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Abstract

Convolutional Neural Networks have been proposed as suitable frameworks

to model biological vision. Some of these artificial networks showed representa-

tional properties that rival primate performances in object recognition. In this

paper we explore how color is encoded in a trained artificial network. It is per-

formed by estimating a color selectivity index for each neuron, which allows to

describe the neuron activity to a color input stimuli. The index allows to classify

whether they are color selective or not and if they are single or double color. We

find out that all five convolutional layers of the network have a large number of

color selective neurons. Color opponency clearly emerges in the first layer, pre-

senting 4 main axes (Black-White, Red-Cyan, Blue-Yellow and Magenta-Green),

but it is reduced and rotated as we go deeper into the network. In layer 2 we find

a more dense hue sampling of color neurons and opponency is almost reduced

to one new main axis, the Bluish-Orangish coinciding with the dataset bias. In

layers 3, 4 and 5 color neurons are similar between them, presenting different

type of neurons detecting specific colored objects (e.g. orangish faces), specific

surrounds (e.g. blue sky) or specific colored or contrasted object-surround con-

figurations (e.g. blue blob in a green surround). Overall, our work concludes

that color and shape representation are successively entangled through all the
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layers of the studied network, showing up some parallelisms with the reported

evidences in primate brain that can provide some inspiration about intermediate

hierarchical spatio-chromatic representations.

1. Introduction

Several factors such as the availability of huge image datasets annotated

for object recognition tasks, as well as with more flexible hardware architec-

tures have led to that machine learning technologies applied to computer vision

entering in a new era to solve any kind of vision problems by using convolu-

tional neural networks (CNN). These artificial networks become a flexible tool

to solve vision problems of diverse nature (Lecun et al. (1998); LeCun et al.

(2010)) by using a hierarchical concatenation of convolutional and max-pooling

layers amongst others.

In this work we hypothesize that, considering we can find some parallelisms

between layers of a trained artificial network with known evidences in the hu-

man visual cortex (Kriegeskorte (2015)), we can pursue some inspiration about

how color could be encoded in beyond-opponent human visual pathway by un-

derstanding how color is encoded in layers of artificial networks. Our study

is focused on one specific artificial network, it was trained by Chatfield et al.

(2014) on a generic object recognition task on ImageNet ILSVRC12 dataset

(Russakovsky et al. (2015)). We have selected this network architecture due to

its similarity with the one used by Cadieu et al. (2014). In that work, authors

proved that this kind of deep architectures start to rival the representational

performance of primates in object recognition tasks.

To this end, in this paper we propose a method to explore how this artificial

network is encoding color information based on the estimation of color selectiv-

ity indexes over the whole neuron population of the network. Proposed method

is based on two main ideas. First, to compile the set of image patches that

maximally activates a neuron. Second, to estimate a color-selectivity index on

each neuron based on this set. Once we measured color selectivity indexes we
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can discriminate different groups of neurons, accordingly with their ability to be

color selective or not, or being selective to a single-color or to a double-color pair

In this paper we will use this terminology single and double to refer to color neu-

rons that are either selective to one single color or to a pair of colors appearing

in a specific shape configuration. Note that it differs from the terminology used

in Shapley and Hawken (2011) where the terms single-opponent and double-

opponent are used to refer to cells responding to large areas of homogeneous

color, or responding to color patterns, textures, and color boundaries, respec-

tively. Although they could broadly have some similarities, they should not be

directly equated. The classification of neurons at each layer enables interesting

representational properties to be extracted, such as the amount of color tuned

neurons appearing in each layer, or how color and shape are entangled through

network layers, or opponency properties emerging from double-color neurons.

Once we obtain the map of the network color selectivity we show a clear correla-

tion with the color distribution of the image dataset used to train the network.

Reported results provide a compelling hypothesis about color representation

beyond cone-opponency.

2. A trained convolutional neural network

Convolutional neural networks are artificial networks that have been pro-

posed by several authors (Cadieu et al. (2014); Kruger et al. (2013); Kriegesko-

rte (2015)) as a suitable framework to model biological vision. Although they

have been designed to solve engineering problems, they take inspiration from

the brain and their computations could be implemented by biological neurons.

They are based on hierarchical feed-forward architectures concatenating differ-

ent levels of convolutional and pooling layers. Each layer operates on their

inputs to produce a representation change. More technical details regarding

CNNs can be found in Sec. Appendix A.

The parallelism with biological vision is derived from the fact that a CNN

presents a deep hierarchy similar to the stages in ventral stream of the human vi-

sual system. Moreover, these layers are mainly based on two kinds of operations:
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(a) a bank of convolution operations followed by a non-linearity, which allows

encoding translation-invariance of features across the visual field. This results

in a set of receptive-fields with increasing size as we climb into the hierarchy;

and (b) a max-pooling operation, which is a sub-sampling step that inserts some

local tolerance and also introduce scale invariance along the hierarchy. These

feed-forward architectures have similar principles to those already proposed in

HMAX (Serre et al. (2007a,b)).

