
Embedding New Observations via

Sparse-Coding for Non-linear Manifold

Learning

B. Raducanu1 and F. Dornaika2,3

1 Computer Vision Center, Barcelona, SPAIN
2 Department of Computer Science and Artificial Intelligence

University of the Basque Country UPV/EHU, San Sebastian, SPAIN
3 IKERBASQUE, Basque Foundation for Science, Bilbao, SPAIN

Abstract

Non-linear dimensionality reduction techniques are affected by two critical

aspects: (i) the design of the adjacency graphs, and (ii) the embedding of

new test data—the out-of-sample problem. For the first aspect, the proposed

solutions, in general, were heuristically driven. For the second aspect, the

difficulty resides in finding an accurate mapping that transfers unseen data

samples into an existing manifold. Past works addressing these two aspects

were heavily parametric in the sense that the optimal performance is only

achieved for a suitable parameter choice that should be known in advance.

In this paper, we demonstrate that Sparse representation theory not only

serves for automatic graph construction as shown in recent works, but also

represents an accurate alternative for out-of-sample embedding. Considering

for a case study the Laplacian Eigenmaps, we applied our method to the face

recognition problem. To evaluate the effectiveness of the proposed out-of-

sample embedding, experiments are conducted using the k-nearest neighbor

(KNN) and Kernel Support Vector Machines (KSVM) classifiers on six public

Preprint submitted to Pattern Recognition May 17, 2013

face datasets. The experimental results show that the proposed model is able

to achieve high categorization effectiveness as well as high consistency with

non-linear embeddings/manifolds obtained in batch modes.

Keywords: Non-linear manifold learning, out-of-sample embedding, sparse

representation, face recognition

1. Introduction

Manifold learning refers to the problem of recovering the structure of a

manifold from a set of unordered sample data. Manifold learning is often

equated with dimensionality reduction, where the goal is to find an embed-

ding or unrolling of the manifold into a lower dimensional space such as

certain relationships between samples are preserved. Such embeddings are

typically used for visualization. In recent years, a new family of non-linear

dimensionality reduction techniques for manifold learning has emerged. The

most known are: Kernel Principal Component Analysis (KPCA) [1], Locally

Linear Embedding (LLE) [2, 3], Isomap [4], Supervised Isomap [5], Lapla-

cian Eigenmaps (LE)[6, 7]. This family of non-linear embedding techniques

appeared as an alternative to their linear counterparts which suffer severe

limitation when dealing with real-world data: i) they assume the data lie

in an Euclidean space and ii) they may fail to get a faithful representation

of data distribution when the number of samples is too small. On the other

hand, the non-linear dimensionality techniques are able to discover the intrin-

sic data structure by exploiting the local topology. In general, they attempt

to optimally preserve the local geometry around each data sample while using

the rest of the samples to preserve the global structure of the data.

2

The non-linear methods such as Locally Linear Embedding (LLE), Lapla-

cian Eigenmaps, Isomap, Hessian LLE (hLLE) [8] focus on preserving the

local structure of data. LLE formulates the manifold learning problem as a

neighborhood-preserving embedding, which learns the global structure by ex-

ploiting the local linear reconstructions. It estimates the reconstruction coef-

ficients by minimizing the reconstruction error of the set of all local neighbor-

hoods in the dataset. Isomap extends the classical Multidimensional Scaling

(MDS) [9] by computing the pairwise distances in the geodesic space of the

manifold. Essentially, Isomap attempts to preserve geodesic distances when

data are embedded in the new low dimensional space. Based on the spectral

decomposition of the Laplacian of a graph, Laplacian Eigenmaps actually try

to find Laplacian eigenfunction on the manifold. Maximum Variance Unfold-

ing (MVU) [10] is a global algorithm for nonlinear dimensionality reduction,

in which all the data pairs, nearby and far, are considered. MVU attempts

to ’unfold’ a dataset by pulling the input patterns as far apart as possible

subject to constraints that distances and angles between neighboring points

are strictly preserved.

The main issues of the non-linear methods are: (1) the quality of embed-

ded space is very sensitive to the choice of free parameters used in the data

graph construction [11, 12], and (2) they do not provide an explicit mapping

function between low and high dimensional spaces [13, 14]. Such function is

essential for ensuring the continuity of low dimensional representation and

projecting data between spaces. Many existing manifold learning techniques

do not naturally contain an out-of-sample extension, so research has been

undertaken to find ways of extending manifold learning techniques to handle

3

new samples. The out-of-sample extension problem has not received much

attention by researchers since it was considered a pure non-linear regression

problem [15, 16]. Therefore, the out-of-sample problem has been addressed

quite satisfactorily by applying Radial Basis Function networks in order to

approximate the optimal mapping function [15]. However, the quality of

Radial Basis Function networks relies on the careful selection of a few pa-

rameters which are chosen empirically [17, 18]. In [19], the author presented

an algorithm, Locally Smooth Manifold Learning, for learning the structure

of a manifold in terms of tangent vectors. Rather than pose manifold learn-

ing as the problem of recovering an embedding, they posed the problem in

terms of learning a warping function for traversing the manifold using the

learned tangent vectors. Smoothness assumptions on this warp allowed the

method generalize to unseen data.

In [20], the authors cast MDS, ISOMAP, LLE, and LE in a common

framework, in which these methods are seen as learning eigenfunctions of a

kernel. The authors try to generalize the dimensionality reduction results

for the unseen data samples. In [21], the author proposes a method based

on probabilistic mixtures of factor analyzers to 1) model the density of im-

ages sampled from such manifolds and 2) recover global parameterizations of

the manifold. A globally nonlinear probabilistic two-way mapping between

coordinates on the manifold and images is estimated by combining several,

locally valid, linear mappings. In [22], the authors propose a novel solution

which involves approximating the kernel eigenfunction using Gaussian basis

functions. They also show how the width of the Gaussian can be tuned to

achieve extrapolation. Their method was applied to Maximum Variance Un-

4

folding (MVU) method [10]. In [23], the proposed method works by learning

the transformation that maps the neighborhood of the unlearnt sample from

the high to the low-dimensional space. This transformation is then applied

to the new sample to obtain an estimation of its low-dimensional embedding.

