
t(g) <ty (gf) AL (5)

Fig. 6 shows a fragment of 33 s from one of the videos in our
dataset. The top row depicts the nodding gestures performed by
person .A. The middle row depicts the nodding gestures performed
by person B. Finally, the bottom row, depicts the mirroring
behavior. The first three mirroring behaviors are triggered by the
A person. As we could see in the first event of this sequence,
person A mirrors person B after person B stopped displaying the
nodding gesture, but within a predefined window At. The other
mirror events occur just after person B started the nodding ges-
ture. The fourth mirroring behavior is due to the person's B
response to the nodding gesture triggered by B. The window At is
heuristically determined taken into consideration the analysis of
our dataset where the average elapse time between gestures is
136s.!

5. Experimental results

In this section, we first offer a detailed description of the col-
lected dataset. After that, we report the performance of automatic
mirroring detection and the performance in a real-world experi-
ment. The experiment measures linear relationships between
multiple scores of a social interaction and mirroring (ground truth
and automatically detected).

5.1. Mirroring dataset

Based on the scenario presented in Section 3, we created a
mirroring dataset consisting of 48 sessions of three minutes each,
on average. The sessions were divided in four levels of mirroring
(Low, No-control, Confederated, Promoted) of the confederated
psychologist as described in Section 3. Fig. 7 shows the distribu-
tion of the controlled gestures in each case. After performing an
Analysis of Variance test (ANOVA), we found significant differ-
ences between the Low and all the other cases with p <0.01, and
between No-control and Promoted cases with p=0.029. However,
we found no significant difference between the No-control and

! This estimated time could help as a reference value for a HCI system with the
purpose to provide timely feedback to the user.

Please cite this article as: J.R. Terven, et al., Head-gestures mirroring detection in dyadic social interactions with computer vision-based
wearable devices, Neurocomputing (2015), http://dx.doi.org/10.1016/j.neucom.2015.05.131



http://dx.doi.org/10.1016/j.neucom.2015.05.131
http://dx.doi.org/10.1016/j.neucom.2015.05.131
http://dx.doi.org/10.1016/j.neucom.2015.05.131

J.R. Terven et al. / Neurocomputing i (REER) ERE-REE 7

T

1

e ll——l—-i ~ - _-I--i
i | I I I
Iel | Ial I Isll |s=
I || I I S I | S B I
Bl
|
1 1 I 1 1 1 1 I I
1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Frames

Fig. 6. Mirroring detection. Here we illustrate how the mirroring detection takes place. Rows one (red) and two (blue) show the number of frames when gestures from either
person A or person B occur. Note that there is a fixed interval of time dt when the mirroring effect may take place. The third row displays the occurrence of mirroring. In
frames 1050, 1210, and 1690 person .4 mirrored person B (orange). In frame 1900, person B mirrored person A (purple). (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this paper.)
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Fig. 7. Experimental cases displayed by the confederated psychologist. We show
the distribution of gestures by case Low: the psychologist acted trying to make no
head gestures. No-control: The psychologist acted naturally. Confederated: the
psychologist acted mirroring the client's gestures. Promoted: the psychologist acted
displaying more gestures than usual.

Confederated and also no significant difference between Con-
federated and Promoted. This lack of difference between adjacent
cases may indicate a smooth transition between these classes.

To avoid biased results using the same person in different
experimental conditions, we used a different person acting as
student for each session. The sample size used for testing the
algorithm described in Section 4 corresponds to the number of
mirroring events in the whole experiment: 273 for the participants
and 175 for the psychologist.

Our inclusion criteria consisted of the following requirements:
(1) being at least 18 years old and (2) signing a participation
agreement. The sample consisted of 48 volunteers (50% women),
ranging from 18 to 44 years (1 =21.00, 6=4,45), and college stu-
dents (29.2% majoring in sociology, 25% in politics, 18.8% in
architecture, 10.4% in engineering,6.3% in journalism, 4.2% in
business, 4.2% in mathematics, and 2.1% in nursing).

