
ar
X

iv
:1

40
2.

57
66

v1
 [

cs
.L

G
]

24
 F

eb
 2

01
4

No more meta-parameter tuning
in unsupervised sparse feature learning

Adriana Romero ADRIANA .ROMERO@UB.EDU

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Barcelona, Spain.

Petia Radeva PETIA.IVANOVA @UB.EDU

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Barcelona, Spain.

Carlo Gatta CGATTA@CVC.UAB .ES

Centre de Visió per Computador, Bellaterra, Spain.

Abstract

We propose a meta-parameter free, off-the-shelf,
simple and fast unsupervised feature learning al-
gorithm, which exploits a new way of optimizing
for sparsity. Experiments on STL-10 show that
the method presents state-of-the-art performance
and provides discriminative features that gener-
alize well.

1. Introduction

Significant effort has been devoted to handcraft appropri-
ate feature representations of data in several fields. In tasks
such as image classification and object recognition, unsu-
pervised learned features have shown to compete well or
even outperform manually designed ones (Ranzato et al.,
2006; Yang et al., 2009; Coates et al., 2011). Unsuper-
vised feature learning has also shown to be helpful
in greedy layerwise pre-training of deep architectures
(Hinton et al., 2006; Bengio et al., 2006; Larochelle et al.,
2009; Erhan et al., 2010).

In (Bengio, 2009), the author claims that potentially in-
teresting research involves pre-training algorithms, which
“[...] would be proficient at extracting good features but
involving an easier optimization problem.” In addition to
that, one of the main criticisms to state-of-the-art meth-
ods is that they require a significant amount of meta-
parameters (Bengio et al., 2013). As stated in (Snoek et al.,
2012), the tuning of these meta-parameters is a labori-
ous task that requires expert knowledge, rules of thumb
or extensive search and, whose setting can vary for dif-

ferent tasks. Therefore, there is great interest for meta-
parameter free methods (Ngiam et al., 2011) and automatic
approaches to optimize the performance of learning algo-
rithms (Snoek et al., 2012).

Nevertheless, little effort has been devoted to address this
problem (see Table1 for a comparison of meta-parameters
required by unsupervised feature learning methods). To
the best of our knowledge, work in this direction includes
ICA (Hyvärinen & Oja, 2000; Hyvärinen et al., 2000) and
sparse filtering (Ngiam et al., 2011). Although ICA pro-
vides good results at object recognition tasks (Le et al.,
2011; Ngiam et al., 2011), the method scales poorly to
large datasets and high input dimensionality.

Computational complexity is also a major drawback of
many state-of-the-art methods. ICA requires an expen-
sive orthogonalization to be computed at each iteration.
Sparse coding has an expensive inference, which requires
a prohibitive iterative optimization. Significant amount of
work has been done in order to overcome this limitation
(Lee et al., 2006; Kavukcuoglu et al., 2010). Predictive
Sparse Decomposition (PSD) (Kavukcuoglu et al., 2010) is
a successful variant of sparse coding, which uses a predic-
tor to approximate the sparse representation and solves the
sparse coding computationally expensive encoding step.

In this paper, we aim to solve some of the above-mentioned
problems. We propose ameta-parameter free, off-the-
shelf, simple and fastapproach, which exploits a new way
of optimizing for a sparsity, without explicitly modeling the
data distribution. The method iteratively builds anideally
sparse target and optimizes the dictionary by minimizing
the error between the system output and theideally sparse
target.Defining sparsity concepts in terms of expected out-
put allows to exploit a new strategy in unsupervised train-
ing.

http://arxiv.org/abs/1402.5766v1

No more meta-parameter tuning in unsupervised sparse feature learning

Table 1.Meta-parameters to tune of state-of-the-art unsupervisedfeature learning methods.
Method Meta-parameters to tune

Sparse RBM (Hinton et al., 2006; Lee et al., 2008)
weight decay, sparseness constant,

sparsity penalty, momentum
Sparse

auto-encoders (Ranzato et al., 2006)
weight decay, sparseness constant,

sparsity penalty
Sparse Coding (Olshausen & Field, 1997) sparsity penalty

RICA (Le et al., 2011) reconstruction penalty
PSD (Kavukcuoglu et al., 2010) sparsity penalty, prediction penalty

OMP-k (Pati et al., 1993; Blumensath & Davies, 2007; Coates & Ng, 2011) k (non-zero elements)
ICA (Hyvärinen & Oja, 2000; Hyvärinen et al., 2000) -

Sparse Filtering (Ngiam et al., 2011) -

It is worth stressing that many optimization strategies can
be used to minimize the above-mentioned error and that
parameters of these optimization techniques must not be
considered as belonging to our approach.