In this paper, we address the out-of-sample extension problem. We adopt

the sparse representation approach as an optimal solution to the ’out-of-

sample’ problem. The sparse representation was recently used as an effec-

tive alternative to the parametric construction of the adjacency graph [12].

Without any loss of generality, we chose the Laplacian Eigenmaps as one of

the non-linear dimensionality reduction techniques to test our method. We

present a generalized out-of-sample extension solution using the recent find-

ings in sparse coding theory. Unlike existing approaches we do not require

information to be retained from the learning process, such as the pairwise

distance matrix or the resultant eigenvectors, we simply learn the mapping

from the original high-dimensional data and its low-dimensional counterpart.

Although the proposed method integrates the locality preserving principle in

its derivation, it is intended to be independent of any specific manifold learn-

ing algorithm.

The paper is structured as follows. In section 2, we briefly review the

Laplacian Eigenmaps as well as the L1 graph construction. In section 3,

we introduce our proposed approach for the out-of-sample problem based on

sparse representation. Section 4 contains the experimental results performed

on six face datasets. We evaluate the performance of the proposed out-of-

sample method for the face recognition problem. Finally, in section 5 we

present our conclusions.

5

2. Background

2.1. Review of Laplacian Eigenmaps

Laplacian Eigenmaps is a recent non-linear dimensionality reduction tech-

nique that aims to preserve the local structure of data [6]. Using the notion

of the Laplacian of a graph, this non-supervised algorithm computes a low-

dimensional representation of the dataset by optimally preserving local neigh-

borhood information in a certain sense. We assume that we have a set of N

samples {xi}Ni=1 ⊂ RD. The original LE starts with building a graph on the

data samples. In this graph, the nodes represent the data samples and the

edges quantify the similarity among pairs of samples. There are several ways

for setting the edges of the graph. For instance, the most common strategy

is to use a K-nearest-neighbor or ϵ-ball graph, or a full mesh (all pairs are

connected). Once the edges are set, one can weigh each edge xi ∼ xj by a

symmetric affinity function Wij = K(xi;xj), typically Gaussian:

Wij = exp(−∥xi − xj∥2

β
) (1)

where β is a suitable positive scalar. It is usually set to the average of squared

distances between all pairs.

LE seeks latent points {yi}Ni=1 ⊂ RL that minimize 1
2

∑
i,j ∥yi −yj∥2 Wij,

which discourages placing far apart latent points that correspond to similar

observed points. If W ≡ Wij denotes the symmetric affinity matrix and D

is the diagonal weight matrix, whose entries are column (or row, since W is

symmetric) sums of W, then the Laplacian matrix is given L = D−W. The

6

objective function can also be written as:

1

2

∑
i,j

∥yi − yj∥2Wij = tr(ZT LZ) (2)

where ZT = Y = [y1, . . . ,yN] is the L × N matrix of embedded data and

tr(.) denotes the trace of a matrix. The ith row of the matrix Z provides the

vector yi—the embedding coordinates of the sample xi.

The matrix Z (or equivalently Y) is the solution of the optimization

problem:

min
Z

tr(ZT LZ) s.t. ZT DZ = I, ZT L1 = 0 (3)

where I is the identity matrix and 1 = (1, . . . , 1)T . The first constraint

eliminates the trivial solution Z = 0 (by setting an arbitrary scale) and the

second constraint eliminates the trivial solution 1 (all samples are mapped to

the same point). Standard methods show that the embedding matrix is pro-

vided by the matrix of eigenvectors corresponding to the smallest eigenvalues

of the generalized eigenvector problem,

Lz = λDz (4)

Let the column vectors z0, . . . , zN−1 be the solutions of (4), ordered ac-

cording to their eigenvalues, λ0 = 0 ≤ λ1 ≤ . . . ≤ λN−1. The eigenvector

corresponding to eigenvalue 0 is left out and only the next eigenvectors for

embedding are used. The embedding of the original samples is given by the

row vectors of the matrix Z, that is, Y = [y1,y2, . . . ,yN] = ZT .

xi −→ yi = (z1(i), . . . , zL(i))
T (5)

where L < N is the dimension of the new space.

7

From equation (4), we can observe that the dimensionality of the subspace

obtained by LE is limited by the number of samples N .

2.2. Review of L1 graph construction

In traditional graph construction process, the graph adjacency structure

and the graph weights are derived separately (Previous section). In [12], the

authors argue that the graph adjacency structure and the graph weights are

interrelated and should not be separated. Thus it is desired to develop a

procedure which can simultaneously carry out these two tasks within one

step. Indeed, many experiments show that the performance of classification

tasks in the embedded space of LE obtained with a traditional graph con-

struction scheme can highly depend on the choice of the neighborhood size

in the constructed graph [24, 25, 26]. Choosing the ideal size in advance can

be a very difficult task.

The basic idea of [12] is to simultaneously estimate the graph adjacency

structure and graph weights. To this end, every sample image is coded as a

sparse linear combination of the rest of the training samples [27, 28]. This

is carried out by implementing an L1 minimization process to obtain the

sparse representation of that sample as a linear combination of the remaining

training samples. The obtained sparse coefficients will reflect the relation

among samples [29, 30], and hence they will provide the graph adjacency

structure as well as the weights of its edges where the absolute value of a

coefficient can be considered as the edge weight.

8

Figure 1: The out-of-sample problem consists in finding the embedding coordinate od a

newly unseen sample.