We recorded each session with two static HD cameras and two
wearable cameras. For the static cameras, we used Microsoft
LifeCam Studio cameras fixed on the table looking at each parti-
cipant. For wearable cameras, we used Pivothead glasses. After
recording each session, we edited the four videos in order to

synchronize the gestures in all the videos. Fig. 8 shows a snapshot
of each synchronized video. Three trained sociology students
annotated the starting and ending times of the nodding gestures
in the videos using ELAN Linguistic Annotator [69]. These anno-
tations served as gestures' ground truth and we used them to
calculate the mirroring ground truth following the approach
described in Section 4.4,

5.2. Automatic mirroring detection

The mirroring detection algorithm is based on head gestures
recognition. For this reason, we address first the results related to
this latter aspect. Fig. 9 shows the precision and recall curves of
the head gestures and the mirroring detection algorithms for both,
the static and wearable camera videos. We obtained these curves
by changing the sensibility of the observation (| Ay|s>|Ax| and
| Ax|>| Ay|) used for training the head gestures recognition
described in Section 4.3.1. When sensibility varies, this has two
effects: on one side, if the system is very sensible it will achieve
high recall but low precision; on the other side, if the system is
less sensible it will achieve higher precision but low recall. To find
the optimal sensibility, we use the F-score defined as
F =2 x (precision x recall)/(precision +recall).

Fig. 9(a) shows that the performance of the gestures recogni-
tion in the static-camera videos is higher than the performance in
the wearable-camera videos. This is explained in terms of the ego-
motion residuals, in spite of the video stabilization step. We have
identified two main sources of miss detections or false negatives:
(1) fast changes in head motion cause head tracking losses and
(2) the stabilization algorithm smooth out subtle gestures. In Fig. 9
(b) we see that the performance of mirroring detection is affected
by the performance of the head gestures recognition. Table 1
shows the precision and recall values of mirroring detection for
each of the four experimental cases. We can see that the perfor-
mance is not only affected by the type of camera but also by the
amount of head gestures occurring in each case.

5.2.1. Real-world performance

Precision-Recall curves show us the performance of the system
as a function of true detections (true positives), false detections
(false positives), and miss-detections (false negatives). However,
how does this performance affect a real-world situation? For this,
we analyze the data gathered from questionnaires that each par-
ticipants answered after the session, and performed multiple
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Fig. 8. Session videos. Here we illustrate the field of view while recording the videos. The top row shows an example frame from the wearable cameras. The bottom row
shows an example frame from the static cameras. A video showing a single session is available at http://youtu.be/Ru7QSQVSu5s.

Precision

Recall

Precision

Recall

Fig. 9. Performance curves. Solid lines represent the performance using the static cameras, dotted lines represent the performance using the wearable cameras. (a) Precision

and recall of head gestures recognition. (b) Precision and recall of mirroring detection.

Table 1
Case specific precision and recall measures of mirroring detection in the static-
camera videos and wearable-camera videos.

Case Static camera Wearable camera

Precision  Recall F-score Precision Recall F-score
Low 65.4 76.4 70.47 524 55.5 53.90
No-control 67.1 77.8 72.05 54.6 57.9 56.20
Confederated  68.5 78.2 73.02 553 59.6 57.37
Promoted 68.9 79.3 73.73 55.8 60.2 57.91

correlation tests to determine linear relationships between the
amount of gestures or mirroring from ground truth and the scor-
ing of the interaction. Then, we use the automatic detections in
both, the static and wearable cameras instead of the ground truth
to determine if the correlations hold. Table 2 shows the correla-
tions between ground truth gestures, mirroring, and the scoring in
the interaction. .4 Nods refer to participant's nodding, B Nods refer
to psychologist's nodding, m AB, is the client's mirroring, and m
BA is the psychologist's mirroring. r is the Pearson correlation and
p is the statistical significance. For these tests, we use a sig-
nificance level of @ = 0.05.

Table 2
Pearson Correlation r results between ground truth head nods and mirroring and
the scoring of the interaction.

Scores A Nods B Nods m AB m BA

r p r p r p r p
Attention —-0.08 057 0.09 055 0.04 079 019 0.20
Listening -016 027 011 045 0.00 099 -003 0.82
Satisfaction ~ 0.11 045 029 0.04 026 0.08 0.34* 0.02
Competence  0.08 060 0.28 0.05 023 011 040 0.00

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

Table 2 shows three statistical significant relationships marked
with s: (1) there is significant small positive relationship between
the amount of B nods (i.e. psychologist's nods) and the level of
satisfaction in the interaction, r(46) = 0.29,p = 0.04; (2) there is a
stronger positive relationship between the amount of mBA mir-
roring (i.e. psychologist mirroring participants) and both, the level
of satisfaction in the interaction r(46) = 0.34, p=0.02, and (3) the
competence of the psychologist perceived by the participants
r(46)=0.40, p=0.004. However, the received attention and
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Table 3
Pearson Correlation r results between the automatically detected mirroring from
the static and wearable cameras and the scoring of the interaction.

