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An efficient technique for real-time estimation of camera extrinsic

parameters is presented. It is intended to be used on on-board vision

systems for driving assistance applications. The proposed technique is

based on the use of a commercial stereo vision system that does not

need any visual feature extraction.

Introduction: Estimation of on-board camera extrinsic parameters

usually relies on prior knowledge of the scene; for instance, visual

features of urban scenes have been extensively used in the biblio-

graphy. Reference [1] presents a visual feature based approach for

estimating the camera position and orientation on an autonomous

driving system. Features such as a zebra crossing, lane markings or

traffic signs painted on the road are used. Similarly, [2] introduces an

approach to obtain vanishing lines in traffic scenes based on a set of

three parallel edges with identical known distance. Although valid, the

use of proposals such as those presented in [1] or [2] is limited since

the set of required visual features is not always available in everyday

traffic scenes.

Constant camera position and orientation, which is a commonly used

assumption on highways, and seldom employed in downtown environ-

ments [3], could lead to wrong results. Focused on an automatic

estimation of camera position and orientation, [4] proposes an efficient

technique able to cope with uphill=downhill driving, as well as dynamic

pitching of the vehicle. It is based on v-disparity representation and

Hough transform. However, this method requires extraction of a long-

itudinal profile of the road, which is not always available.

More recently, [5] introduced a specific image stabilisation technique

for pitch angle compensation. It is based on the study of a row-wise

histogram computed from the edges of the current image. Histograms

from consecutive frames are correlated in order to calculate their

corresponding vertical offset. This approach, although very efficient

in terms of computing time, has two important drawbacks. First, the

image should contain several horizontal features, since the whole

process relies on the accumulation of horizontal edges. Secondly,

current camera orientation is related to the previous frame; therefore,

since relative errors cannot be removed, the global error value increases

with time – the drift problem, see Fig. 3a.

In this Letter we present a new approach for automatically computing

camera extrinsic parameters, based on 3D data provided by a commer-

cial stereo vision system. The proposed technique consists of two

stages. Initially, the original 3D data points are mapped onto a 2D

space. Then, a RANSAC based least squares fitting is used to estimate

the parameters of a plane fitting to the road; at the same time camera

extrinsic parameters are directly computed, referred to that plane.

Independent of road geometry, the provided results could be understood

as a piecewise planar approximation, owing to the fact that road and

camera parameters are continuously computed and updated.
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Fig. 1 On-board stereo vision sensor with co-ordinate system

3D data point projection and noisy data filtering: The aim at this

stage is to find a compact subset of points, z, containing most of

the road’s points. To speed up the whole process, and looking for a

robust approach, noisy data points are reduced as much as possible.

Without loss of generality, a camera’s yaw and roll angles can be

assumed to be constant (see Fig. 1) since vertical variations

between consecutive frames will mainly produce changes of

camera height and pitch angle.

Original 3D data points, (Xi, Yi, Zi), are mapped onto a 2D array

D(u,v), where u¼ (round)(Yi � s) and v¼ (round)(Zi � s); s represents a

scale factor defined as: s¼ ((RþC)=2)=((DXþDYþDZ)=3); R, C are

the image’s rows and columns, respectively, and (DX, DY, DZ) is the

working range in 3D space, on average (34� 12� 50) m. Every cell

of D(u,v) keeps a pointer to the original 3D data point projected onto

that position, as well as a counter with the number of mapped points.

Cells of D(u,v) containing less points than a predefined threshold

(experimentally set to 15 points) are filtered by setting to zero its

corresponding counter; points mapped onto those cells are considered

as noisy data. Finally, points defining the z subset are selected by

picking one cell per column D(v), going bottom-up through every

column. The first bottom-up cell, with more points than the aforemen-

tioned threshold, is selected since it is assumed that contains road

points. Although this selection process could be avoided, i.e. the

random sampling philosophy of RANSAC would perform correctly

over the whole set of points, experimental results proved that the

reduction of the set of points helps the algorithm to converge faster.