Experiments on STL-10 dataset show that the method out-
performs state-of-the-art methods in single layer image
classification, providing discriminative features that gener-
alize well.

Linear feature extraction methods combined with sparse
coding encodings are among best performers on object
recognition datasets. The importance of properly combin-
ing training/encoding and encoding/pooling strategies has
been argued in (Coates & Ng, 2011) and (Zeiler & Fergus,
2013) respectively. Since the goal of this paper is to pro-
pose a new method for unsupervised feature learning, deal-
ing with all the possible combinations of encoding and
pooling could mask the benefits of the method that we pro-
pose. However, for the sake of fair comparison with the
state-of-the-art, we test the method with sparse coding and
soft-threshold encodings combined with sum pooling, fol-
lowing the experimental pipeline of (Coates & Ng, 2011).

2. State-of-the-art

Commonly used algorithms for unsupervised feature
learning include Restricted Boltzmann Machines (RBM)
(Hinton et al., 2006), auto-encoders (Bengio et al., 2006),
sparse coding (Raina et al., 2007) and hybrids such as
PSD (Kavukcuoglu et al., 2010). Many other methods
such as ICA (Hyvärinen & Oja, 2000; Hyvärinen et al.,
2000), Reconstruction ICA (RICA) (Le et al., 2011),
Sparse Filtering (Ngiam et al., 2011) and methods re-
lated to vector quantization such as Orthogonal Matching
Pursuit (OMP-k) (Pati et al., 1993; Blumensath & Davies,
2007; Coates & Ng, 2011) have also been used in
the literature to extract unsupervised feature represen-
tations. These algorithms could be divided into two
categories: explicitly modeling or not the input dis-
tribution. Sparse auto-encoders (Ranzato et al., 2006),
sparse RBM (Hinton et al., 2006; Lee et al., 2008; Hinton,

2010; Goh et al., 2012), sparse coding (Olshausen & Field,
1997), PSD (Kavukcuoglu et al., 2010), OMP-k (Pati et al.,
1993; Blumensath & Davies, 2007; Coates & Ng, 2011)
and Reconstruction ICA (RICA) (Le et al., 2011) explic-
itly model the data distribution by minimizing the recon-
struction error. Although learning a good approximation of
the data distribution may be desirable, approaches such as
sparse filtering (Ngiam et al., 2011) show that this seems
not so important if the goal is to have a discriminative
sparse system. Sparse filtering does not attempt to explic-
itly model the input distribution but focuses on the proper-
ties of the output distribution instead.

Sparsity is among the desirable properties of a good
output representation (Field, 1994; Olshausen & Field,
1997; Ranzato et al., 2006; Lee et al., 2008; Le et al., 2011;
Ngiam et al., 2011; Bengio et al., 2013). Sparse features
consist of a large amount of outputs, which respond rarely
and provide high responses when they do respond. Sparsity
can be described in terms of population sparsity and life-
time sparsity (Willmore & Tolhurst, 2001). Both lifetime
and population sparsity are important properties of the out-
put distribution. On one hand, lifetime sparsity plays an im-
portant role in preventing bad solutions such as numerous
dead outputs. There seems to be a consensus to overcome
such degenerate solutions, which is to ensure similar statis-
tics among outputs (Field, 1994; Willmore & Tolhurst,
2001; Ranzato et al., 2006; Ngiam et al., 2011). On the
other hand, population sparsity helps providing a simple
interpretation of the input data such as the ones found in
early visual areas. To the best of our knowledge, the defi-
nition of population sparsity remains ambiguous.

State-of-the-art methods optimize either for one or both
sparsity forms in their objective function. The great major-
ity seeks sparsity using theL1 penalty and does not opti-
mize for an explicit level of sparsity in their outputs. Sparse
auto-encoders optimize for a target activation allowing to
deal with lifetime sparsity; nevertheless, the target acti-
vation requires tuning and does not explicitly control the
level of population sparsity. OMP-k defines the level of
population sparsity by settingk to the maximum expected

No more meta-parameter tuning in unsupervised sparse feature learning

number of non-zero elements per output code, whereas the
methods in (Olshausen & Field, 1997; Ranzato et al., 2006;
Lee et al., 2008; Le et al., 2011; Ngiam et al., 2011) do not
explicitly define the proportion of outputs expected to be
active at the same time.