Scores Static cameras Wearable cameras

mAB mBA mAB mBA

r p r p r p r p
Attention 0.02 0.88 019 018 0.04 0.82 012 0.50
Listening -0.00 095 -001 091 -011 052 -025 0.16

Satisfaction 0.25 0.09 0.34* 0.02 025 0.16 027 012
Competence 023 011 0.39* 0.00 027 012 0.40* 0.02

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

listening do not seem to be correlated neither with head nodding
nor mirroring.

We repeat these tests using the automatically detected gestures
and mirroring events from the static-camera videos and the
wearable-camera videos. The small positive correlation between
the amount of B nods and the level of satisfaction in the interac-
tion was lost due to false negatives. However, the two significant
correlations that relate mirroring with satisfaction and compe-
tence hold when using automatically detected mirroring from the
static cameras and the correlation between the mirroring and
competence also hold when using automatically detected mirror-
ing from the wearable cameras. Table 3 shows these results.

6. Discussion

Egocentric vision, i.e. computer vision embedded in wearable
devices, made possible by the miniaturization of video cameras,
opened a new dimension in computer vision applications. Thanks
to it, we are able now to address the same classic problems from a
fresh perspective. First-person perception is very different from the
previous third-party, represented by cameras located in our
environment. For instance, objects and events do not appear iso-
lated in the scene, but they could be analyzed in the user's context.
For example, a particular object of interest for the user will be
well-positioned in the camera's field of view, thus making the
automatic image processing algorithms more robust and easier to
overcome challenges represented by poor illumination, cluttered
background, low image resolution, and so on.

Our choice for smart glasses is motivated by the need to have a
user-centered perceiving device that resembles the point-of-view
of a normal sighted person, which is a significant requirement for
social interaction. Other existing wearable solutions (e.g., Sense-
Cam [70], or more recent Narrative Clip [71]) present the dis-
advantage that they should be hung around the neck, such that the
camera is at chest level. This presents the impediment that they
look always forward and capture images which are not related
with what the person is looking at in a given moment.

From the perspective of the use of smart glasses for automatic
social interaction analysis, several attempts have been performed.
Krishna et al. [72] created a wearable system for face recognition
which is robust to different face orientations and changes in illu-
mination conditions. Gade et al. [73] proposed a robust person
localization system based on the same technological platform.
Fathi et al. [74] proposed a wearable system for the long-term
analysis of social interactions. During one-day experiment, they
tried to identify the relative head poses of nearby persons in dif-
ferent settings: street, amusement park and social events. The
location and orientation of faces are estimated and used to com-
pute the line of sight for each face. The context provided by all the

faces in a frame is used to convert the lines of sight into locations
in space to which individuals attend.

We believe that our solution could extend the use of computer-
vision based wearable devices to the field of assistive technology.
Having a system that could provide an automatic analysis of non-
verbal communication during social interaction, would be of great
benefit for people with visual impairment or suffering from the
Autism Spectrum Disorder (ASD). Although, currently, the solution
we propose is for mirroring detection only, it has the potential to
be adapted and enhanced with new functionalities in order to
serve as an assistive technology for the categories of people
mentioned before. Perhaps, our approach could complement other
wearable devices developed to address this problem [75].

7. Conclusion and future work

In this paper, we presented a computer vision-based approach
for automatic detection of mirroring in dyadic social interactions
using wearable devices. We have inferred the mirroring from
visual backchannels represented by head-noddings. The method
has been validated on a custom mirroring dataset. We have pre-
sented a thoroughly quantitative evaluation of users' experiences
for the method described. Our experiments showed a significant
correlation between the amount of mirroring and participants'
satisfaction during the social interaction.

Regarding future work, we have identified three directions.
First, we will look for an improved video stabilization algorithm in
order to increase the recognition performance of head noddings.
Second, we will extend the set of behaviors that our system is able
to mimic in terms of head gestures and facial expressions. Third,
we will be looking to test our approach in a real-world application.
Motivated by the positive results obtained from our qualitative
analysis, we will target most likely the domain of assistive
technology.