The main advantages of these CNNs are twofold: flexibility for easy design

different architectures allowing different kind of vision problems to be solved;

and ability to be automatically trained in order to learn the best weights (for all

the network parameters) to achieve the best performance on a specific visual

task. As we have already mentioned, these two advantages emerged due to the

outstanding technological achievements in three main areas: machine learning,

image-specific hardware and software, and in the construction of large labeled-

image datasets.

Taking advantage of the aforementioned results, several trained CNN archi-

tectures were compared in representational performance with the primate IT

cortex on the visual recognition task. The work Cadieu et al. (2014), using a

kernel analysis, showed that, contrary to what happened with previous artificial

architectures such as HMAX (Serre et al. (2007a,b)), current deep convolutional

neural networks are starting to show important representational capabilities.

Although this does not prove that these computational mechanisms are similar

to the primate visual system, we cannot exclude these networks as a source of

representational inspiration. Cadieu et al. compare two main deep CNNs, one

from Zeiler and Fergus (2014) and another one from Krizhevsky et al. (2012),

both trained on the same ImageNet dataset (Russakovsky et al. (2015)). Taking

into account their results, here we use a trained CNN with a similar architec-

ture to those two, the VGG-M CNN that was designed and trained on the same

dataset by Chatfield et al. (2014). The architecture of this network is formed

by 5 convolutional layers followed by 3 fully-connected layers. It also presents

3 max-pooling layers after the first, the second and fifth convolutional layers.
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More technical details of the architecture are summarized in Sec. Appendix B.

In what follows, we propose a method to analyze how color is encoded in

this trained CNN. We focus on the convolutional layers (from Conv1 to Conv5),

since they are the responsible for representing color and spatial information,

while we are leaving the analysis on fully connected layers for further work,

since they are devoted to classification task.

3. Method

A method is proposed to explore how the network represents color informa-

tion across the layers of the hierarchical architecture. The method is based on

the definition of a computational algorithm that estimates the color selectivity

of each individual neuron. Once the map of individual selectivity indexes is

built, the corresponding conclusions can be drawn about how color is encoded

through layers.

As we mentioned before in Section 2, our study is performed on the VGG-

M CNN architecture (see Sec. Appendix B) that was designed and trained by

Chatfield et al. (2014) on ImageNet dataset (Russakovsky et al. (2015)). This

trained CNN can be analyzed by collecting the set of images that maximally

activates each neuron and deriving specific measurements on these image patches

and on their activation values. Additionally we can use them to visualize the

intrinsic spatio-chromatic properties activating the neuron.

The following subsections present details of the ImageNet dataset, including

proposing a method for visualizing the activity of each neuron, and a color

selectivity index to characterize the neuron activation to color stimuli. This

index will provide a global classification of neurons in order to explore how

color is encoded by spatial filters composing the hierarchical architecture of the

network.

3.1. ImageNet Dataset

ImageNet is a large visual dataset (Russakovsky et al. (2015)), in which

images are classified according to the lexical WordNet hierarchy (Miller (1995)).
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Experiments performed here are done on the ILSRVC12 version of the dataset,

since it was used by Chatfield et al. (2014) for training the VGG-M network.

It consists of around 1.2M images labeled in 1.000 different object categories.

Images are mostly given in uncalibrated RGB color and some of them are gray-

level. Images can have different sizes within the dataset but they are scaled and

gray-level images are channel-wise replicated to fit into the constraints of the

network, which is 224×224×3 pixels.

The dataset is built from a huge variety of scenes, including objects belonging

to 1000 different categories (such as dog classes, clocks, flower classes or type of

buildings amongst others). This diversity of objects can also appear with large

variations in size, points of view, poses, backgrounds and a large range of lighting

conditions (indoor or outdoor). Sensors used in acquisition are unknown for each

image, thus there is no chance to work on any RGB calibrated color space. The

CNN was trained on these uncalibrated images and they are expected to be the

input to the network. However, reported results in this article are performed

in an opponent-like space, where color representation is decomposed in terms

of intensity and chromaticity separately. Selected space is as a linear transform

on the RGB color space in order not to introduce more non-linearities besides

those already included by each different sensor. This RGB to OPP (opponent

space) transform is given by:

O1 = (R+G+B − 1.5)/1.5,

O2 = (R−G),

O3 = (R+G− 2B)/2

(1)

which is based on the one proposed by Plataniotis and Venetsanopoulos

(2000) but normalizing and shifting the three axes within the range
[
−1, 1

]
. This

space was conceived to achieve some physiological inspiration on uncalibrated

RGB, and it has provided interesting results in computer vision1.

1Regarding this opponent transform we would also like to mention that it was shown to
have a large discriminant power for image segmentation using a Principal Component Analysis
in the experiments reported by Ohta et al. (1980). And it has also been shown to give the
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Figure 1: ImageNet hue distribution (colored bars) and Number of color selective neuron per
hue (black line).