3. Proposed out-of-sample embedding

In this section, we show that the theory of sparse representation (coding)

can be used for solving the out-of-sample extension problem without relying

on traditional heuristics that are usually parametric. For a case study, we

use the Laplacian Eigenmaps for the non-linear embedding. The reason of

our choice is motivated by the fact that this transform is widely used by the

machine learning community for spectral clustering [31, 32, 33].

3.1. Projection of new samples

Assume we have obtained an LE embedding Ys = (y1, . . . ,yN) of seen

samples Xs = (x1, . . . ,xN) and consider an unseen sample (out-of-sample

observation) in observed space xN+1 (See Figure 1). The natural way to em-

9

bed the new sample would be to recompute the whole embedding (Ys,yN+1)

for (Xs,xN+1) using Eq. (3). This is computationally costly and does not

lead to define a mapping for new samples; we seek a way of keeping the

old embedding fixed and embed new sample based on that. Then, the next

step is to recompute the embedding while keeping the old embedded samples

fixed and impose that the embedding of the new sample (vector yN+1) should

minimize the following target function:

N∑
i=1

∥yN+1 − yi∥2 W(N+1)i (6)

=
N∑
i=1

(yN+1 − yi)
T (yN+1 − yi)W(N+1)i (7)

The above should correspond to a minimum, and thus the derivative with

respect to yN+1 of the target function should disappear:

2
N∑
i=1

(yN+1 − yi)W(N+1)i = 0 (8)

From the above, we can conclude that the embedding yN+1 is given by:

yN+1 =

∑N
i=1 W(N+1)i yi∑N
i=1 W(N+1)i

(9)

The above formula stipulates that the embedding of an unseen sample is

simply the linear combination of all fixed embedded samples where the linear

coefficients are set to the similarities between the unseen sample and the

existing samples.

WheneverW(N+1)i is set to a Kernel function (i.e.,W(N+1)i = K(xN+1,xi),

Eq. (9) is equivalent to the Laplacian Eigenmaps Latent Variable Model

(LELVM) introduced in [34].

10

3.2. Computation of the similarity coefficients via Sparse Representation

The problem of out-of-sample embedding is reduced to the estimation of

the similarities W(N+1)i, i = 1, . . . , N . In [34], these W(N+1)i were computed

using a K nearest neighbor and a Heat Kernel. However, it is well known that

the neighborhood size as well as the Kernel parameter may affect the embed-

ding process. We will bypass this limitation by using the coding provided by

sparse representation.

We apply the sparse coding/representation principle for computing the set

of coefficientsW(N+1)i [30, 35]. Let the vector a = (W(N+1)1,W(N+1)2, . . . ,W(N+1)N)
T .

Thus, the objective is to compute the vector a given the unseen sample xN+1

and the training data X. Based on a linear coding, one can assume that the

following equation is approximately satisfied:

xN+1 =
N∑
i=1

ai xi = Xa

The sparse solution is given by solving the following L1 minimization

problem:

min
a

∥a∥L1 s.t. xN+1 = Xa (10)

As suggested in [28], in many practical cases, data are corrupted by large

errors. Thus, the above formulation should be modified. The unseen sample

can be given by:

xN+1 =
N∑
i=1

ai xi + e = Xa+ e (11)

where e is a vector of errors—a fraction of its entries are nonzero. The

nonzero entries of e model which elements or pixels in xN+1 are corrupted

11

or occluded. The locations of corruption can differ for different test samples

and are not known in advance. The errors may have arbitrary magnitude

and therefore cannot be ignored or treated with techniques designed for small

noise such as the one given in Eq. (10).

The goal is to minimize the L1 norm of the vector a as well as that of e:

min
a,e

(∥a∥L1 + ∥e∥L1) s.t. xN+1 = Xa+ e (12)

Let a′ denote the vector a′ = (aT , eT)T and I denote the D × D identity

matrix, then the objective function (12) can be written as:

min ∥a′∥L1 s.t. [X I] a′ = xN+1 (13)

Moreover, one can assume that the corrupting error e has a sparse repre-

sentation with respect to some basis Ae. That is, e = Ae u0 for some sparse

vector u0. Here, we have chosen the special case Ae = I as e is assumed

to be sparse with respect to the natural pixel coordinates. If the error e is

know to be more sparse with respect to another basis, e.g., Fourier or Haar,

one can simply replace the identity matrix by another matrix Ae.

Although no sparse priors are imposed, the sparse property of the coeffi-

cient vector a is naturally generated by the L1 optimization. The optimiza-

tion of (13) is carried out using the matlab package provided by [36].

Once the vector (aT , eT)T is computed, the similarity coefficients W(N+1)i

are set to:

W(N+1)i = |ai|, i = 1, . . . , N

12

3.3. Advantages of the proposed out-of-sample embedding scheme

Although our proposed out-of-sample formula (Eq. (9)) is similar to

that of the Latent Variable Model [34], it has two interesting differences and

advantages:

1. For the LVM scheme, the neighborhood size must be set manually,

and the optimal setting may be different for different datasets. In our

scheme, the computation of similarity coefficients adapts to the dataset

through the use of sparse coding. No parameter is required.

2. There have been many ways to compute the similarity coefficients and

the most popular one among them is the typical Heat Kernel (Gaus-

sian weighting function) described in Eq.(1). However, the Gaussian

aperture may affect the final classification results significantly, and how

to optimally determine this parameter is still an open problem. Our

scheme get rid of this since we exploit the sparseness property of the

deduced coefficients in order to express both adjacency structure and

the associated weights without any predefined parameter.

4. Performance evaluation

To validate the effectiveness of our proposed approach, we applied it to

the face recognition problem. The experimental results are reported in terms

of recognition accuracy and a similarity measure of the embedding (’out-of-

sample’ vs. ’batch-mode’).

4.1. Datasets

In our experiments, we considered six public face datasets, which are

characterized by a large variation in face appearance.