3. Method

In this section, we describe how the proposed method
learns a sparse feature representation of the data in terms
of population and lifetime sparsity. The method iteratively
builds anideallysparse target and optimizes the dictionary
by minimizing the error between the system output and the
ideally sparse target. Subsection3.1 highlights the algo-
rithm to enforce lifetime and population sparsity in the ide-
ally sparse target. Subsection3.2provides implementation
details on the system and optimization strategies used to
minimize the error between the system output and the ide-
ally sparse target.

3.1. Enforcing Population and Lifetime Sparsity by
defining an ideal target

We define population and lifetime sparsity as properties of
an ideal sparse output. GivenN training samples and an
output of dimensionalityNh, we define the first property
of the output as:

1. Strong Lifetime Sparsity: The output vectors must
be composed solely of active and inactive units (no
intermediate values between two fixed scalars are al-
lowed) and all outputs must activate for an equal num-
ber of inputs. Activation is exactly distributed among
theNh outputs.

Our Strong Lifetime Sparsity definition is a more strict re-
quirement than the high dispersal concept introduced in
(Ngiam et al., 2011), since they only require that “the mean
squared activations of each feature (output) [...] should be
roughly the same for all features (outputs)”. While high
dispersal attempts to diversify the learned bases, it does not
guarantee the output distribution, in the lifetime sense, to
be composed of only a few activations. Furthermore, our
definition ensures the absence of dead outputs.

Given our definition of Strong Lifetime Sparsity, the popu-
lation sparsity must require that, for each training sample,
only one output element is active:

2. Strong Population Sparsity: For each training sam-
ple only one output must be active.

The rationale of our approach is to appropriately generate
an ideal output target that fulfils properties (1) and (2), and
then learn the parameters of the system by minimizing the

L2 error between the output target and the output generated
by the system during training. In this way,we seek a system
optimized for both population and lifetime sparsity in an
explicit way.

The key component of our approach is how to define the
ideal output target based on the above-mentioned proper-
ties. However, to ensure that the optimization of the system
parameters converges, we add a third property:

3. Minimal Perturbation: The ideal output target
should be defined as the best approximation of the sys-
tem output by means ofL2 error fulfilling properties
(1) & (2).

Creating the output target that ensures the above-mentioned
properties is analogous to solving an assignment problem.
The Hungarian method (Kuhn, 1955) is a combinatorial
optimization algorithm, which solves the assignment prob-
lem. However, its computational costO((NNh)

3/2) is pro-
hibitive. Therefore, in the next section we propose a simple
and fastO(NNh) algorithm to generate the ideal output
target, which ensures sparsity properties (1) and (2) and
provides an approximate solution for minimal perturbation
property (3).

3.1.1. IDEAL TARGET GENERATION: THE ENFORCING

POPULATION AND L IFETIME SPARSITY (EPLS)
ALGORITHM

Let us assume that we have a system, which produces a
row output vectorh. We use the notationhj to refer to one
element ofh. We define an output matrixH composed of
Nb output vectors of dimensionalityNh, such thatNb ≤
N . Likewise, we define an ideal target output matrixT

of the same size. Algorithm1 details the EPLS algorithm
to generate theideal targetT from H. For the sake of
simplicity, every step of the algorithm where the subscript
j appears must be applied∀j ∈ {1, 2, . . . , Nh}.

Algorithm 1 EPLS
Require: H, a, N
Ensure: T, a
1: T = 0
2: for n = 1 → Nb do
3: hj = Hn,j

4: k = argmaxj (hj − aj)
5: Tn,k = 1

6: ak = ak + Nh

N
+ ǫ

7: end for
8: RemapT to active/inactive values of the corresponding func-

tion.

Starting with no activation inT (line 1), the algorithm pro-
ceeds as follows. A row vectorh from H is processed at
each iteration (line 3). The crucial step is performed in line

No more meta-parameter tuning in unsupervised sparse feature learning

4: the outputk that has to be activated in thenth row of T
is selected as the one that has the maximal activation value
hj minus the inhibitoraj . The inhibitoraj can be seen as
an accumulator that “counts” the number of times an output
j has been selected, increasing its inhibition progressively
byNh/N until reaching maximal inhibition. This prevents
the selection of an output that has already been activated
N/Nh times. The rationale behind the equation in line 4
is that, while selecting the maximal responses in the matrix
H, we have to take care to distribute them evenly among
all outputs (in order to ensure Strong Lifetime Sparsity).
Using this strategy, it can be demonstrated that the result-
ing matrix T perfectly fulfills properties (1) and (2). In
line 5, the algorithm activates thekth element ofnth row
of the target matrixT. By activating the “relative” maxi-
mum, we approximate property (3). Finally, the inhibitora

is updated in line 6.