We estimated the color distribution of the complete ImageNet dataset. Col-

ored bars plotted in Fig. 1 represent the color distribution (Y axis) based on

hue-angle (X axis) computed on an O2-O3 plane of the opponent color space

given in Equation 1. The hue-angle, h, of a given a pixel, p = (o1, o2, o3), is

computed as h(p) = arctan( o3
o2

), Being h(p) = 0 if p = (o1, 1, 0) ∀o1 ∈ [−1, 1] .

The distribution shows a clear bias (a bimodal distribution), it peaks at orangish

hues and at bluish hues. They could be due to a rich presence of brownish an-

imals or people skin tones, and sky backgrounds, respectively. If this dataset

bias correlates with natural scene statistics it will nor be analyzed. But it is

normal that calibrated natural scene statistics show some kind of bias, which

can vary depending on season, area or latitude (Webster et al. (2007b)).

3.2. Neuron Feature visualization

Neurons in CNNs are defined by multidimensional sets of weights (filters)

which become difficult to be understood when layers are stacked as a hierarchi-

cal composition due to their high dimensionality and series of filter-composition

across layers. In order to provide an image visualizing the spatio-chromatic pat-

best results in color-shape descriptors for object recognition in van de Sande et al. (2010).
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tern that activates a specific neuron, we use the Neuron Feature (NF) defined in

Rafegas et al. (2017). This representation visualizes neuron activity averaging

the set of N-top image patches, denoted as {I1, I2, . . . , IN}, which maximally

activates the neuron. The size of these patches is directly related to the corre-

sponding receptive-field of the neuron (see Sec. Appendix B). A NF is computed

as a weighted average of these image patches, where weights are proportional

to the activation value produced by each image to this neuron. Thus, the NF

is computed as:

NF (nL,i) =
1

Nmax

Nmax∑
j=1

wj,i,LIj (2)

where wj,i,L is the relative activation of the j-th image patch, denoted as Ij ,

of the i-th neuron nL,i at layer L. The relative activation of a neuron to an

image patch, aj,i, is normalized with respect to the neuron maximum activation

obtained for any patch, wj,i,L =
aj,i

amax,i
where amax,i = max ak,i,∀k. In this

paper, we set Nmax = 100 and a minimum activation value over a 70% of

the maximum activation achieved by the neuron in the entire dataset. In this

way the Neuron Feature allows an approximate intrinsic image to be visualized

activating the neuron. In Fig.2 we can see some examples of some NFs and their

corresponding set of 100 images patches used to build them. These patches are

sorted decreasingly by their activation on the neuron (from left to right and from

top to bottom). We can see that the appearance of the NF describes features

that are mostly shared by the 100 image patches.

3.3. Color selectivity index

In this section, we introduce a computational algorithm to measure color

selectivity of an artificial neuron. Color selectivity is the property of a neuron

that highly activates when a particular color appears in the input image and,

on the contrary, gives a low activation when this color is not present.

We propose to compute the color selectivity index of a neuron by estimating

the variation between its global activation to color patches with respect to its

global activation to their corresponding gray-level patches. The color selectivity

index of a neuron is mathematically defined as the complement to 1 of the ratio
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Figure 2: NFs and their 100-top image patches corresponding to 10 neurons of different layers.
Neurons in shallow layers are described in two first rows, while for the ones in deeper layers,
through the last two rows. The 1st and 3rd row correspond to NFs showing the intrinsic
properties that may describe the neuron activity of the corresponding neuron. The 2nd and
4th rows plot the set of 100-top image patches that maximally activate the corresponding
neuron. Note that these patches are sorted from left to right and from top to bottom according
to activation value in a decreasing order. Color selectivity index, α is given for each neuron.
Note that NFs are shown with a bigger size than each image patch in order to help in the
intrinsic visualization.

between the area under the activation curve (AUC) of the gray-scale versions for

the N-top image patches, and divided by the AUC of the original color patches.

By activation curve we refer to the curve defined from the set of activations

achieved by the set of N-top image patches (see Sec. Appendix C). Thus, given

the set of N-top images {Ij}j=1:N of the i-th neuron at layer L, we define the

color selectivity index as follows:

α(nL,i) = 1−
∑N

j=1 w
′
j,i,L∑N

j=1 wj,i,L

(3)

where {wj,i,L}j=1:N are the neuron activation values to the original N-top

ranked image patches, and {w′j,i,L}j=1:N are the activation values obtained by

the same neurons to the gray-level versions of the N-top images.

In order to maximally preserve the shape pattern of an image, we propose to
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use a gray-level transformation based on the image color distribution in the OPP

color space (see eq.1). We use the first eigenvector using Principal Component

Analysis (PCA) on this distribution as the axis where to project each color

pixel. In this way, we obtain a gray-scale image that maximizes the color image

variance. We replicate this gray-level image channel-wise in order to accomplish

the network constraint of receiving 3-channels. The intensity, i, of a given color

pixel p = (r, g, b) is computed as:

i = [r, g, b][e1, e2, e3]T (4)

where e1, e2, e3 are the components of the first eigenvector of the covariance

matrix of the RGB pixels of the color image.