3D data points mapped onto selected cells define the sought subset of

points, z.

RANSAC based plane fitting: The outcome of the previous stage is a

subset of points, z, where most of them belong to the road. In the

current stage, a RANSAC based technique [6] is used for finding the

best fitting plane to those data, aXþ bYþ cZ¼ 1. Although an

automatic threshold could be computed for inliers=outliers detection,

following robust estimation of standard deviation of residual errors,

we finally decided to fix a predefined threshold value (a band

of � 5 cm) looking for a real-time running.

Random sampling: Repeat the following three steps K times:

1. Draw a random subsample of three different 3D points from z.
2. Compute the plane parameters (a, b, c)K.

3. For this solution (a, b, c)K, compute the number of inliers among the

entire set of 3D points contained in z.

Solution:

1. Choose the solution that has the highest number of inliers. Let

(a, b, c)i be this solution.

2. Refine (a, b, c)i by using its corresponding inliers and the least

squares fitting approach, which minimise the square residual error

(1� ax� by� cz)2.

Finally, camera extrinsic parameters are easily computed from the plane

parameters since the fitted plane is expressed in the sensor co-ordinate

system. Another representation of those parameters can be given by the

vanishing line [2].

Experimental results and comparisons: The proposed technique has

been tested on different urban environments. Fig. 2 shows estimated

camera height and pitch angle against time, both referred to the

current fitted plane.

A row-wise histogram based (HB) approach, similar to the one

proposed in [5], has been implemented and compared with the

proposed technique (PT). It consists of computing vertical offset

between the row-wise histogram of edges from consecutive frames.

This vertical offset is referred to an initial vanishing line position

defined by the user. Fig. 3a depicts the vanishing line evolution in two

short sequences, both corresponding to the same video sequence. Since

the HB approach is affected by the drift problem, several initialisations

were performed along the whole video sequence. In the first case

(Fig. 3a, left) the vanishing line computed by HB is driven to a wrong

position since the scene contains a large amount of horizontal edges in

its upper part (see Fig. 3b, left). In the second case (Fig. 3a, right), both

techniques have the same behaviour in the first frames, but it can be

noticed how the accumulation of errors in HB drives the vanishing line

to a wrong position. Recall that in both cases HB has been manually

initialised; on the other hand, the PT was able to process the whole

sequence (about 2 h) without initialisation.

Finally, since ground truth is not known beforehand, several frames

were chosen and used to validate the obtained results. In these cases,

their corresponding vanishing lines were manually computed (MC) (by
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drawing two parallel lines in the 3D space and getting their intersection

in the image plane) and used as ground truth to compare with those

automatically obtained by the PT and the HB approach [5]. Fig. 3b

shows two frames with their corresponding MC vanishing lines. Four

MC vanishing lines per sequence are presented in Fig. 3a.

The proposed algorithm took, on average, 350 ms per frame on a

3.2 GHz Pentium IV PC with a non-optimised Cþþ code. This

computational time also includes the stereo reconstruction.
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Fig. 2 Estimated camera height and pitch angle against time, related to
current fitted plane (only 2 fps plotted)
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Fig. 3 Illustrations of two different scenarios: flat road and uphill driving

a Vanishing lines computed with proposed technique (PT) and with histogram
based (HB) approach [5]; additionally, four manually computed (MC) vanishing
lines per sequence are presented
b Ground truth manually computed for intermediate frames of corresponding
sequences

Conclusions: An efficient technique for real-time estimation of

camera extrinsic parameters is presented. Validations with real envir-

onment as well as comparisons with another technique are presented.

Notice that techniques such as [1] and [2] cannot be used since the

presented environments do not contain the required visual features. It

can be appreciated that the proposed technique is able to update

camera extrinsic parameters even in cases when they change suddenly.

Further work will focus on studying new strategies to reduce the

initially chosen subset of points. Furthermore, faster strategies and the

use of the Kalman filtering technique will be explored.
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