Ethics during the study

This study followed ethical standards as stipulated by the
American Psychological Association [76]. An informed consent
process was held. Confidentiality and person's anonymity were
maintained at all times. All video and audio recordings were done
with participant’s written authorization.

Acknowledgements

This work was partially supported by FOMIX GDF-CONACYT
under Grant no.189005, by IPN-SIP under Grant no. 20150281, by
UCMexus, and by MINECO Grants TIN2013-41751 and TIN2013-
49982-EXP, Spain. Juan Ramén Terven was partially supported by
Tecnolégico Nacional de México and CONACYT. The authors are
grateful with Roy Rajan for his comments to the document. Joa-
quin Salas is on sabbatical leave at FI-UAQ supported by CONACYT
under Grant 234093.

References

[1] M. Knapp, J. Hall, Nonverbal Communication in Human Interaction, Cengage
Learning, Boston, USA, 2009.

[2] A. Vinciarelli, M. Pantic, H. Bourlard, Social signal processing: survey of an
emerging domain, Image Vis. comput. 27 (12) (2009) 1743-1759.

[3] A. Pentland, Social signal processing, IEEE Signal Process. Mag. 24 (4) (2007)
108-111.

Please cite this article as: J.R. Terven, et al., Head-gestures mirroring detection in dyadic social interactions with computer vision-based
wearable devices, Neurocomputing (2015), http://dx.doi.org/10.1016/j.neucom.2015.05.131



http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref1
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref1
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref2
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref2
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref2
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref3
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref3
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref3
http://dx.doi.org/10.1016/j.neucom.2015.05.131
http://dx.doi.org/10.1016/j.neucom.2015.05.131
http://dx.doi.org/10.1016/j.neucom.2015.05.131

10 J.R. Terven et al. / Neurocomputing i (REEE) ERE-EEE

[4] J. Curhan, A. Pentland, Thin slices of negotiation: predicting outcomes from
conversational dynamics within the first 5 min, J. Appl. Psychol. 92 (3) (2007)
802-811.

[5] R. Caneel, Social signaling in decision making, Master Thesis, MIT, 2005.

[6] A. Madan, R. Caneel, A. Pentland, Voices of attraction, in: Proceedings of the
Augmented Cognition, 2005, see TR584, (http://hd.media.mit.edu).

[7] C. Weng, W. Chu, ]. Wu, Movie analysis based on roles' social network, in:
International Conference on Multimedia and Expo, 2007, pp. 1403-1406.

[8] B. Raducanu, D. Gatica-Perez, Inferring competitive role patterns in reality TV
show through nonverbal analysis, Multimed. Tools Appl. 56 (1) (2012)
207-226.

[9] D. Sanchez-Cortes, O. Aran, M. Schmid-Mast, D. Gatica-Perez, Identifying
emergent leadership in small groups using nonverbal communicative cues, in:
International Conference on Multimodal Interfaces, 2010, Article 39.

[10] J. Staiano, B. Lepri, N. Aharony, F. Pianesi, N. Sebe, A. Pentland, Friends don't lie
- inferring personality traits from social network structure, in: Ubicomp, 2012,
pp. 321-330.

[11] B. Lepri, S. Ramanathan, K. Kalimeri, J. Staiano, F. Pianesi, N. Sebe, Connecting
meeting behaviour with extraversion: a systematic study, IEEE Trans. Affect.
Comput. 3 (4) (2012) 443-455.

[12] L. Nguyen, A. Marcos-Ramiro, M. Marron-Romera, D. Gatica-Perez, Multimodal
analysis of body communication cues in employment interviews, in: Inter-
national Conference on Multimodal Interfaces, 2013, pp. 437-444.

[13] T. Chartrand, J. Bargh, The Chameleon effect: the perception-behavior link and
social interaction, J. Personal. Soc. Psychol. 76 (6) (1999) 893-910.

[14] W. Condon, W. Ogston, Speech and body motion synchrony of the speaker-
hearer, in: The Perception of Language, Charles E. Merrill, 1971, pp. 150-184.

[15] P. Wagner, Z. Malisz, S. Kopp, Gesture and Speech in Interaction: An Overview,
vol. 57, 2014, pp. 209-232.