3.2. System and Optimization strategies

Let us assume that we have a system parameterized byΓ =
{W,b}, with activation functionf , which takes as input a
data vectord and produces an output vectorh = f(d,Γ).
We use the same notation as in Section3 and define a data
matrixD composed ofN rows andNd columns, whereNd

is the input dimensionality.

To compare our training strategy to previous well known
systems, we tested our algorithm using

H = f (DW + b) , (1)

wheref is a logistic non-linearity.

3.2.1. OPTIMIZATION STRATEGY

The system might be trained by means of an off-the-shelf
mini-batch Stochastic Gradient Descent (SGD) method
with adaptive learning rates such as variance-based SGD
(vSGD) (Schaul et al., 2013). Algorithm2 details the latter
training process. The mini-batch sizeNb can be set to any
value, in all the experiments we have setNb = Nh. Start-
ing withΓ set to small random numbers as in (LeCun et al.,
1998) (line 1), at each epoch we shuffle the samples of the
training set (line 3), reset the EPLS inhibitora to a flat
activation (line 4) and process all mini-batches. For each
mini-batchb, samplesD(b) are selected (line 6). Then, the
outputH(b) is computed (line 7) and the EPLS is invoked
to computeT(b) and updatea (line 8). After that, the gra-
dient of the error is computed (line 9) and the learning rate
η is estimated as in (Schaul et al., 2013) (line 10). The sys-
tem parameters are then updated to minimize theL2 error
E(b) = ||H(b)−T

(b)||22 (line 11). Finally, the basesW in Γ
are limited to have unit norm to avoid degenerate solutions
(line 13). This procedure is repeated until a stop condition
is met; in our experiments, the training stops when the rel-

ative decrement error between epochs is small (< 10−6).

When updating the system parameters, we assume thatT

does not depend onΓ, thus ∂T
∂Γ = 0; we carried out ex-

periments that show that this approximation does not sig-
nificantly influence the gradient descent convergence nor
the quality of the minimization. Moreover, this assumption
makes the algorithm faster, since we remove the need of
computing the numerical partial derivatives ofT.

The mini-batch vSGD allows to scale the algorithm easily,
especially with respect to the number of samplesN .

Algorithm 2 Standard EPLS training
Require: D

Ensure: Γ
1: Γ = small random values
2: repeat
3: ShuffleD randomly
4: a = flat activation
5: for b = 1 → ⌊N/Nb⌋ do
6: Select mini-batch samplesD(b)

7: H
(b) = f(D(b),Γ)

8: (T(b),a) = EPLS(H(b),a, N)

9: G = ∇Γ||H
(b) −T

(b)||22
10: Estimate learning rateη as in (Schaul et al., 2013)
11: Γ = Γ− ηG
12: end for
13: Limit the basesW in Γ to have unit norm
14: until stop condition verified

4. Experiments

The performance of training and encoding strategies in
single layer networks has been extensively analyzed in
the literature (Coates et al., 2011; Coates & Ng, 2011;
Ngiam et al., 2011) on STL-101 dataset. STL-10 dataset
consists of 96x96 pixels color images belonging to 10 dif-
ferent classes. The dataset is divided into a large unlabeled
training set containing 100K images and smaller labeled
training and test sets, containing 5000 and 8000 images,
respectively. It has to be considered that in STL-10, the pri-
mary challenge is to make use of the unlabeled data (100K
images), which is 100 times bigger than the labeled data
used to train the classifier (1000 images per fold). In this
case, the supervised training must strongly rely on the abil-
ity of the unsupervised method to learn discriminative fea-
tures. Moreover, since the unlabeled dataset contains other
types of animals (bears, rabbits, etc.) and vehicles (trains,
buses, etc.) in addition to the ones in the labeled set, the
unsupervised method should be able to generalize well.