In Figs. 3a and 3b we show the neuron activity curves of two different neurons

in Conv5, activation values (Y axis) are ranked in a decreasing order from left

to right (X axis). We plot neuron activation curves to the N-top original image

patches (in blue) and to the corresponding gray-level image versions of these

N-top image patches (in red). Note that in the same X axis we are representing

two different image rankings, one for color images and another for gray-level

images. Neuron in 3a shows equivalent activations for both image sets (color

and gray-level), while neuron in 3b plots a clear decrease in activation for gray-

level images. Proposed index gives α = 0.07 for the first neuron which is a

non-color selective neuron, and gives α = 0.92, considered color selective.

To confirm the adequacy of the proposed index, in the same figure, we ex-

plore the neuron activation to the same N-top image patches when they are

transformed into different hue distributions. This transformation is achieved

by a per pixel chromatic rotation on the chromaticity plane of the OPP color

space, and keeping a constant intensity. In Figs. 3c and 3d we plot the neuron

activation (Y axis) for each color rotation (X axis) for the same neurons shown

in Figs. 3a and 3b, respectively. In these plots, we show three of the N-top im-

age patches and some of their color transformations along the X axis. Framed

with a red rectangle are the original RGB image patches. At the bottom, and
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(a) Low color selective neuron (α = 0.07) (b) High color selective neuron (α = 0.92)

(c) Flat neuron activation (d) Unimodal neuron activation

Figure 3: Activation values to different image versions. (a) and (b) Ranked activation values
(Y axis) to the first 100-top activated image patches (X axis), for two different neurons.
Blue lines link ranked activations to the 100-top patches of a neuron. Red lines link ranked
activations to the gray-level versions of the 100-top patches. (c) and (d) Activation values
of the same neurons to different color transformation (rotated along hue axis) of the 100-top
image patches. Blue lines are linking the activation values to all color-rotated versions of the
same image patch.

framed in blue, is the corresponding NF of the neuron. Each blue line links

all the neuron activation values to the corresponding images along chromaticity

transformations. Again, two different behaviors emerge: a neuron that does

not change its activation along the color transformations is a non-color selec-

tive neuron (flat behavior), while a neuron that clearly changes its activation in

front of a color transformation is a color-selective neuron (Unimodal behavior).

The mean variance computed on these activation curves for each neuron shows a
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clear correlation with our proposed color selectivity index. Pearson’s correlation

(r) indexes through layers are 0.95, 0.85, 0.85, 0.88 and 0.88, from shallower to

deeper convolutional layers.

We would like to note that this index is just measuring selectivity to color

but not to what color. We work on this point in subsequent sections. The

proposed method could be used to compute other selectivity indexes to focus

on other properties apart from color such as spatial properties as orientation or

frequency, but this is outside the scope of this paper.

3.4. Classifying neuron population

In order to analyze color coding though all network layers, we propose to use

color selectivity index to classify neurons in several classes. this classification

is made in three stages. The first discriminates the entire neuron population

into three groups: color selective, low color selective and non color selective. A

second stage classifies color selective neurons into two groups: single or double.

And a third stage classifies double color neurons into opponent or non opponent.

The first classification is directly made by applying a threshold over the color

selectivity index (α). Non color selective neurons are those with α < 0.10, and

when α > 0.25 we label them as color selective neurons. This means that, if the

AUC of a neuron activity a gray scale version of the N-top patches decreases

by more than 25% with respect to their original RGB patches, it is considered

a high color selective neuron. Neurons are non color selective when this AUC

variation is less than 10%. Between these two groups, neurons are considered

low color selective neurons. See Figs. 3a and 3b as examples of low and high

selective neurons, respectively. Although the thresholds we applied can seem

arbitrary, they were coherently set on the observed selectivity over the set of

top ranked image patches activating the neurons, and from the behavior of the

neuron activity through a chromatic transformation of the same image patch.

A neuron with α > 0.25 shows a clear unimodal behavior of its neuron activity

when it is computed on the same image but presenting different hue rotations

on their color pixels (see Fig. 3d), while a neuron with α < 0.10 presents a
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shows behavior (see Fig. 3c).

Within the group of color selective neurons, we distinguish two main groups:

single color neurons, showing selectivity to one single color; and double color

neurons, presenting with selectivity to a pair of colors. The definition of these

two types of neurons was already introduced in Sec. 1. Classification is per-

formed by fitting a Gaussian mixture model on their NF hue-angle distribution

using an Expectation-Maximization (EM ) algorithm. Each fitted univariate

Gaussian is defined by its mean and covariance. With this fitting process, each

Gaussian mean gives to which color (hue) the neuron is selective to; while its

covariance indicates the amount of different hues included in a single Gaussian.

The EM algorithm requires to fix the number of Gaussians beforehand. Since

the higher is the number of allowed Gaussians, the better the fitting error is,

we use the Elbow method to set the number of Gaussians for each neuron, it

is the minimum number that achieves a mean squared error (MSE) (between

the fitted and the original distribution) which differs by less than 10% of the

global minimum (evaluated over 1 to 4 Gaussians). This step allows achieving

one (a pair of) representative hue (hues) for each single (double) color neuron,

respectively. Selectivities to three or four colors was never found in a neuron.