13

1. Yale1: The YALE face dataset contains 165 images of 15 persons.

Each individual has 11 images. The images demonstrate variations in

lighting condition, facial expression. Each image is resized to 32×32

pixels.

2. ORL2:. There are 10 images for each of the 40 human subjects,

which were taken at different times, varying lighting, facial expressions

(open/closed eyes, smiling/not smiling) and facial details (glasses/no

glasses). The images were taken with a tolerance for some tilting and

rotation of the face up to 20o.

3. UMIST3:. The UMIST dataset contains 575 gray images of 20 differ-

ent people. The images depict variations in head pose.

4. Extended Yale - part B4:. It contains 16128 images of 28 human

subjects under 9 poses and 64 illumination conditions. In our study, a

subset of 1800 images has been used. Figure 5 shows some face samples

in the extended Yale Face Database B.

5. PF01 It contains the true-color face images of 103 people, 53 men and

50 women, representing 17 different images (1 normal face, 4 illumina-

tion variations, 8 pose variations, 4 expression variations) per person.

All the people in the dataset are Asians. There are three kinds of sys-

1http : //see.xidian.edu.cn/vipsl/database Face.html
2http : //www.cl.cam.ac.uk/research/dtg/attarchive/

facedatabase.html
3http : //www.shef.ac.uk/eee/research/vie/research/

face.html
4http : //vision.ucsd.edu/ ∼ leekc/ExtY aleDatabase/

ExtY aleB.html

14

tematic variations, such as illumination, pose, and expression variations

in the dataset.

6. PIE5: We use a reduced dataset containing 1926 face images of 68 indi-

viduals. The images contain poses variations, illumination variations,

and facial expression variations. The image size is 32×32 pixels with

256-bit grey scale.

Figure 2: Some samples in Yale dataset.

Figure 3: Some samples in ORL dataset.

4.2. Recognition accuracy

To make the computation of the embedding process more efficient, the

dimensionality of the original face samples was reduced by applying random

5http : //www.ri.cmu.edu/projects/project 418.html

15

Figure 4: Some samples in UMIST dataset.

Figure 5: Some samples in Extended Yale dataset.

Figure 6: Some samples in PF01 dataset.

Figure 7: Some samples in PIE dataset.

16

projections [37]. It has a similar role to that of PCA yet with the obvious

advantage that random projections do not need any training data.

We have compared our method with three other approaches. The first

method is is the Latent Variable Model (LVM), proposed in [34]. The second

one is a linearization of the existing mapping Xs → Ys. To this end, we use

a simple linear regression in order to infer a matrix transform A that best

approximates the existing mapping through the linear equationYs = AT Xs.

We stress the fact that the linearization has not been thoroughly tested as

an an out-of-sample method. Instead, this linearization was used for spectral

regression (e.g., [38]). The third method is a representation based on Radial-

Basis Functions (RBF) [17, 15]. In our implementation of the RBF method,

we use Gaussian kernels whose number is equal to the number of training

samples. In other words, we consider each training sample as a center. The

aperture of the Gaussian kernels was set to the average squared distances

between the pairs of the training samples.

For each face dataset and for every embedding method, we conducted

three groups of experiments for which the percentage of training samples

was set to 30%, 50% and 70% of the whole dataset. The remaining data was

used for testing. Here, the testing implies: (i) the out-of-sample embedding

of the unseen observation (face) (new observation embedding), and (ii)

assigning it a class-label through the use of a classifier in the embedded space

(recognition).

We considered for comparison two classifiers: nearest neighbor (NN)

and Support Vector Machines (SVM). For a given out-of-sample embedding

method, the recognition rate was computed for several dimensions belonging

17

to the interval [5, Lmax], where Lmax is a parameter directly related with the

number of training samples. In Figures 8 and 10 we depict the recognition

rate (based on NN and SVM, respectively) as a function of dimension of the

embedded space, considering 30% of data for training, for all the 4 out-of-

sample embedding methods. The curves have been obtained by averaging the

results over ten random splits. In the case of NN classifer, we use 1 neighbor

for classification. Regarding SVM, we use a gaussian kernel. Similar results

are depicted in Figures 9 and 11, but this time considering 70% of data for

training.

In Tables 1 and 2, we present the best (average) performance obtained by

each ’out-of-sample’ method, based on 10 random splits using NN and SVM,

respectively. Numbers in bold designate the best results. For the case of

LVM method, the ϵ parameter corresponds to the number of neighbors used

to approximate the unseen sample. We could appreciate that the smaller

this number is, the better the result of LVM method.

From the results, we can draw the following conclusions:

(i) For the case of the NN classifer, the above results confirm the superior-

ity of our approach when compared with existing ones. We can observe that

this superiority was obtained for all datasets and for all dimensions tested

for the obtained embedding space. We can also observe that the lineariza-

tion method provided the poorest results, which can be explained by the fact

that the linear method is global and does not take into account the local

adjacency information. We can also appreciate that, for the NN classifier,

the performance of LVM and RBF depends on the dataset used. There is no

general trend that shows that one method is better than the other.

18

(ii) For the case of SVM, the sparse representation does not guarantee

always the best recognition accuracy rate, but it can be outperformed by the

RBF method in some cases. This could be explained by the fact that both

RBF and SVM are highly non-linear techniques which can benefit each other

well. For the SVM classifier, we can observe that the superiority of RBF was

only obtained for a few cases and for high dimensions (see the PF01 and PIE

datasets in Figures 10 and 11). If we consider the PF01 dataset with 70%

of data for training (the lower part of Figure 11), we can observe that the

RBF method provided better results than the sparse representation method

for dimensions that are larger than 550. This dimension becomes 845 for

the PIE dataset (the lower part of Figure 11). In practice, it should be a

trade-off between a high recognition rate and a compact representation with

a reduced number of dimensions. Thus, this requirement favors again our

proposed sparse representation method since it has the best performance for

low dimensions even when challenging face datasets (such as PF01 and PIE)

are considered. It is worth mentioning that this advantage is not shown in

the tables since the latter depict the best performances over the number of

dimensions.

