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Abstract. In this paper, we present a new method for egocentric
video temporal segmentation based on integrating a statistical mean
change detector and agglomerative clustering(AC) within an energy-
minimization framework. Given the tendency of most AC methods to
oversegment video sequences when clustering their frames, we combine
the clustering with a concept drift detection technique (ADWIN) that
has rigorous guarantee of performances. ADWIN serves as a statisti-
cal upper bound for the clustering-based video segmentation. We inte-
grate both techniques in an energy-minimization framework that serves
to disambiguate the decision of both techniques and to complete the seg-
mentation taking into account the temporal continuity of video frames
descriptors. We present experiments over egocentric sets of more than
13.000 images acquired with different wearable cameras, showing that
our method outperforms state-of-the-art clustering methods.

Keywords: Temporal video segmentation · Egocentric videos · Clus-
tering

1 Introduction

Lifestyle behaviour is closely related with health outcomes, in particular, to non-
communicable diseases such as obesity and depression, that represent a major
burden in developed countries. A promising way towards studying one’s lifestyle
is through the use of wearable cameras, able to digitally capture a person’s
everyday activities into the so called lifelogging. However, the automatic recog-
nition of daily routines using wearable devices is very challenging due to the
huge amount of collected data (up to 3.000 images per day). Moreover, daily
routines are typically composed of many complex events, with a large variability
depending on factors such as time, location and individual. This work proposes
an algorithm for grouping similar temporally adjacent images into segments,
providing a structure to egocentric videos, that is important for further analysis
such as video summarization and analysis. Considering the environment as a
strong characteristic of an event, these segments are supposed to characterize
different environments in which the camera wearer acts (Fig. 1).
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Fig. 1. Example of temporal segmentation of a SenseCam sequence.

Previous methods for egocentric temporal segmentation can be classified into
two broad classes, depending on whether they rely on low-level or high-level
features. Basically, the former class has as focus what the wearer sees and uses
as image representation features that are able to capture the characteristics of
the environment around the wearer, such as color and texture; the latter class
focuses on what the wearer does and thus uses as image representation high-level
concepts such as objects and activities.

Early works based on low-level features include the one of Doherty et al. [5],
which is based on the use of MPEG-7 descriptors for image representation that
are available from the sensor, and the one of [16], that uses a time-constrained
k-means algorithm based on color descriptors. Recent methods focus on motion-
based features. Usually, optical flow is used to distinguish between static, moving
the head/camera and in-transit frames [3,17]. This classification offers a segmen-
tation that focuses in the activities and movements performed by the user, but is
prone to fail when the environment changes while performing the same activity
(e.g. the user is in transit but, first gets out of their workplace, then is walk-
ing on the street and finally enters to the underground). To focus on long-term
activities, Poleg et al. [21] proposed the use of integral motion, which is closely
related to wearers’ activity. By integrating the instantaneous displacements at
fixed image patches, the variations due to head rotation are eliminated, since
their mean is practically zero, leaving only the consistent displacement caused
by forward motion. Methods based on motion analysis assume high temporal
resolution, but the temporal resolution of many lifelogging devices, such those
considered in this paper, is very low.

Works based on high-level features are generally more recent. In [14], first
important people and objects are discovered by measuring their interaction with
the camera wearer and then the frames which reflect the key objects happening
are selected. In [20], the authors propose a summarization tool based on analysis
of video structures and video highlights. By emphasizing on both the content
balance and the perceptual quality of the summary, the authors employ a nor-
malized cut algorithm to globally and optimally partition a video into clusters.
Furthermore, in [13], the authors present a video segmentation approach based
on the study of spatio-temporal activities within the video, that leads to a visual
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activity estimation by measuring the number of interest points, jointly obtained
in the spatial and temporal domains.

In this paper, we rely on low-level features. Our approach is a Graph-Cut
(GC) extension technique [3,4] that takes advantage of two methods having
complementary properties: ADWIN [2] - a concept drift technique for mean
change detection that is highly precise, but usually leads to temporal under-
segmentation; and agglomerative clustering (AC), which usually has a high
recall, but leads to temporal over-segmentation. Our approach, that we call
R-Clustering, regularizes the over-segmentation of the AC through the upper
bound provided by ADWIN. Based on the excellent accuracy achieved recently
for classification in a variety of computer vision tasks [8,12], we use Convolu-
tional Neural Network (CNN) vector activation over the entire image as a global
image feature descriptor. CNN features are able to focus just in the environment
appearance and do not need to rely on a motion information that, would be
unfeasible to estimate reliably taking into account the very low temporal res-
olution of the wearable devices we considered (up to 3fpm). As an example of
application, we illustrate the utility of the proposed method for the detection of
social events. In the next section, we detail the proposed approach. In Sect. 3,
we discuss experimental results and, finally, in Sect. 4 we draw some conclusions.