To validate our method, we follow the experimental
pipeline of (Coates et al., 2011). We first extract random
patches and normalize them for local brightness and con-

1http://www.stanford.edu/∼acoates/stl10/

No more meta-parameter tuning in unsupervised sparse feature learning

Figure 1.Random subset of bases learned by EPLS, a receptive
field of 10 pixels andNh = 1600 (better seen in color).

Table 2.Classification accuracy on STL-10.
Algorithm Accuracy
Single-Layerwith meta-parameters
RICA (Le et al., 2011) (1600/Natural) 52.9%
OMP-1 (1600/Natural) 51.8% (0.47%)
OMP-1 (whitening,1600/Natural) 53.1% (0.52%)
OMP-1 (whitening,1600x2/Natural) 54.5% (0.66%)
OMP-1 (whitening,1600x2/SC) 59.0% (0.80%)

Single-Layerwithout meta-parameters
Raw pixels 31.8% (0.62%)
ICA (whitening, Complete/Natural) 48.0% (1.47%)
K-means-tri (whitening,1600) 51.5% (1.73%)
Sparse Filtering (1600/Natural) 53.5% (0.53%)

Natural
(1600)

Natural
(1600x2)

SC
(1600x2)

EPLS 56.6% (0.66%) 56.9% (0.50%) 61.0% (0.58%)

trast. Note that EPLS does not require any whitening of the
input data, since it decorrelates the data during the train-
ing by means of the imposed strong sparsity properties of
the output target. Then, we apply the system to retrieve
sparse features of patches covering the input image, pool
them into 4 quadrants and finally train aL2 SVM for clas-
sification purposes. We tune the SVM parameter using 5-
fold cross-validation. As in (Ngiam et al., 2011), we use a
receptive field of 10x10 pixels and a stride of 1. The num-
ber of outputs is set toNh = 1600 for fair comparison with
the other state-of-the-art methods. We also provide the re-
sults of our method with sign split (Nh = 1600x2, using
W and−W for encoding as in (Coates & Ng, 2011)) and
using the sparse coding (SC) encoder, which (Coates & Ng,
2011) found to be the best when small number of labeled
data is available. For this encoder, we searched over the
same set of parameter values as (Coates & Ng, 2011), i.e.,
λ = {0.5, 0.75, 1.0, 1.25, 1.5}. The parameterλ is tuned
to consider the use of sparse coding as encoder after the
training and, thus, does not belong to the method that we
propose.

Table 2 summarizes the results obtained on this dataset
compared to other state-of-the-art methods. When pair-
ing each training method with its associated natural encod-
ing, EPLS outperforms all the other methods. When pair-
ing the training methods with sparse coding, EPLS outper-
forms the state-of-the-art best performer in single layer net-
works as well, achieving61.0% (0.58%) accuracy. More-

over, the standard deviation of the folds is lower than the
one provided by OMP-1 with sparse coding encoding. Re-
sults are even more impressive if we compare them to meta-
parameter free algorithms.

Figure 1 shows a subset of 100 randomly selected bases
learned by our method, 10x10 pixel receptive field and a
system ofNh = 1600 outputs. As shown in the figure,
the method learns not only common bases such as oriented
edges/ridges in many directions and colors but also corner
detectors, tri-banded colored filters, center surrounds and
Laplacian of Gaussians among others. This suggests that
enforcing lifetime sparsity helps the system to learn a set
of complex, rich and diversified bases.

5. Computational complexity

The EPLS algorithm requires the computation ofT, which
hasO(NNh) cost, and therefore scales linearly on both
N and Nh. Since we can use vSGD for optimization,
the method scales linearly onN given a fixed number of
epochs. Finally, applying the activation function, the cost
of computing the derivative is linear withNd, since we use
a closed form for∂E∂Γ .

The memory complexity is related to the mini-batch size
Nb. Consequently, the method can scale gracefully to very
large datasets: theoretically, it requires to store in mem-
ory the mini-batch input dataD(b) (NbNd elements), out-
put H(b) (NbNh elements), targetT(b) (NbNh elements)
and the system parameters to optimizeΓ (Nh (Nd + 1) el-
ements); a total amount ofNh (Nd + 1)+Nb (Nd + 2Nh)
elements.