4.3. Assessing manifold reconstruction accuracy

In the previous section, we have evaluated the recognition performance

of the proposed out-of-sample embedding method. However, the main role

of the out-of-sample embedding method is to complete the reconstruction of

the manifold in the embedded space (i.e., by adding the new observations in

the embedded space). To this end, we can compare the coordinates of the

new embedded observations with their coordinates computed in the batch

19

mode. The batch mode assumes that the whole dataset is used in order to

get the non-linear manifold learning.

In order to quantify the accuracy of the out-of-sample embedding meth-

ods, we use the following error measure:

e =
dist(Y, Ŷ)

∥Ŷ∥F

where dist(,) denotes the Procrustes distance [39], ∥A∥F denotes the Frobe-

nius norm of the matrix A, and Y and Ŷ are the test data that are provided

by the out-of-sample method and the associated batch one, respectively. The

above error can quantify the dissimilarity between the batch mode geometric

configuration and the out-of-sample geometric configuration related to the

test observations.

In Table 3 we show some results based on this definition for all the modal-

ities and for all out-of-sample methods. Numbers marked in bold represent

the best alignment between ’out-of-sample’ and ’batch-mode’ embedding.

The smaller the number, the better the alignment. We could conclude that

our proposed sparse representation method offers the best similarity with the

batch mode embedding

Additionally, Figure 12 shows, for the UMIST dataset (in the modal-

ity 70-30), the evolution of the dissimilarity obtained by the out-of sample

methods as function of dimensionality of the embedded space. We could

appreciate that, for all out-of-sample methods, the dissimilarity distance is

decreasing with the increase of the embedding dimensionality. However, af-

ter a certain value, the sparse representation method, again, guarantees the

highest similarity. We can also observe that the alignment obtained by the

20

LVM and our proposed method is much better than that of the linearization

and RBF methods.

4.4. Assessing algorithms’ complexity

Regarding the algorithms’ complexity, the critical aspect is represented

by the computational load needed to project a new sample on the embedded

space. Let d denote the adopted dimensionality of the non-linear embedded

space. Let D denote the sample dimension in input space and N denote the

number of training samples. The Linearization method is based on a linear

regression. This out-of-sample method requires: (i) the computation of the

pseudo-inverse of a D×N matrix, (ii) a matrix multiplication to get the lin-

ear transform (a d×D matrix), and (iii) a matrix-vector product to obtain

the projection of the unseen sample. On its turn, the RBF method requires:

(i) computing N(N +1)/2 elements of a symmetric Kernel matrix associated

with the training set, (ii) computing N Kernel elements (test sample with

the whole training samples), (iii) computing the inverse of an N × N ma-

trix, and (iv) a matrix-vector product to obtain the projection of the unseen

sample. Regarding the Latent Variable Model, this method requires: (i) the

estimation of the K nearest neighbors, (ii) the computation of the Kernel

responses between the test sample and these K neighbors, (iii) a weighted

sum of K embedded samples (Eq. (9)). Our proposed Sparse Representation

method consists of two main steps: (i) Computing the blending weights via

an L1 minimization (Eq. (13)), and (ii) Performing a weighted sum of the

embedded samples (Eq. (9)). It is obvious that the first step is the most

computationally expensive one [36]. Its complexity depends on the size of the

21

matrix used as a dictionary for L1 coding (the dictionary refers to the basis

matrix [X, I] in Eq. (13)) which is given by D×(N+D). In order to quantify

the computational complexity of all out-of-sample embedding methods used

in this paper, we have considered the Extended Yale dataset, in the modality

70-30 (1241 samples for training).

Table 4 illustrates the CPU times (in milliseconds) required to project a

new sample. The dimensionality of the data in the non-linear manifold was

set to 1200 (this is related to the size of the training set). We performed the

experiments using a non-optimized MATLAB code running on a PC equipped

with a dual-core Intel processor at 2 Ghz and 2 Gb of RAMmemory. It should

be noted that the proposed method has the highest computational load since

it relies on an L1 minimization based on a very large dictionary. Despite of

the increased time required by the proposed Sparse Representation method,

this should not be considered as a serious drawback. Indeed, the above CPU

time was obtained with a large dictionary formed by 1241 training samples,

each having 200 elements (each image is projected using Random Projection

adopting 200 axes). Therefore, alternative techniques that allow the use of a

small dictionary will help us to achieve a more efficient implementation (e.g.,

see Figure 14). These techniques can rely on online learning and clustering

(in both sequential and chunk update modalities).

Besides this, we also performed two additional studies (for Sparse Rep-

resentation only). One aims to estimate the computational complexity of

projecting a new sample, as function of the dimensionality of the input data.

As we have mentioned before, in our case, due to the use of Random Pro-

jections, we have reduced the dimensionality of the input image to 200. In

22

Table 5 we measured the computation time at several dimensions, starting

with 80 and finishing with 200, with a step of 20. For a more convenient

visualization of the complexity evolution, the same results were represented

as a plot in Figure 13. As it can be seen, by reducing the dimension of

samples in the dictionary to half, the CPU time is decreased by 23%. The

other study estimates the CPU time as a function of the size of the training

data. For a fixed dimensionality of the input data (in this case 100), we

have considered several sizes of training set, ranging from 600 up to 1200

with an incremental step of 100. The results are shown in Table 6 and the

corresponding plot is depicted in Figure 14. As can be seen by reducing the

size of the training set to half, the CPU time decreases by 73.8%. Due to the

rapid increase of the computational complexity with the size of the training

set, we are considering the possibility to adopt an L1 minimization strategy

based on a representative subset of the training set only.