2 The R-Clustering Approach for Temporal
Video Segmentation

Due to the low-temporal resolution of egocentric videos, as well as to the camera
wearer’s motion, temporally adjacent egocentric images may be very dissimilar
between them. Hence, we need robust techniques to group them and extract
meaningful video segments. In the following, we detail each step of our app-
roach that relies on an AC regularized by a robust change detector within a GC
framework.

Clustering Methods. The AC method follows a general bottom-up clustering
procedure, where the criterion for choosing the pair of clusters to be merged in
each step is based on the distances among the image features. The inconsistency
between clusters is defined through the cut parameter. In each iteration, the most
similar pair of clusters are merged and the similarity matrix is updated until
no more consistent clustering are possible. We chose the Cosine Similarity to
measure the distance between frames features, since it is a widely used measure
of cohesion within clusters, specially in high-dimensional positive spaces [23].
However, due to the lack of incidence for determining the clustering parameters,
the final result is usually over-segmented.

Statistical Bound for the Clustering. To bound the over-segmentation pro-
duced by AC, we propose to model the video as a multivariate data stream
and detect changes in the mean distribution through an online learning method
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called Adaptative Windowing (ADWIN) [2]. ADWIN works by analyzing the
content of a sliding window, whose size is adaptively recomputed according to its
rate of change: when the data is stationary the window increases, whereas when
the data is statistically changing, the window shrinks. According to ADWIN,
whenever two large enough temporally adjacent (sub)windows of the data, say
W1 and W2, exhibit distinct enough means, the algorithm concludes that the
expected values within those windows are different, and the older (sub)window
is dropped. Large enough and distinct enough are defined by the Hoeffding’s
inequality [9], testing if the difference between the averages on W1 and W2 is
larger than a threshold, which only depends on a pre-determined confidence
parameter δ. The Hoeffding’s inequality guarantees rigorously the performance
of the algorithm in terms of false positive rate.

This method has been recently generalized in [6] to handle k−dimensional
data streams by using the mean of the norms. In this case, the bound has been
shown to be:

εcut = k1/p

√
1

2m
ln

4
kδ′

where p indicates the p−norm, |W | = |W0|+|W1| is the length of W = W1∪W2,
δ′ = δ

|W | , and m is the harmonic mean of |W0| and |W1|. Given a confidence
value δ, the higher the dimension k is, the more samples |W | the bound needs
to reach assuming the same value of εcut. The higher the norm is used, the less
important is the dimensionality k. Since we model the video as a high dimen-
sional multivariate data stream, ADWIN is unable to predict changes involving
a small number of samples, which often characterizes life-logging data, leading
to under-segmentation. Moreover, since it considers only the mean change, it is
enable to detect changes due to other statistics such as the variance. The ADWIN
under-segmentation represents a statistical bound for the AC (see Fig. 2 (right)).
We use GC as a framework to integrate both approaches and to regularize the
over-segmentation of AC by the statistical bound provided by ADWIN.

Fig. 2. Left: change detection by ADWIN on a 1 −D data stream, where the red line
represents the estimated mean of the signal by ADWIN; Center: change detection by
ADWIN on a 500-D data stream, where, in each stationary interva, the mean is depicted
with a different color in each dimension; Right: results of the temporal segmentation
by ADWIN (green) vs AC over-segmentation (blue) vs ground-truth shots (red) along
the temporal axis (the abscissa)(Color figure online).
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Graph-Cut Regularization of Egocentric Videos. GC is an energy-
minimization technique that minimizes the energy resulting from a weighted
sum of two terms: the unary energy U( ), that describes the relationship of the
variables to a possible class and the binary energy V ( , ), that describes the
relationship between two neighbouring samples (temporally close video frames)
according to their feature similarity. GC has the goal to smooth boundaries
between similar frames, while attempts to keep the cluster membership of each
video frame according to its likelihood. We define the unary energy as a sum of
2 parts (Uac(fi) and Uadw(fi)) according to the likelihood of a frame to belong
to segments coming from the AC and ADWIN. The GC energy to minimize is
as follows:

E(f) =
∑

i

((1 − ω1)Uac(fi) + ω1Uadw(fi)) + ω2

∑
i,n∈Ni

1
Ni

Vi,n(fi, fn)

where fi, i = {1, ...,m} are the set of image features, Ni are the temporal frame
neighbours of image i, ω1 and ω2 (ω1, ω2 ∈ [0, 1]) are the unary and the binary
weighting terms respectively. Defining how much weight do we give to the likeli-
hood of each unary term (AC and Adwin, always combining the events split of
both methods), and balancing the trade-off between the unary and the pairwise
energies, respectively. The minimization is achieved through the max-cut algo-
rithm, leading to a temporal video segmentation with similar frames having as
large likelihood as possible to belong to the same event, while maintaining video
segment boundaries in neighbouring frames with high feature dissimilarity.

Features. As image representation for both segmentation techniques, we used
the CNN features [10]. The CNN features trained on ImageNet [12] have demon-
strated to be successfully transferred to other visual recognition tasks such as
scene classification and retrieval. In this work, we extracted the 4096-D CNN
vectors by using the Caffe [10] implementation trained on ImageNet. Since each
CNN feature has a large variation distribution in its value, and this could be
problematic when computing distances between vectors, we used a signed root
normalization to produce more uniformly distributed data [24]. First, we apply
the function f(x) = sign(x)|x|α on each dimension and then we l2−normalize
the feature vector. In all the experiments, we take α = 0.5. Following we apply
a PCA dimensionality reduction keeping 95 % of the data variance. Only in the
GC pair-wise term we use a different feature pre-processing, where we simply
apply a 0–1 data normalization.

3 Results and Validation

In this section, we discuss the datasets, the statistical validation measurements,
tests and comparison to other methods as well as a possible application of the
R-Clustering.
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Data. To evaluate the performance of our method, we used 2 datasets (one
public [11] and one made by us), composed of 10 days with a total of 13324
images, acquired by two different wearable devices: SenseCam [22] and Narra-
tive (http://getnarrative.com/). The main differences between the two kind of
devices are the frame rate (3 fpm vs 2 fpm) and the lens (fisheye vs normal). The
data adquired by the SenseCam contain a larger number of frames per day with
a larger field of view and significant deformation and blurring. Both datasets
include 5 days each, containing a mix of indoor and outdoor scenes with numer-
ous foreground and background objects. All data has been manually annotated
to provide ground-truth segmentation.

Statistical Measurements. As evaluation criterion (following [15]), we used
the F-Measure (FM): FM = 2(RP )/(R + P ), where P is the precision (P =
TP/(TP +FP ), R is the recall (R = TP/(TP +FN) and TP , FP and FN are
the number of true positives, false positives and false negatives.

Fig. 3. F-Measure evolution for the two kind of datasets, applying different clustering
methods and cut value. The abscissa (X) defines the cut value and the ordinate (Y) -
the F-Measure.

Tests on Different Agglomerative Clustering methods. We performed
several tests on different AC, namely: single, centroid, average, weighted, com-
plete, ward, and median, that basically vary in the way the distance between
cluster elements is estimated [19]. Figure 3 (left) represents the F-Measure of the
different clusterings on the SenseCam data, Fig. 3 (center) - on the Narrative
data and Fig. 3 (right) on all data. We can observe that the clustering follows
the same behaviour for the two types of data sets, although for the SenseCam
the methods are achieving better results than for the Narrative sets. That is
reasonable due to the significant difference in image appearance. Despite for
the SenseCam sets the complete is achieving the same results as the average
methods, the third figure shows how for the whole data the average method is
achieving the best results (FM=0.56), followed by the complete (FM=0.55) and
the single (FM=0.54). The cut value seems to be very influential for the results
since there is a point from which, for each method, clusters all data in one single
cluster, leading to FM=0.

http://getnarrative.com/


R-Clustering for Egocentric Video Segmentation 333

Fig. 4. Average F-Measure of R-Clustering with the best parameters for the Sense-
Cam data (left), and on all datasets (center). The abscissa (X) defines the pair-wise
term, the ordinate (Y) the ADWIN vs. AC trade-off and the applicate (Z) shows the
corresponding FM. The red surface represents the F-measure of AC and the orange
one of ADWIN. MeanShift performance for video segmentation (right). The abscissa
(X) defines the bandwith. The blue line represents the average FM, whereas the red
lines are the FM per each dataset (Color figure online).