6. Discussion

Our results show that simultaneously enforcing both pop-
ulation and lifetime sparsity helps in learning discrimina-
tive dictionaries, which reflect in better performance, es-
pecially when compared to meta-parameter free methods
(Ngiam et al., 2011; Le et al., 2011). Experiments suggest
that our algorithm is able to extract features that general-
ize well on unseen data. When comparing the performance
STL-10 dataset, our algorithm outperforms state-of-the-art
best performers. Results suggest that our algorithm helps
the classifier in generalizing with a few training examples
(1% of the dataset), gaining2% accuracy w.r.t. the state-
of-the art best performer (OMP-1 paired with sparse cod-
ing) with a lower standard deviation across folds, suggest-
ing more robustness to variations in the training folds.

It is important to highlight that OMP-1 can be seen as a
special case of our algorithm, where the activation function
is |DW| and lifetime sparsity is not taken into account in
the optimization process (potentially leading to dead out-

No more meta-parameter tuning in unsupervised sparse feature learning

puts). Our algorithm has several advantages over OMP-1:
(1) It can use any activation function; (2) by enforcing life-
time sparsity it does not suffer of the dead output problem,
thus not requiring ad-hoc tricks to avoid it; (3) it does not
require whitening, which can be a problem if the input di-
mensionality is large (Le et al., 2011).

With our proposal, we advance in the meta-parameter free
line of ICA (Hyvärinen & Oja, 2000) and sparse filtering
(Ngiam et al., 2011). It is clear that the advantage of sparse
filtering over ICA comes from removing the orthogonal-
ity constraint, and imposing some sort of “competition”
between outputs, which also permits overcomplete repre-
sentations. Following this spirit, our algorithm imposes an
even more strict form of competition to prevent dead out-
puts by means of Strong Lifetime Sparsity and confirms the
trend of (Ngiam et al., 2011; Hyvärinen & Oja, 2000) that
data reconstruction seems not so important if the goal is to
have a discriminative sparse system.

Last and most importantly, it is worth highlighting five
interesting properties of the EPLS algorithm. First, the
method is meta-parameter free, which highly simplifies the
training process for practitioners, especially when used as
a greedy pre-training method in deep architectures. Sec-
ond, the method is fast and scales linearly with the number
of training samples and the input/output dimensionalities.
Third, EPLS is easy to implement. We implemented the
EPLS in Algorithm1 in less than 50 lines of C code. The
mini-batch vSGD is a general purpose optimizer; our Mat-
lab implementation of vSGD plus the EPLS mex source
will be publicly available after publication. Fourth, the pro-
posed learning strategy is not limited to perceptrons. Fifth,
there is an interest in the literature in avoiding redundancy
in the image representation by using the algorithms in a
convolutional fashion (Kavukcuoglu et al., 2010). For this
purpose, the EPLS can be slightly modified to apply the
procedure to a whole image at once and consider the mini-
batch size to be the image divided into patches. This aspect
is not considered in the paper and is left for future investi-
gation.

7. Conclusion

In this paper, we introduced the Enforcing Population and
Lifetime Sparsity method. The algorithm provides ameta-
parameter free, off-the-shelf, simple and computation-
ally efficient approach for unsupervised sparse feature
learning. It seeks both lifetime and population sparsity in
an explicit way in order to learn discriminative features,
thus preventing dead outputs.

Results show that the method significantly outperforms
all state-of-the-art methods on STL-10 dataset with lower
standard deviation across folds, suggesting more robust-

ness across training sets.

References

Bengio, Yoshua. Learning deep architectures for AI.Foun-
dations and Trends in Machine Learning, 2(1):1–127,
2009.

Bengio, Yoshua, Lamblin, Pascal, Popovici, Dan, and
Larochelle, Hugo. Greedy layer-wise training of deep
networks. InNIPS, pp. 153–160, 2006.

Bengio, Yoshua, Courville, Aaron C., and Vincent, Pascal.
Representation learning: A review and new perspectives.
IEEE TPAMI, 35(8):1798–1828, 2013.

Blumensath, T. and Davies, M. E. On the difference
between orthogonal matching pursuit and orthogonal
least squares.Unpublished manuscript, 2007. URL
http://www.see.ed.ac.uk/ ˜ tblumens/
papers/BDOMPvsOLS07.pdf .

Coates, A., Lee, H., and Ng, A. Y. An analysis of single-
layer networks in unsupervised feature learning. InAIS-
TATS, pp. 214–223, 2011.

Coates, Adam and Ng, Andrew. The importance of encod-
ing versus training with sparse coding and vector quan-
tization. InICML, pp. 921–928, 2011.