5. Conclusions and Future Work

In this paper, we demonstrated that sparse representation can serve as

an accurate alternative for out-of-sample embedding. Considering for a case

study the Laplacian Eigenmaps, we applied our method to the face recogni-

tion problem. Indeed, the proposed out-of-sample embedding in general pro-

vided the best classification accuracy as well as the best alignment between

out-of-sample mode and batch mode. The experimental results demonstrate

that our algorithm can maintain an accurate low-dimensional representation

of the data without any parameter tuning. A natural extension of our ap-

proach is its application to online learning and incremental embedding.

23

0 5 10 15 20 25 30 35 40 45
40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

YALE

Linearization
LVM
RBF
Sparse

0 20 40 60 80 100
30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

ORL

Linearization
LVM
RBF
Sparse

0 20 40 60 80 100 120 140 160
40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

UMIST

Linearization
LVM
RBF
Sparse

0 100 200 300 400 500
20

30

40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

Extended Yale

Linearization
LVM
RBF
Sparse

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

PF01

Linearization
LVM
RBF
Sparse

0 100 200 300 400 500
0

10

20

30

40

50

60

70

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

PIE

Linearization
LVM
RBF
Sparse

Figure 8: Experimental results on all 6 datasets for the 30-70 modality. The used classifier

was 1 NN.

24

0 20 40 60 80 100
40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

YALE

Linearization
LVM
RBF
Sparse

0 20 40 60 80 100 120 140 160 180
30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

ORL

Linearization
LVM
RBF
Sparse

0 50 100 150 200 250 300 350
40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

UMIST

Linearization
LVM
RBF
Sparse

0 100 200 300 400 500 600 700
20

30

40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

Extended Yale

Linearization
LVM
RBF
Sparse

0 100 200 300 400 500
0

10

20

30

40

50

60

70

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

PF01

Linearization
LVM
RBF
Sparse

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

PIE

Linearization
LVM
RBF
Sparse

Figure 9: Experimental results on all 6 datasets for the 70-30 modality. The used classifier

was 1 NN.

25

0 5 10 15 20 25 30 35 40 45
40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

YALE

Linearization
LVM
RBF
Sparse

0 20 40 60 80 100
30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

ORL

Linearization
LVM
RBF
Sparse

0 20 40 60 80 100 120 140 160
40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

UMIST

Linearization
LVM
RBF
Sparse

0 100 200 300 400 500
20

30

40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

Extended Yale

Linearization
LVM
RBF
Sparse

0 50 100 150 200 250 300
10

20

30

40

50

60

70

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

PF01

Linearization
LVM
RBF
Sparse

0 100 200 300 400 500
20

30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

PIE

Linearization
LVM
RBF
Sparse

Figure 10: Experimental results on all 6 datasets for the 30-70 modality. The used classifier

was SVM.

26

0 20 40 60 80 100
40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

YALE

Linearization
LVM
RBF
Sparse

0 20 40 60 80 100 120 140 160 180
30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

ORL

Linearization
LVM
RBF
Sparse

0 50 100 150 200 250 300 350
40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

UMIST

Linearization
LVM
RBF
Sparse

0 100 200 300 400 500 600 700
20

30

40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

Extended Yale

Linearization
LVM
RBF
Sparse

0 100 200 300 400 500
10

20

30

40

50

60

70

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

PF01

Linearization
LVM
RBF
Sparse

0 200 400 600 800 1000
20

30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n

ra
te

 (
%

)

PIE

Linearization
LVM
RBF
Sparse

Figure 11: Experimental results on all 6 datasets for the 70-30 modality. The used classifier

was SVM.

27

Dataset \ Method Sparse Rep. LVM Lineariz. RBF

30%-70% ϵ = 3 ϵ = 5 ϵ = 7

YALE 72.36% 51.84% 41.66% 33.15% 65.43% 64.38%

ORL 69.25% 51.35% 37.71% 30.25% 41.71% 43.00%

UMIST 87.56% 69.72% 60.49% 52.65% 58.31% 60.76%

Ext. Yale 87.29% 46.66% 31.33% 24.25% 49.90% 81.45%

PF01 45.00% 19.50% 13.41% 10.36% 10.22% 34.58%

PIE 55.79% 19.86% 13.75% 11.18% 14.58% 44.35%

50%-50% ϵ = 3 ϵ = 5 ϵ = 7

YALE 81.85% 70.12% 61.60% 52.09% 68.14% 67.90%

ORL 82.50% 72.05% 60.35% 49.25% 46.38% 52.44%

UMIST 95.03% 85.90% 76.04% 70.03% 76.25% 83.61%

Ext. Yale 91.46% 61.09% 46.85% 39.03% 53.14% 89.61%

PF01 52.65% 27.32% 20.40% 20.23% 8.27% 42.10%

PIE 66.20% 27.47% 20.57% 16.79% 12.26% 56.24%

70%-30% ϵ = 3 ϵ = 5 ϵ = 7

YALE 86.73% 77.15% 73.87% 67.95% 75.51% 75.51%

ORL 88.75% 82.16% 73.66% 65.41% 53.25% 68.66%

UMIST 97.74% 93.06% 85.20% 79.94% 80.52% 91.79|%

Ext. Yale 92.12% 70.97% 58.36% 48.74% 57.14% 92.49%

PF01 54.41% 33.99% 27.06% 21.52% 8.66% 47.85%

PIE 72.82% 35.39% 26.78% 21.83% 13.42% 64.03%

Table 1: Maximum average recognition rate using the Nearest Neighbor classifier.