Tests on R-Clustering Using Graph-Cuts. We tested the R-Clustering
performances according to the parameters ω1 and ω2. Figure 4 (left) shows the
average measure on the Sensecam data as a function of both parameters. The
optimal F-Measure on all datasets is achieved when ω1 = 1 and ω2 = 0.5 (Fig. 4
(center)). Despite the average AC achieves the best performance on our data sets
(FM=0.56), the R-Clustering based on this AC method just achieves a FM=0.63.
Whereas when it is based on the single clustering, the one that was achieving
in AC the second best results (FM=0.54), it achieves the highest FM=0.66
with R-Clustering. Table 1 shows the optimal F-measure for AC, ADWIN and
R-Clustering, where the application of R-Clustering method clearly outperforms
the F-Measure obtained by the AC and ADWIN technique. Thus, by having
ω1 = 1 as unary energy parameter proves that the combination of ADWIN
(by using its resulting likelihoods and labels initialization) and AC (by using
its clusters split in the GC labels initialization) helps to obtain better results
by the R-Clustering. In Fig. 4 (center), the lines depict the standard deviation
on each combination of parameters, hence the standard deviation of the best
peak results is very low (std=0.17, short line) compared to the higher deviation
(longer lines) in the center, meaning that our method is robust and stable. Final
video segments can be seen in Fig. 5 that shows three segments corresponding
to metro, office and street environments, extracted from a Narrative set.

Tests on Other Clustering Methods. We compare R-Clustering to K-
Means [18] and MeanShift (MS) [7] (see Fig. 4 (right) and Table 1) that achieved
FM=0.52 and FM=0.49, respectively. The worse performance can be explained
by several facts. The k-Means algorithm requires the number of clusters to be
specified and it is not a robust method due to its local minima problem. Con-
sidering MeanShift (MS), it is based on density estimation which can deal with
arbitrarily shaped data distributions, but its problem is that it is very sensitive
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to the bandwith (BW) parameter: a large BW can slow down the convergence
and a small BW can make it quickly converge leading to over-segmentation.

Table 1. Average F-Measure result for each of the tested methods on our egocentric
datasets.

Datasets K-Means Mean-Shift ADWIN AC R-Clustering

Narrative 0.32 0.38 0.32 0.45 0.55

SenseCam 0.65 0.60 0.31 0.68 0.79

All 0.52 0.49 0.31 0.56 0.66

Fig. 5. Illustration of our R-Clustering segmentation results for 3 events from a Nar-
rative set.

Fig. 6. Illustration of detecting social events in temporally segmented videos.

Application to Human Tracking for Social Events characterization.
Temporal segmentation is very useful to detect social events, which are char-
acterized by the presence of people with whom the camera’s wearer commu-
nicates. Since the presence of people in a specific event likely last from the
beginning of the event to its end, social events can be extracted by relying on
temporal segmentation. As outlined in [1], due to the substantial difference in
frame rate between videos captured by a SenseCam and classical videos, state-
of-the-art tracking methods are not directly applicable to lifelogging videos. In
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[1], the authors introduced a novel approach, called bag-of-tracklets, that allows
to extract robust tracklet prototypes from video segments containing trackable
people. While in this work temporal segments are defined manually, we use our
detected segments as a pre-processing step for extracting tracklets of people in
egocentric videos (Fig. 6).

4 Conclusions

In this work, we proposed a novel methodology for automatic egocentric video
segmentation that is able to segment low temporal resolution data by global
low-level processing. R-Clustering is a robust segmentation approach based on
a GC extension technique, that integrates a statistical bound by the concept
drift method ADWIN and AC, two methods with complementary properties for
temporal video segmentation. We evaluated the performance of R-Clustering
on different clustering techniques and on 10 datasets acquired through different
wearable devices, and we showed the improvement of the proposed method with
respect to the state-of-the-art.

Acknowledgments. This work was partially founded by TIN2012-38187-C03-01 and
SGR 1219.
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