Once we have the color-map of all double color neurons through the network

layers, we will analyze whether specific chromatic axes emerge representing spa-

tial color opponency which is a central property in early stages of the primate

visual systems (Derrington et al. (1984); Lennie and D’Zmura (1988)). At this

point we want to remark here that by opponency property we mean how color

pairs in double color neurons are related to each other, without trying to report

it as physiological color-opponency since it is impossible in this uncalibrated

space. In Fig. 6 we plot the axis related to each double color selective neuron.

To evaluate the opponency property, we compute the angular distance from

each hue pair, with respect to the center of the O2-O3 chromatic plane. The

closer to 180◦, the stronger the opponency property of the neuron is.
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4. Results and Discussion

The results of computing color selectivity index on all neurons are summa-

rized in Table 1. Neurons are classified into seven groups following the criteria

defined in Section 3.4.

Selectivity Conv1 Conv2 Conv3 Conv4 Conv5
#Neurons 96 219 512 512 512

Non Color 56 (58.33%) 118 (53.88%) 225 (43.95%) 113 (22.07%) 52 (10.16%)
Low Color Sel 2 (2.08%) 28 (12.79%) 69 (33.01%) 255 (49.80%) 250 (48.83%)

Color Sel 38 (39.58%) 73 (33.33 %) 118 (23.05%) 144 (28.13%) 210 (41.02%)

Single Color 12 (12.50%) 49 (22.37%) 102 (19.92%) 134 (26.16%) 198 (38.67%)
Double Color 26 (27.08%) 24 (10.96%) 16 (3.13%) 10 (1.95%) 12 (2.34%)

Opponent 19 (19.79%) 14 (6.39%) 8 (1.56%) 1 (0.20%) 1 (0.20%)
Non opponent 7 (7.29%) 10 (4.57%) 8 (1.56%) 9 (1.76%) 11 (2.15%)

Table 1: Distribution of color and non color selective neurons through layers. Within the
color selective neurons two subgroups: single color and double color, referring to the number
of color the neuron is selective to. Within the double color neurons two subgroups: opponent
and non opponent, depending how close are colors to present a hue-angle close to 180◦ or not,
respectively. In parenthesis (%) percentage of neurons of the group within the layer.

The first conclusion noted, is that there are color selective neurons in all the

layers. This correlates with the idea that color is encoded all the way from V1

to IT cortex as concluded by in Shapley and Hawken (2011). A graphical repre-

sentation of selectivity index values across layers and corresponding percentage

of neurons is plotted in Fig. 4a. Mean color selectivity index per layer is 0.35,

0.24, 0.22, 0.24, 0.22, and 0.28 for Conv1 to Conv5, respectively, and is quite

constant. But, while shallower layers have neurons with extreme color index

values (either very high or very low), deeper neurons are mainly described by

intermediate index values (percentage of color selective neurons in Conv4 and

Conv5 surpass shallow layers).

To better understand how color and shape are entangled together at the

neuron level we set up two different experiments. First, we study how the

activation of a Conv1 neuron is affected by shape and color variations. The

results are plotted in Fig. 5a, curves link neuron activations to images changing

in color (hue rotations on the original image). Different curves have different

shapes as edge orientation rotations on the synthetic original image. We can
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(a) Color selectivity index distribution (b) Sparsity of hue selectivity.

Figure 4: Map of network color selectivity: how many color selective neurons and how many
different colors are selective. (a) Percentage of neurons within different ranges of color selec-
tivity indexes for each layer. Thresholds α = 0.1 and α = 0.25 are marked with the black
and red lines, respectively. (b) Sampling of the hue space by neuron selectivity. The lower
the sparsity measure is, the denser the sampling is, i.e., low sparsity means a high number of
different and highly distributed hues are represented by different color neurons.

(a) High color selective neuron in Conv1 (α = 0.65) (b) High color selective neuron in Conv5 (α = 0.59)

Figure 5: Activation variability (Y axis) of individual neurons to shape and color. (a) Each
line links activations to images with egual orientation at different color variations through hue
axis (X axis). Different lines for a different rotation. (b) Each line links activation to rotated
versions of the same image shape. Different lines for different image patches.

15



see a maximal activation when both shape (orientation) and color fits with the

corresponding original images (NF at top-left). Second, we perform a similar

experiment in layer Conv5, but shape complexity at this level reduces the ca-

pability to analyze the extent of the conclusions. In Fig. 5b we simulate shape

transformations by image patch rotations, and are applied to the 100-top image

patches of the neuron (each curve represents activations to one image patch).

Considering the neuron has a high color selective index (α = 0.65), we can see

the concentration of maximal activations on the original shape for all the image

patches. These preliminary experiments seem to be sustaining the hypothesis

of a strong entanglement through all layers, but should be performed on larger

sets of neurons involving new experiments and analysis as further research.