Erhan, Dumitru, Courville, Aaron, Bengio, Yoshua, and
Vincent, Pascal. Why does unsupervised pre-training
help deep learning? InAISTATS, volume 9, pp. 201–
208, May 2010.

Field, D. J. What is the goal of sensory coding?Neural
Computation, 6(4):559–601, July 1994.

Goh, Hanlin, Thome, Nicolas, Cord, Matthieu, and Lim,
Joo-Hwee. Unsupervised and supervised visual codes
with restricted boltzmann machines. InECCV, pp. 298–
311, 2012.

Hinton, G. E. A Practical Guide to Training Restricted
Boltzmann Machines. Technical report, University of
Toronto, 2010.

Hinton, Geoffrey E., Osindero, Simon, and Teh, Yee-
Whye. A fast learning algorithm for deep belief nets.
Neural Computation, 18(7):1527–1554, July 2006.

Hyvärinen, A. and Oja, E. Independent component analy-
sis: algorithms and applications.Neural Networks, 13(4-
5):411–430, 2000.

Hyvärinen, A., Karhunen, J., and Oja, E.Independent com-
ponent analysis. Wiley Interscience, 2000.

http://www.see.ed.ac.uk/~tblumens/papers/BDOMPvsOLS07.pdf
http://www.see.ed.ac.uk/~tblumens/papers/BDOMPvsOLS07.pdf

No more meta-parameter tuning in unsupervised sparse feature learning

Kavukcuoglu, Koray, Sermanet, Pierre, Boureau, Y-Lan,
Gregor, Karol, Mathieu, Michaël, and LeCun, Yann.
Learning convolutional feature hierachies for visual
recognition. InNIPS, 2010.

Kuhn, Harold W. The hungarian method for the assignment
problem.Naval Research Logistics Quarterly, 2:83–97,
1955.

Larochelle, Hugo, Bengio, Yoshua, Louradour, Jérôme,
and Lamblin, Pascal. Exploring strategies for training
deep neural networks.J. Mach. Learn. Res., 10:1–40,
June 2009.

Le, Q. V., Karpenko, A., Ngiam, J., and Ng, A. Y. ICA
with reconstruction cost for efficient overcomplete fea-
ture learning. InNIPS, pp. 1017–1025, 2011.

LeCun, Yann, Bottou, Leon, Orr, Genevieve, and Müller,
Klaus. Efficient backprop. InNeural Networks: Tricks
of the Trade, pp. 9–50. Springer Berlin, 1998.

Lee, H., Battle, A., Raina, R., and Ng, A. Y. Efficient sparse
coding algorithms. InNIPS, pp. 801–808, 2006.

Lee, H., Ekanadham, C., and Ng, A. Y. Sparse deep be-
lief net model for visual area v2. InNIPS, pp. 873–880,
2008.

Ngiam, J., Koh, P. W., Chen, Z., Bhaskar, S., and Ng, A. Y.
Sparse filtering. InNIPS, pp. 1125–1133, 2011.

Olshausen, B. and Field, D. J. Sparse coding with an over-
complete basis set: a strategy employed by v1?Vision
Research, 37(23):3311–3325, 1997.

Pati, Y. C., Rezaifar, R., and Krishnaprasad, P. S. Orthog-
onal matching pursuit: recursive function approximation
with applications to wavelet decomposition. InACSSC,
pp. 40–44, November 1993.

Raina, Rajat, Battle, Alexis, Lee, Honglak, Packer, Ben-
jamin, and Ng, Andrew Y. Self-taught learning: Trans-
fer learning from unlabeled data. InICML, pp. 759–766,
2007.

Ranzato, M. A., Poultney, C., Chopra, S., and Lecun, Y. Ef-
ficient learning of sparse representations with an energy-
based model. InNIPS, pp. 1137–1144, 2006.

Schaul, Tom, Zhang, Sixin, and LeCun, Yann. No More
Pesky Learning Rates. InICML, 2013.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
In NIPS, pp. 2960–2968, 2012.

Willmore, B. and Tolhurst, D. J. Characterizing the sparse-
ness of neural codes.Network, 12(12):255–270, January
2001.

Yang, J., Yu, K., Gong, Y., and Huang, T. Linear spatial
pyramid matching using sparse coding for image classi-
fication. InIEEE CVPR, pp. 1794–1801, 2009.

Zeiler, Matthew D. and Fergus, Rob. Stochastic pooling
for regularization of deep convolutional neural networks.
CoRR, abs/1301.3557, 2013.