[16] N. Guéguen, C. Jacob, A. Martin, Mimicry in social interaction: its effect on
human judgement and behavior, Eur. ]. Soc. Sci. 8 (2) (2009) 253-259.

[17] E. de Sevin, E. Bevacqua, S. Pammi, C. Pelachaud, M. Schréder, B. Schuller, A
multimodal listener behavior driven by audio input, in: International Work-
shop on Interacting with ECAs as Virtual Characters, 2010.

[18] S. Al Moubayed, M. Baklouti, M. Chetouani, T. Dutoit, A. Mahdhaoui, J. Martin,
S. Ondas, C. Pelachaud, ]. Urbain, M. Yilmaz, Generating robot/agent back-
channels during a storytelling experiment, in: [EEE International Conference
on Robotics and Automation, 2009, pp. 3749-3754.

[19] L. Nguyen, ].-M. Odobez, D. Gatica, Using self-context for multimodal detection
of head nods in face-to-face interactions, in: International Conference on
Multimodal Interfaces, 2012, pp. 289-292.

[20] J. Allwood, L. Cerrato, A study of gestural feedback expressions, in: Nordic
Symposium on Multimodal Communication, 2003, pp. 7-22.

[21] U. Hadar, T. Steiner, F. Clifford, Head movement during listening turns in
conversation, Nonverbal Behav. 9 (4) (1985) 214-228.

[22] R. Gifford, C. Ng, M. Wilkinson, Nonverbal cues in the employment interview:
links between applicant qualities and interviewer judgments, Appl. Psychol.
70 (4) (1985) 729-736.

[23] T. McGovern, B. Jones, S. Morris, Comparison of professional versus student
ratings of job interviewee behavior, J. Couns. Psychol. 26 (2) (1979) 176-179.

[24] A. Pentland, Socially aware, Comput. Commun. Comput. 38 (3) (2005) 33-40.

[25] S. Feese, B. Arnrich, G. Troster, B. Meyer, K. Jonas, Detecting posture mirroring
in social interactions with wearable sensors, in: IEEE International Symposium
on Wearable Computers, 2011, pp. 119-120.

[26] X. Sun, K. Truong, A. Nijholt, M. Pantic, Automatic visual mimicry expression
analysis in interpersonal interaction, in: Computer Vision and Pattern
Recognition Workshops, 2011, pp. 40-46.

[27] E. Delaherche, M. Chetouani, A. Mahdhaoui, C. Saint-Georges, S. Viaux,
D. Cohen, Interpersonal synchrony: a survey of evaluation methods across
disciplines, IEEE Trans. Affect. Comput. 3 (3) (2012) 349-365.

[28] K. Bousmalis, M. Mehu, M. Pantic, Towards the automatic detection of spon-
taneous agreement and disagreement based on nonverbal behaviour: a survey
of related cues, databases, and tools, Image Vis. Comput. 31 (2) (2013)
203-221.

[29] J. Burgoon, L. Stern, L. Dillman, Interpersonal Adaptation: Dyadic Interaction
Patterns, Cambridge University Press, USA, 1995.

[30] H. Giles, Accent mobility: a model and some data, Anthropol. Linguist. 15
(1973) 87-105.

[31] M. Natale, Convergence of mean vocal intensity in dyadic communications as a
function of social desirability, ]. Personal. Soc. Psychol. 32 (1975) 790-804.

[32] J. Capella, S. Planalp, Talk and silence sequences in informal conversations. III.:
Interspeaker influence, Hum. Commun. Res. 7 (1981) 117-132.

[33] R. Street, Speech convergence and speech evaluation in fact-finding interview,
Hum. Commun. Res. 11 (1984) 149-169.

[34] S. Goldinger, Echoes of echoes: an episodic theory of lexical access, Psychol.
Rev. 105 (1998) 251-279.

[35] M. LaFrance, Posture mirroring and rapport, in: M. Davis (Ed.), Interaction
Rythms: Periodicity in Communicative Behavior, Human Sciences Press, New
York, USA, 1982, pp. 279-298.

[36] A. Meltzoff, M. Moore, Newborn infants imitate adult facial gestures, Child
Dev. 54 (1983) 702-709.

[37] G. McHugo, ]. Lanzetta, D. Sullivan, R. Masters, Emotional reactions to a poli-
tical leader's expressive displays, Journal of Personality and Social Psychology
49 (1985) 1513-1529.