As regards single and double selective neurons, the number of single color

neurons increases with depth, while the number of doubles decreases. In Fig. 6a,

we plot all single color neurons along different convolutional layers, from Conv1

(inner ring) to Conv5 (outer ring). Each single color neuron is plotted at its

representative hue (estimated Gaussian mean). Observe that the distribution

falls in two main hue regions on deeper layers (orangish and bluish), while

representatives are more distributed over hue in shallow layers. The rest of plots

in the same Fig. 6b- 6f show single (outer ring) and double color neurons (inner

ring) per layer. Double color neurons are plotted by their two representative

hues (two estimated Gaussian means), the same NF is reproduced on both

hues, and they are linked by a line to visualize their connection. Intersection

of lines in similar directions outlines the emergence of color axes. A Bluish-

Orangish/Brownish axis clearly arises in deeper layers, but this is studied in

subsequent lines.

To analyze the opponency property of double color neurons, we represent

their color pairs (Mean Color1 and Mean Color2) by their chromatic coordinates

projected on the O2-O3 plane of the opponent space (see Fig. 6). For each of

these colors we compute their hue, which is estimated as the angle between

the vector formed by the projected color point with respect to the origin of the

opponent space, and the O2 axis that is taken as the origin of the hue dimension.
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To distinguish the two colors of the neuron pair, Color1 denotes the one with

smallest hue angle and Color2 is the other one.. In this way, perfect opponency

(or 180◦ of angular distance between them) is represented by the location of the

black dashed line (top left corner). The closer a neuron is to this dashed line,

the more opponent it is. Overall, we can see from these plots that opponency

decreases with depth. The maximum is found at the first convolutional layer.

We performed a cluster analysis to find the main emerging axes, defined as

groups of neurons sharing the same axes direction. For this purpose, we use

the k-means technique and test from K = 3 to 7 to detect the best number of

clusters using Elbow method, which is based on a ratio of the between-group

variance with respect to the total variance.

In Table 2, we list the clusters obtained. We assigned an axis name to each

cluster and compute its angular distance to perfect opponency. Color names

used to label each axis were approximately assigned by the observation of the

NFs in the cluster. From this table we can conclude two main observations: (a)

in layer Conv1 all double color neurons present a remarkable opponency property

(rows 1 to 3), (b) a special Bluish-Orangish (or a similar Bluish-Brownish) axis

emerges from layer Conv2 up to the deepest layers (Rows 5-6). The emergence

of these axes is supported by the small angular distance (in bold) to perfect

opponency. Although we will refer to this axis as Blue-Orange (or Blue-Brown)

the Blue hue presents a clear clockwise rotation with respect to Blue-Yellow

axis found in Conv1 (see Fig. 6).

Finally, in Fig. 1 we plot the distribution of color selective neurons accord-

ing to their selective hue (black line on colored bars). We combine single and

double color neurons (for double color neurons we consider both hues and dupli-

cate the single color neuron hues). We can observe a clear correlation between

both distributions, presenting two significant peaks on orangish and bluish hue

regions. This result confirms that color selective neurons learned by the CNN

are adapted to the dataset bias, in a similar way to what happens with color

bias in natural scenes that has been proved to have implications in higher color

sensitivity in the human visual system (McDermott and Webster (2012)).
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(a) All layers (only single) (b) Conv1 (c) Conv2

(d) Conv3 (e) Conv4 (f) Conv5

Figure 6: Chromaticity of color selective neurons across layers. (a) Single color neurons for
all layers from inner ring (layer Conv1) to outer ring (layer Conv5). In top right schemes of
(b), (c), (d), (e) and (f): Single color neurons (outer ring) and double color neurons (inner
ring) for layers Conv1, Conv2, Conv3, Conv4 and Conv5, respectively. Double color neurons
are plotted twice (to represent double chromaticity) and linked with a line.
Graphics in left-bottom of (b)-(f) plots of emergent axes from Cluster analysis on the op-
ponency property of double color neurons. Double neurons are represented by their pair of
colors: mean hue of Color 1 in X axis (smallest hue) and mean hue of Color2 in Y axis (largest
hue). Top left dashed line represents location of perfect opponent pairs (180◦).
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Double color neurons Conv1 Conv2 Conv3 Conv4 Conv5

Blue-Yellow 11.69 - - - -
Red-Cyan 13.26 - - - -

Magenta-Green 20.05 32.64 89.86 101.66 65.72
Red-Green - 56.32 - - -

Blue-Orange - 3.27 1.46 - -
Blue-Brown - - 3.03 14.81 0.31
Blue-Green - - 27.71 31.85 40.38

Brown-Green - - 87.56 107.54 100.97

Table 2: Deviation from opponency for clustered double color neurons through all layers.
Neuron cluster with small deviation < 21◦ (in bold) are proposed as opponent emergent axes.

In next sections color selectivity results are specifically analyzed in 3 groups:

Conv1, Conv2 and Conv3-Conv5 together considering the similarity of their neu-

ron population. Here we take some risk hypothesizing some parallelism of these

three groups with the V1, V2 and V4/PIT/TE, suggested in the hierarchical

model of color processing in macaque cerebral cortex summarized by Conway

and Tsao (2009).