28

Dataset \ Method Sparse Rep. LVM Lineariz. RBF

30%-70% ϵ = 3 ϵ = 5 ϵ = 7

YALE 72.10% 55.00% 44.00% 36.30% 78.50% 78.10%

ORL 65.50% 51.90% 40.80% 31.50% 48.70% 49.50%

UMIST 86.30% 74.60% 63.10% 55.00% 57.20% 61.40%

Ext. Yale 89.57% 54.00% 45.57% 37.57% 83.28% 82.14%

PF01 44.42% 20.00% 14.71% 10.42% 24.57% 50.28%

PIE 60.28% 22.57% 17.71% 12.85% 43.14% 59.71%

50%-50% ϵ = 3 ϵ = 5 ϵ = 7

YALE 81.00% 71.70% 65.80% 56.20% 87.20% 87.40%

ORL 82.60% 75.40% 64.00% 52.80% 53.70% 62.60%

UMIST 94.40% 89.00% 80.80% 72.90% 79.50% 86.90%

Ext. Yale 94.14% 68.85% 63.00% 56.42% 88.28% 88.00%

PF01 53.42% 28.71% 23.00% 17.42% 20.14% 62.28%

PIE 73.28% 31.57% 23.57% 18.00% 38.57% 74.28%

70%-30% ϵ = 3 ϵ = 5 ϵ = 7

YALE 87.20% 78.60% 78.00% 72.80% 86.60% 87.40%

ORL 90.50% 85.60% 77.00% 68.00% 62.80% 75.70%

UMIST 97.40% 93.20% 88.00% 81.70% 88.20% 94.70%

Ext. Yale 95.71% 78.57% 75.00% 69.57% 90.57% 91.00%

PF01 60.28% 35.85% 29.14% 22.71% 15.71% 72.14%

PIE 80.71% 40.57% 30.14% 23.71% 36.71% 80.71%

Table 2: Maximum average recognition rate using the SVM classifier.

29

Sparse Rep. LVM Linearization RBF

30%-70%

YALE 0.4956 0.5300 0.5322 0.5306

ORL 0.4915 0.5227 0.6343 0.6319

UMIST 0.4337 0.5069 0.7181 0.7016

Ext. Yale 0.5086 0.6470 0.7699 0.6384

PF01 0.5833 0.6564 0.8095 0.6466

PIE 0.6981 0.7580 0.8047 0.6352

50%-50%

YALE 0.3786 0.4429 0.4578 0.4549

ORL 0.3597 0.4058 0.9614 0.7167

UMIST 0.3470 0.4103 0.5834 0.5564

Ext. Yale 0.3564 0.3892 0.7528 0.4958

PF01 0.4040 0.4746 0.7746 0.4433

PIE 0.4248 0.4514 0.7758 0.4462

70%-30%

YALE 0.2685 0.3173 0.3540 0.3486

ORL 0.2520 0.2686 0.3623 0.3440

UMIST 0.2442 0.2675 0.3722 0.3296

Ext. Yale 0.1982 0.2174 0.6658 0.3534

PF01 0.2474 0.2647 0.6707 0.2639

PIE 0.2474 0.2607 0.6794 0.2587

Table 3: Alignment error between batch-mode manifold and the out-of-sample computed

manifold (See text for details.)

30

0 20 40 60 80 100 120 140 160 180 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dimension

D
is

ta
nc

e

UMIST

Linearization
RBF
LVM
Sparse

Figure 12: Variation of the alignment error as a function of the embedded space dimen-

sionality

Method Sparse Rep. LVM Linearization RBF

CPU time 840.52 6.07 5.50 139.42

Table 4: CPU times (in milliseconds) representing the projection of one sample on the

embedded space. The dimension of the input data is (D = 200), the dimension of the

non-linear space is (d=1200), the number of training samples is (N=1241).

D 80 100 120 140 160 180 200

CPU Time 609.75 647.27 677.30 724.20 772.98 804.87 840.52

Table 5: CPU times (in milliseconds) representing the projection of a new sample on the

embedded space (dimensionality d= 1200), as a function of the dimension of input data,

D (using the Sparse Representation method).

31

80 100 120 140 160 180 200
600

650

700

750

800

850

Dimensionality of the input data

C
P

U
 ti

m
e

(in
 m

ili
se

co
nd

s)

Computational Complexity for Sparse Representation
based on the dimensionality of the input data

Figure 13: Variation of the CPU time (in milliseconds) of the Sparse Representation

method as a function of the dimensionality of the input data. The CPU time corresponds

to the projection of a new sample on the embedded space.

N 600 700 800 900 1000 1100 1200

CPU Time 169.68 219.23 285.85 351.48 447.37 513.04 647.27

Table 6: CPU times (in milliseconds) representing the projection of a new sample on

the embedded space, as a function of the size of the training data, N (using the Sparse

Representation method). The dimension of input data is kept fixed to D=100.

32

600 700 800 900 1000 1100 1200
150

200

250

300

350

400

450

500

550

600

650

Number of training samples

C
P

U
 ti

m
e

(in
 m

ili
se

co
nd

s)

Computational Complexity for Sparse Representation
based on the number of training samples

Figure 14: Variation of the CPU time (in milliseconds) of the Sparse Representation

method as a function of the size of the training data. The CPU time corresponds to the

projection of a new sample on the embedded space.

33

References

[1] B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as

a kernel eigenvalue problem, Neural Computation 10 (1998) 1299–1319.

[2] S. Roweis, L. Saul, Nonlinear dimensionality reduction by locally linear

embedding, Science 290 (5500) (2000) 2323–2326.

[3] L. K. Saul, S. T. Roweis, Y. Singer, Think globally, fit locally: Un-

supervised learning of low dimensional manifolds, Journal of Machine

Learning Research 4 (2003) 119–155.

[4] J. B. Tenenbaum, V. de Silva, J. C. Langford, A global geometric frame-

work for nonlinear dimensionality reduction, Science 290 (5500) (2000)

2319–2323.

[5] X. Geng, D. Zhan, Z. Zhou, Supervised nonlinear dimensionality reduc-

tion for visualization and classification, IEEE Transactions on systems,

man, and cybernetics-part B: cybernetics 35 (2005) 1098–1107.