[38] P. Kuhl, A. Meltzoff, Infant vocalizations in response to speech: vocal imitation
and developmental change, ]. Acoust. Soc. Am. 100 (1996) 2425-2438.

[39] D. Richardson, R. Dale, K. Shockley, Synchrony and swing in conversation:
coordination, temporal dynamics and communication, in: Embodied Com-
munication, 2008, pp. 75-93.

[40] J. Lakin, V. Jefferis, C. Cheng, T. Chartrand, The Chameleon effect as social glue:
evidence for the evolutionary significance of nonconscious mimicry, J. Non-
verbal Behav. 27 (2003) 145-162.

[41] J. Lakin, T. Chartrand, Using nonconscious behavioral mimicry to create
affiliation and rapport, Psychol. Sci. 14 (4) (2003) 334-339.

[42] C. Jacob, N. Guéguen, A. Martin, G. Boulbry, Retail salespeople's mimicry of
customers: effects on consumer behavior, J. Retail. Consum. Serv. 18 (5) (2011)
381-388.

[43] N. Guéguen, A. Martin, S. Meineri, Mimicry and helping behavior: an eva-
luation of mimicry on explicit helping request, ]J. Soc. Psychol. 151 (1) (2011)
1-4.

[44] S. Farley, Nonverbal reactions to an attractive stranger: the role of mimicry in
communicating preferred social distance, J. Nonverbal Behav. 38 (2) (2014)
195-208.

[45] E. Ramseyer, W. Tschacher, Nonverbal synchrony of head- and body-
movement in psychotherapy: different signals have different associations
with outcome, Front. Psychol. 5 (979) (2014) 1-9.

[46] F. Ramseyer, W. Tschacher, Nonverbal synchrony in psychotherapy: coordi-
nated body movement reflects relationship quality and outcome, J. Consult.
Clin. Psychol. 79 (3) (2011) 284-295.

[47] X. Sun, K. Truong, A. Nijholt, M. Pantic, Automatic visual mimicry expression
analysis in interpersonal interaction, in: Computer Vision and Pattern
Recognition Workshops, 2011, pp. 40-46.

[48] X. Sun, K.P. Truong, M. Pantic, A. Nijholt, Towards visual and vocal mimicry
recognition in human-human interactions, in: International Conference on
Systems, Man, and Cybernetics, 2011, pp. 367-373.

[49] E. Delaherche, M. Chetouani, Multimodal coordination: exploring relevant
features and measures, in: International Workshop on Social Signal Proces-
sing, 2010, pp. 47-52.

[50] S. Bilakhia, S. Petridis, M. Pantic, Audiovisual detection of behavioural mimi-
cry, in: International Conference on Affective Computing and Intelligent
Interaction, 2013, pp. 123-128.

[51] S. Michelet, K. Karp, E. Delaherche, C. Achard, M. Chetouani, Automatic imi-
tation assessment in interaction, Lecture Notes in Computer Science, 7559,
Springer, Berlin, Heidelberg (2012), p. 161-173.

[52] L. Fei-fei, P. Perona, A. Bayesian, Hierarchical model for learning natural scene
categories, Comput. Vis. Pattern Recognit. 2 (2005) 524-531.

[53] R. Schmidt, S. Morr, P. Fitzpatrick, M. Richardson, Measuring the dynamics of
interactional synchrony, ]. Nonverbal Behav. 36 (4) (2012) 263-279.

[54] A. Paxton, R. Dale, Frame-differencing methods for measuring bodily syn-
chrony in conversation, Behav. Res. Methods 45 (2) (2013) 329-343.

[55] V. Barbosa, M. Oberg, R. D'echaine, E. Vatikiotis-Bateson, An instantaneous
correlation algorithm for assessing intra and inter subject coordination during
communicative behavior, in: Workshop on Modeling Human Communication
Dynamics, 2010, pp. 38-41.

[56] K. Ashenfelter, S. Boker, J. Waddell, N. Vitanov, Spatiotemporal symmetry and
multifractal structure of head movements during dyadic conversation, J. EXp.
Psychol. 35 (4) (2009) 1072-1091.

[57] D. Messinger, P. Ruvolo, N. Ekas, A. Fogel, Applying machine learning to infant
interaction: the development is in the details, Neural Netw. 23 (8) (2010)
1004-1016.