4.1. Layer Conv1

Trained neurons in layer Conv1 are compiled in Fig. 7a. Our classification

of the neuron population in this layer can be summarized in two main groups:

selective and non selective neurons around 40% and 60%, respectively. Only

two neurons are found as low color selective, and as a particularity of this

layer, there are more double color neurons than single. Another property that

emerges by direct observation of the set of NFs is the spatial frequency shown

in color and non color neurons: while color neurons only show a low spatial

frequency selectivity, non color neurons present a higher diversity of different

spatial frequencies. This correlates with reported evidences in human vision in

Lennie et al. (1990); Schluppeck and Engel (2002).

Three opponent axes emerge in this layer (see Fig. 6b). Two with a higher

number of neurons Red-Cyan and Blue-Yellow, that could correlate with the

findings of Derrington et al. (1984) (extensively reviewed in Lennie and D’Zmura

(1988)). And a third one, Green-Magenta, with less neurons, but which could
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be related to the fourth oponnent channel reported by Conway (2001) (Black-

White is counted). We would like to mention here that our results are only

an approximation of an uncalibrated space where labels are assigned by mere

NF observation. Moreover, we would like to state that CNN training does not

hold any constraint about similarities between neurons of the same layer. Then,

boundaries between layers are fuzzy, and we can find neurons in second layer

that could be grouped with these Conv1 neurons, as well as neurons in first layer

that, duo to their spatio-chromatic properties would fit better in Conv2 (framed

in red). Thus, for clarity reasons we keep our conclusions at the layer level, not

trying to give a global and exhaustive classification of the color neurons.

4.2. Layer Conv2

Neurons in Conv2 were classified as shown in Fig. 7b. At a first glance, we

can see that non color selective neurons show an increase in shape complexity

with respect to the previous layer: more complex edges as circular edges in

diverse directions, oriented bars, shading effects, centered and shifted blobs

or homogeneous textures and edges between textures. They are more complex

features than oriented edges and basic gratings of the previous Conv1. However,

they cannot be identified as object shapes like those we will find in subsequent

Conv3-Conv5. This layer seems to represent surface details like different kind of

textures, specific colored and oriented bars, or more complex surface boundaries

(oriented c-shaped or shaded contours) in comparison to the simple oriented

edges (step-like) found in Conv1.

Regarding color selective neurons, we find colored edges and homogeneous

neurons as in layer Conv1. The main novelty regarding shape are colored blobs

and oriented bars. Double color neurons were clustered in three main axes (see

Fig. 6c): Magenta-Green, Red-Green, and Blue-Orange. The emergent Blue-

Orange axis with a small deviation from opponency of 3.27◦ (see Table 2) is a

novelty of this layer, which anticipates the edges of object shapes that will be

represented in posterior layers laying on the hue bias of the dataset. Another two

emergent opponent axes (Red-Green or Magenta-Cyan) seem more an extension
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(a) Conv1 (b) Conv2

Figure 7: (a) 96 Neuron Features of Layer Conv 1. 38 Color selective neurons (39.58%).
12 single Color (12.50%) and 26 double opponent neurons (27.08%). 13 Red-Cyan, 10 Blue-
Yellow and 3 Magenta-Green cells. (b) 219 Neuron Features of Conv2: 75 being color selective
neurons (34.25%) with 54 single color neurons and 21 double color neurons (13 for the Blue-
Orange, 4 for the Magenta green and other 4 for the Red-Green). Organization and label
assignment in this Figure were visually performed from NF shape, with the exception of the
opponent axes that come from a cluster analysis and single color neurons within the same row
are sorted from the hue-angle we found using the EM algorithm for fitting their distribution
by a Gaussian. 21



of axes in Conv1.

Another peculiarity of this layer, observed in Fig. 6a, is that color selectivity

turns into a more dense sampling on the hue circle, in comparison to the rest

of layers. To quantify this observation, we computed a sparsity measure l0,

studied in Hurley and Rickard (2009)2, on the hue distribution of colors to

which neurons are selective. We performed this measurement for different hue

sampling sizes. The results are shown in Fig. 4b, where a clear minimum in

sparsity emerges at Conv2. This continuum in hue selectivity could be related

to the measurements reported by H. et al. (2008); Xiao and Felleman (2003);

Webster et al. (2007a); Xiao (2014) on the existence of hue maps in V2 cortical

areas reviewed in Conway (2003).

The peculiarities of the neurons of this layer can be summarized as: more

complex surface features (essentially non color), a more dense hue sampling,

reminiscent neurons from earlier opponent axes, and neurons defining a new

Blue-Orange axis, which will be also found in the subsequent layers and which

correlates with the dataset bias. Previous conclusions could correlate with the

singular intermediate role attributed to V2 in biological systems reported in

several works (Conway et al. (2010); Moutoussis and Zeki (2002); Shapley and

Hawken (2011); Solomon and Lennie (2007)).

4.3. Deeper layers: Conv3, Conv4 and Conv5

The last three convolutional layers of the architecture consist of color se-

lective neurons that seem to be highly linked to object shapes. Note that NFs

present with more blurred edges of averaged images, since increase in size affects

pixel-wise spatial variability.

