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Abstract ferent tasks. Therefore, there is great interest for meta-
parameter free methodsgiam et al, 2011 and automatic
approaches to optimize the performance of learning algo-
rithms (Snoek et a.2012.

We propose a meta-parameter free, off-the-shelf,
simple and fast unsupervised feature learning al-
gorithm, which exploits a new way of optimizing

for sparsity. Experiments on STL-10 show that Nevertheless, little effort has been devoted to address thi
the method presents state-of-the-art performance  problem (see Tabl& for a comparison of meta-parameters
and provides discriminative features that gener- required by unsupervised feature learning methods). To
alize well. the best of our knowledge, work in this direction includes

ICA (Hyvarinen & Oja 200Q Hyvarinen et al.2000 and

sparse filtering Nlgiam et al, 2011). Although ICA pro-
1. Introduction vides good results at object recognition taske ét al,

2011 Ngiametal, 2011, the method scales poorly to

Significant effort has been devoted to handcraft appropritarge datasets and high input dimensionality.
ate feature representations of data in several fields. ks tas

such as image classification and object recognition, unsf=@mputational complexity is also a major drawback of

pervised learned features have shown to compete well dnany state-of-the-art methods. ICA requires an expen-
even outperform manually designed on&aifzato etal.  SV€ orthogonalization to be computed at each iteration.

2006 Yang et al, 2009 Coates et a).201]). Unsuper- Sparse coding has an expensive inference, which requires
vised feature learning has also shown to be helpfuP prohibitive iterative optimization. Significant amourfit o

in greedy layerwise pre-training of deep architectureé"’ork has been done in order to overcome this limitation

(Hinton et al, 2008 Bengio et al. 2006 Larochelle etal.  (Leeetal. 2006 Kavukcuoglu etal. 2010. Predictive
2009 Erhan et al.2010. Sparse Decomposition (PSI¥gvukcuoglu et al.2010 is

_ _ ~asuccessful variant of sparse coding, which uses a predic-
In (Bengig 2009, the author claims that potentially in- tor to approximate the sparse representation and solves the

teresting research involves pre-training algorithms,olvhi - sparse coding computationally expensive encoding step.
“[...] would be proficient at extracting good features but ) ] )
involving an easier optimization problem.” In addition to " this paper, we aim to solve some of the above-mentioned

that, one of the main criticisms to state-of-the-art meth-Problems. We propose meta-parameter free, off-the-
ods is that they require a significant amount of meta-Shelf, simple and fas&pproach, which exploits a new way
parametersengio et al,2013. As stated in$noek et al. of optimizing for a sparsity, without explicitly modelinge
2012, the tuning of these meta-parameters is a Iabori-data distribution. The method iteratively builds ideally

ous task that requires expert knowledge, rules of thumiSParse target and optimizes the dictionary by minimizing
or extensive search and, whose setting can vary for difth€ error between the system output anditeally sparse
target.Defining sparsity concepts in terms of expected out-

put allows to exploit a new strategy in unsupervised train-
ing.
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Table 1.Meta-parameters to tune of state-of-the-art unsuperfesatdre learning methods.
Method | Meta-parameters to tune |

weight decay, sparseness constant,
sparsity penalty, momentum

Sparse RBMKlinton et al, 2006 Lee et al, 2008

Sparse weight decay, sparseness constant,
auto-encodersRanzato et al 2006 sparsity penalty
Sparse CodingQ@lshausen & Field1997) sparsity penalty
RICA (Le et al, 201) reconstruction penalty
PSD Kavukcuoglu et a].2010 sparsity penalty, prediction penalty
OMP-k (Pati et al, 1993 Blumensath & Davie2007 Coates & Ng201J) k (non-zero elements)

ICA (Hyvarinen & Ojg 2000 Hyvarinen et al.2000 -
Sparse FilteringNlgiam et al, 2011) -

It is worth stressing that many optimization strategies car201Q Goh et al, 2012, sparse codingdlshausen & Field
be used to minimize the above-mentioned error and that997, PSD Kavukcuoglu et a].2010, OMP-k (Pati et al,
parameters of these optimization techniques must not b&993 Blumensath & Davies2007 Coates & Ng 201])
considered as belonging to our approach. and Reconstruction ICA (RICA)LE et al, 2011 explic-