[58] P. Ekman, W. Friesen, The Facial Action Coding System: A Technique for The
Measurement of Facial Movement, Consulting Psychologists Press, Palo Alto,
USA, 1978.

[59] ]. Terven, J. Salas, B. Raducanu, Robust head gestures recognition for assistive
technology, Lecture Notes in Computer Science, 8495, Springer International
Publishing (2014), p. 152-161.

[60] T.E. Cootes, G.J. Edwards, CJ. Taylor, Active appearance models, IEEE Trans.
Pattern Anal. Mach. Intell. 23 (6) (2001) 681-685.

[61] X. Xiong, F. De la Torre, Supervised descent method and its applications to face
alignment, in: IEEE Conference on Computer Vision and Pattern Recognition,
2013, pp. 532-539.

[62] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J.
Comput. Vis. 60 (2) (2004) 91-110.

[63] S. Battiato, G. Gallo, G. Puglisi, S. Scellato, SIFT features tracking for video
stabilization, in: International Conference on Image Analysis and Processing,
2007, pp. 825-830.

[64] M. Grundmann, V. Kwatra, 1. Essa, Auto-directed video stabilization with
robust L1 optimal camera paths, in: IEEE Conference on Computer Vision and
Pattern Recognition, 2011, pp. 225-232.

[65] Y. Matsushita, E. Ofek, W. Ge, X. Tang, H.-Y. Shum, Full-frame video stabiliza-
tion with motion inpainting, IEEE Trans. Pattern Anal. Mach. Intell. 28 (7)
(2006) 1150-1163.

[66] H. Bay, A. Ess, T. Tuytelaars, L.Van. Gool, Speeded-up robust features (SURF),
Comput. Vis. Image Underst. 110 (3) (2008) 346-359.

[67] L. Rabiner, A tutorial on hidden Markov models and selected applications in
speech recognition, Proc. IEEE 77 (2) (1989) 257-286.

[68] S. Feese, B. Arnrich, G. Troster, B. Meyer, K. Jonas, Quantifying Behavioral
Mimicry by Automatic Detection of Nonverbal Cues from Body Motion, in:
IEEE International Conference on Social Computing, 2012, pp. 520-525.

[69] P. Wittenburg, H. Brugman, A. Russel, A. Klassmann, H. Sloetjes, Elan: a pro-
fessional framework for multimodality research, in: Proceedings of Language
Resources and Evaluation, vol. 2006, p. 5.

Please cite this article as: J.R. Terven, et al., Head-gestures mirroring detection in dyadic social interactions with computer vision-based
wearable devices, Neurocomputing (2015), http://dx.doi.org/10.1016/j.neucom.2015.05.131



http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref4
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref4
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref4
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref4
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref4
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref4
http://www.hd.media.mit.edu
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref8
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref8
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref8
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref8
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref11
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref11
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref11
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref11
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref13
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref13
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref13
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref16
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref16
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref16
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref21
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref21
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref21
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref22
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref22
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref22
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref22
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref25263
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref25263
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref25263
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref24
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref24
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref27
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref27
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref27
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref27
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref28
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref28
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref28
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref28
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref28
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref29
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref29
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref30
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref30
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref30
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref31
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref31
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref31
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref32
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref32
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref32
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref33
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref33
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref33
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref34
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref34
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref34
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref35
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref35
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref35
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref35
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref36
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref36
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref36
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref38
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref38
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref38
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref40
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref40
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref40
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref40
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref41
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref41
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref41
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref42
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref42
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref42
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref42
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref43
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref43
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref43
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref43
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref44
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref44
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref44
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref44
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref45
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref45
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref45
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref45
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref46
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref46
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref46
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref46
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref51
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref51
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref51
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref51
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref52
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref52
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref52
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref53
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref53
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref53
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref54
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref54
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref54
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref56
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref56
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref56
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref56
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref57
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref57
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref57
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref57
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref58
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref58
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref58
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref59
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref59
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref59
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref59
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref60
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref60
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref60
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref62
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref62
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref62
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref65
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref65
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref65
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref65
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref66
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref66
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref66
http://dx.doi.org/10.1016/j.neucom.2015.05.131
http://dx.doi.org/10.1016/j.neucom.2015.05.131
http://dx.doi.org/10.1016/j.neucom.2015.05.131