In Fig. 8, we show an overview of all color selective neurons in these layers.

Further research is required for a full understanding of color and shape repre-

sentation in these layers, but we can observe 4 main groups of neurons that

should be more carefully explored. First, neurons devoted to specific object

2Measurement l0, defined as l0 = {j : Cj = 0}, counts the number of zero bins in a sampled
distribution, denoted as {cj}.
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shapes with a characteristic color (e.g. red and brown mushrooms, skin on faces

and human bodies, and dog faces, among others). Second, neurons activated by

homogeneous image areas of specific shapes simulating surround areas (e.g. sky

and grass backgrounds). Third, double color neurons that can represent colored

objects or object parts on specific colored backgrounds (e.g. blue bird in a green

surround or ladybugs in green leafs). Fourth, single color selective neurons in

which the NF does not identify a specific shape, but presenting colored regions

either as a central blob or as a surround, and with strong intensity variations.

From the observation of these NFs, we can also conclude that scale invariance is

represented by multiples neurons representing similar shapes at different layers

(different resolution), or small and large versions of the same shape within the

same layer.

Double color neurons only represent 2.5% of the three layers. Some of them

show clear opponency in the Blue-Orange or Blue-Brown, but some others (non-

opponent) show different combinations devoted to represent green or brown sur-

rounds jointly with different colored objects (brown, orange, blue or magenta).

Parallelism with biological systems is difficult to be established at this point,

since higher-order visual areas are not as well-known as V1, and our analysis

requires further research. However, later on we report some conclusions in pri-

mate visual systems that can show some similar ideas with previous conclusions,

like linked color-shape or object-surround selectivity.

Multiple areas have been reported to show color selectivity (reviewed by

Conway et al. (2010)). Some areas seem to combine shape and color selectivity

like V4 and PIT (posterior inferior temporal cortex) while others show narrow

color and saturation tuning and weak shape selectivity in TE (anterior IT).

Additionally, in an earlier work, in Schein and Desimone (2011) authors stated

that neurons in V4 have a high probability to be color selective to a large range

of colors and white surfaces, as well as an unusual spectral property sensitive

to surrounds that may play a role in figure/ground separation. In any case,

a detailed study of spatial selectivity on color artificial neurons could help in

shedding some more light on spatio-chromatic behaviors at these higher levels.
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Most of color selective neurons of these layers are single color neurons with

a huge concentration on orangish hues, as can be seen in Figs. 6d, 6e and 6f for

Conv3, Conv4, and Conv5, respectively. This is due to two factors: (a) their

neuron activity is related to encode objects surrounded by large backgrounds

(and not simple features as in Conv1 or Conv2), and (b) the bias of the dataset

to this specific orange hue. Therefore, the main difference between these layers

and the previous two, is that they are devoted to select entire objects surrounded

by specific backgrounds.

5. Conclusions

In this work we study how color is encoded by a trained convolutional neu-

ral network. We propose a color selectivity index to characterize the neuron

activation to the presence of a specific color in the input images. We use the

Neuron Feature (NF) as a tool to visualize neuron activity. We computed color

selectivity on all the neurons of a CNN with five convolutional layers trained

for an object classification task on a large image dataset with 1.2M annotated

images in 1000 different categories. This trained artificial network was shown to

have representational properties almost at the level of the primate brain. After

analyzing indexes and NFs across all the network neurons, we arrived at the

following conclusions:

First, a large number of color selective neurons are found through all five

layers of the neuronal architecture, although index is higher in shallow layers

and lower in deeper layers. Color and shape are entangled together at each color

selective neuron in all layers.

Second, layer Conv1 shows a strong opponent property with three axes and

a clear distinction between color and non color selective neurons. These two

groups also show different spatial properties: low spatial frequency selectivity

in color neurons, and high spatial frequency selectivity in non color neurons.

Both conclusions show a clear correlation with human vision.

Third, layer Conv2 has two main particularities: (a) emergence of a new

opponent axis in the same direction of the image dataset bias; and (b) a more
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dense sampling of hue of color selective neurons (suggesting some correlation

with hue maps in V2). Additionally, non color selective neurons present more

complex features than the oriented edges and basic gratings of the first layer.

But they cannot be seen as object shapes like those in subsequent layers. This

layer seems to be representing surface details beyond its boundaries.

Fourth, layers Conv3, Conv4, and Conv5 all have color selective neurons with

similar properties. Neurons are selective to colors mostly within the dataset

bias, that lies on the Blue-Orange (or -Brown) axis, plus some extensions to-

wards Green. Regarding the spatial activation of color neurons, we identified

four main groups of color selective neurons representing different types of color

shape interactions: specific object shapes (such as dog-faces, mushrooms, hu-

man body), homogeneous surround areas (such as sky or green-grass), specific

object-surrounds (such blue-bird in grass or ladybug on a leaf), or generic col-

ored shaped-blobs with strong intensity contrast. Finally, to mention that scale

invariance is represented by using multiple neurons selective to different scales.
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