[6] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction

and data representation, Neural Computation 15 (6) (2003) 1373–1396.

[7] P. Jia, J. Yin, X. Huang, D. Hu., Incremental Laplacian Eigenmaps by

preserving adjacent information between data points, Pattern Recogni-

tion Letters 30 (16) (2009) 1457–1463.

[8] D. Donoho, C. Grimes, Hessian eigenmaps: Locally linear embedding

techniques for high-dimensional data, in: Proc. of the National Academy

of Arts and Sciences, 2003.

34

[9] I. Borg, P. Groenen, Modern Multidimensional Scaling: theory and ap-

plications, Springer-Verlag New York, 2005.

[10] K. Q. Weinberger, L. K. Saul, Unsupervised learning of image manifolds

by semidefinite programming, International Journal of Computer Vision

70 (1) (2006) 77–90.

[11] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, S. Lin, Graph embedding

and extension: a general framework for dimensionality reduction, IEEE

Trans. on Pattern Analysis and Machine Intelligence 29 (1) (2007) 40–

51.

[12] S. Yan, H. Wang, Semi-supervised learning by sparse representation, in:

SIAM International Conference on Data Mining, 2009.

[13] M. W. Trosset, C. E. Priebe, The out-of-sample problem for classi-

cal multidimensional scaling, Comput. Stat. Data Anal. 52 (10) (2008)

4635–4642.

[14] B. Raducanu, F. Dornaika, A supervised non-linear dimensionality re-

duction approach for manifold learning, Pattern Recognition 45 (2012)

2432–2444.

[15] A. Elgammal, C. Lee, Non-linear manifold learning for dynamic shape

and dynamic appearance, Computer Vision and Image Understanding

106 (1) (2007) 31–46.

[16] Y. Yang, F. Nie, S. Xiang, Y. Zhuang, W. Wang, Local and global regres-

sive mapping for manifold learning with out-of-sample extrapolation, in:

American Association for Artificial Intelligence Conference, 2010.

35

[17] C. Piret, Analytical and numerical advances in radial basis functions,

Ph.D. thesis, University of Colorado at Boulder (2007).

[18] M. Scheuerer, An alternative procedure for selecting a good value for

the parameter c in rbf-interpolation, Advances in Computational Math-

ematics 34 (1) (2011) 105–126.

[19] P. Dollar, V. Rabaud, S. Belongie, Learning to traverse image manifolds,

in: NIPS, 2006.

[20] Y. Bengio, J. Paiement, P. Vincent, Out-of-sample extensions for LLE,

Isomap, MDS, eigenmaps and spectral clustering, in: Advances in Neu-

ral Information Processing, 2004.

[21] J. Verbeek, Learning nonlinear image manifolds by global alignment of

local linear models, in: IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 28, 2006, pp. 1236–1250.

[22] T.-J. Chin, D. Suter, Out-of-sample extrapolation of learned manifolds,

IEEE Transactions on Pattern Analysis and Machine Intelligence 30

(2008) 1547–1556.

[23] H. Strange, R. Zwiggelaar, A generalised solution to the out-of-sample

extension problem in manifold learning, in: American Association for

Artificial Intelligence Conference, 2011.

[24] L. Zhan, L. Qiao, S. Chen, Graph-optimized locality preserving projec-

tions, Pattern Recognition 43 (2010) 1993–2002.

36

[25] Y. Xu, A. Zhong, J. Yang, D. Zhang, LPP solution schemes for use with

face recognition, Pattern Recognition 43 (2010) 4165–4176.

[26] J. Liu, Face recognition on Riemannian manifolds, Master’s thesis, Au-

tonomous University of Barcelona (2011).

[27] D. L. Donoho, M. Elad, V. Temlyakov, Stable recovery of sparse over-

complete representations in the presence of noise, IEEE Trans. Informa-

tion Theory 52 (1) (2006) 6–18.

[28] J. Wright, A. Yang, A. Ganesh, S. Sastry, Y. Ma, Robust face recognition

via sparse representation, IEEE Trans. on Pattern Analysis and Machine

Intelligence 31 (2) (2009) 210–227.

[29] M. Elad, Sparse representations are most likely to be the sparsest pos-

sible, Journal on Applied Signal Processing 2006 (2006) 1–12.

[30] J.-B. Huang, M.-H. Yang, Fast sparse representation with prototypes, in:

IEEE Conference on Computer Vision and Pattern Recognition, 2010,

pp. 3618–3625.

[31] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans.

on Pattern Analysis and Machine Intelligence 22 (8) (2000) 888–905.

[32] A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an

algorithm, in: NIPS 14, 2002.

[33] S. X. Yu, J. Shi, Multiclass spectral clustering, in: IEEE International

Conference on Computer Vision, 2003.

37

[34] M. A. Carreira-Perpinan, Z. Lu, The Laplacian Eigenmaps latent vari-

able model, Journal of Machine Learning Research 2 (2007) 59–66.

[35] M. Zibulevsky, M. Elad, L1-L2 optimization in signal and image pro-

cessing, IEEE Signal Processing Magazine 27 (3) (2010) 76–88.

[36] E. Candes, J. Romberg, l1-magic: recovery of sparse signals via con-

vex programming, CALTECH, http://www.acm.caltech.edu/l1magic/

(2005).

[37] N. Goel, G. Bebis, A. Nefian, Face recognition experiments with random

projections, in: SPIE Conference on Biometric Technology for Human

Identification, 2005.

[38] D. Cai, X. He, J. Han, Spectral regression for efficient regularized sub-

space learning, in: Proc. Int. Conf. Computer Vision (ICCV’07), 2007.

[39] G. Golub, C. Van Loan, Matrix Computations, Johns Hopkins Univer-

sity Press, Baltimore, MD, 1996.

38