J.R. Terven et al. / Neurocomputing B (REEE) ERE-EEE

[70] S. Hodges, L. Williams, E. Berry, S. Izadi, J. Srinivasan, A. Butler, G. Smyth, N.
Kapur, K. Wood, SenseCam: a retrospective memory aid, in: UbiComp 2006:
Ubiquitous Computing, Springer, Berlin, Heidelberg, 2006, pp. 177-193.

[71] M. Cardona, Designing the Tangible experience of interactive memories (Ph.D.
thesis), Rochester Institute of Technology, 2013.

[72] S. Krishna, G. Little, J. Black, S. Panchanathan, Wearable face recognition sys-
tem for individuals with visual impairments, in: Conference on Computers
and Accessibility, Baltimore (MD), USA, 2005, pp. 106-113.

[73] L. Gade, S. Krishna, S. Panchanathan, Person localization in a wearable camera
platform towards assistive technology for social interactions, in: Workshop on
Media Studies and Implementations that Help Improving Access to Disabled
Users, 2009, pp. 53-62.

[74] A. Fathi, ]J. Hodgins, ]. Rehg, Social interactions: a first-person perspective,
Comput. Vis. Pattern Recognit. (2012) 1226-1233.

[75] S. Boucenna, A. Narzisi, E. Tilmont, F. Muratori, G. Pioggia, D. Cohen,
M. Chetouani, Interactive technologies for autistic children: a review, Cognit.
Comput. 6 (4) (2014) 722-740.

[76] American Psychological Association, Publication Manual of the American
Psychological Association, American Psychological Association, 2010.

Juan R. Terven is a doctoral student at Instituto Poli-
técnico Nacional, Mexico. He works as a half-time lec-
turer at Mazatlan Institute of Technology (ITM). He has
been a graduate visiting student at MIT and a research
intern in Microsoft. Terven's research interests include
embedded systems, computer vision, and assistive
technologies design. He is a member of IEEE.

Bogdan Raducanu is a senior researcher and project
director at the Computer Vision Center in Barcelona,
Spain. His research interests include computer vision,
pattern recognition, and social computing. He received
a Ph.D. in computer science from the University of the
Basque Country, Bilbao, Spain.

1

Maria Elena Meza-de-Luna is researcher at the UAQ,
México. She is interested in the social and cultural
issues to prevent the expression of violence. Currently,
she is the director of !Atrévete Ya!/iHollaback!-Queré-
taro, an organization to prevent street harassment
(http://www.atrevete-ya.org) and president of IIPSIS,
an NGO devoted to research and intervention in psy-
chosocial matters.

Joaquin Salas is a professor in the area of Computer
Vision at Instituto Politécnico Nacional. His research
interests include the development of assistive tech-
nology for the visually impaired and visual interpreta-
tion of human activity. He received a Ph.D. in computer
science from Monterrey Institute of Technology and
Higher Studies (ITESM), México.

Please cite this article as: J.R. Terven, et al., Head-gestures mirroring detection in dyadic social interactions with computer vision-based
wearable devices, Neurocomputing (2015), http://dx.doi.org/10.1016/j.neucom.2015.05.131



http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref74
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref74
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref74
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref75
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref75
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref75
http://refhub.elsevier.com/S0925-2312(15)01618-5/sbref75
http://www.atrevete-ya.org
http://dx.doi.org/10.1016/j.neucom.2015.05.131
http://dx.doi.org/10.1016/j.neucom.2015.05.131
http://dx.doi.org/10.1016/j.neucom.2015.05.131

	Head-gestures mirroring detection in dyadic social interactions with computer vision-based wearable devices
	Introduction
	Related work
	Psychological perspective
	Computational perspective

	Experimental setup and scenario description
	Automatic mirroring detection
	Facial features extraction
	Facial features stabilization
	Head gestures modeling
	Training
	Recognition

	Mirroring detection

	Experimental results
	Mirroring dataset
	Automatic mirroring detection
	Real-world performance


	Discussion
	Conclusion and future work
	Ethics during the study
	Acknowledgements
	References