Experiments on STL-10 dataset show that the method Ou|§Iy model the data distribution by minimizing the recon-

performs state-of-the-art methods in single layer imag struction error. Although learning a good approximation of

e - L $he data distribution may be desirable, approaches such as
classification, providing discriminative features thahee . . )
alize well. sparse filtering Nlgiam et al, 2011 show that this seems

not so important if the goal is to have a discriminative
Linear feature extraction methods combined with sparsesparse system. Sparse filtering does not attempt to explic-
coding encodings are among best performers on objedtly model the input distribution but focuses on the proper-
recognition datasets. The importance of properly combinties of the output distribution instead.
ing training/encoding and encoding/pooling strategies ha
been argued inGoates & Ng2011) and eiler & Fergus
2013 respectively. Since the goal of this paper is to pro-

pose a new method for unsupervised feature learning, de Igiam et al, 2011 Bengio et al. 2013. Sparse features

ing with all the possible combinations of encoding andconsist of a large amount of outputs, which respond rarel
pooling could mask the benefits of the method that we pro- g puts, b y

pose. However, for the sake of fair comparison with thegnr(;I Eremgéjsecrr]ilgg(;eir?ﬁ(e)?;isg:h?)n Lf;:z:nosre:‘?;?dé:giﬁ;zl_ty
state-of-the-art, we test the method with sparse coding an Pop P y

soft-threshold encodings combined with sum pooling, foI-;r;](je sopaurg f[?lo‘f]v'sllrz?siﬁ &a:—(ca)lirr]r:”itrtzg?])r.o B:rtt?elslfslfltrﬁg out
lowing the experimental pipeline o€Cpates & Ng2011J). hop b y b prop

put distribution. On one hand, lifetime sparsity plays an im
portant role in preventing bad solutions such as numerous
2. State-of-the-art dead outputs. There seems to be a consensus to overcome

: . such degenerate solutions, which is to ensure similasstati
Commonly used algorithms for unsupervised feature

o X . tics among outputsField, 1994 Willmore & Tolhurst
Iea_lrnmg include Restricted Boltzmann Mach|nes (RBM) 2001 Ranzato et a.2008 Ngiam etal, 2017. On the
(Hinton et al, 2009, auto-encodersBengio et al. 2006, : . 7 .

. . . other hand, population sparsity helps providing a simple
sparse codingRaina etal. 2007 and hybrids such as . : . )
interpretation of the input data such as the ones found in
PSD Kavukcuoglu et al. 201Q. Many other methods . .
. : e early visual areas. To the best of our knowledge, the defi-
such as ICA Kiyvarinen & Oja 200Q Hyvarinen et al. nition of population sparsity remains ambiguous
2000, Reconstruction ICA (RICA) le etal, 2013, pop parstty guous.
Sparse Filtering Ngiam et al, 2011 and methods re- State-of-the-art methods optimize either for one or both
lated to vector quantization such as Orthogonal Matchingparsity forms in their objective function. The great major
Pursuit (OMP-k) Pati et al, 1993 Blumensath & Davies ity seeks sparsity using thie, penalty and does not opti-
2007 Coates & Ng 2011 have also been used in mize foran explicitlevel of sparsity in their outputs. Sgar
the literature to extract unsupervised feature represerauto-encoders optimize for a target activation allowing to
tations. These algorithms could be divided into twodeal with lifetime sparsity; nevertheless, the target-acti
categories: explicitly modeling or not the input dis- vation requires tuning and does not explicitly control the
tribution. Sparse auto-encoderRanzato et al. 2006,  level of population sparsity. OMP-k defines the level of
sparse RBM ffinton et al, 2006 Lee et al, 2008 Hinton, population sparsity by settingto the maximum expected

Sparsity is among the desirable properties of a good
output representationField, 1994 Olshausen & Field
997 Ranzato et a]2006 Lee et al, 2008 Le et al, 2011,
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number of non-zero elements per output code, whereas thie, error between the output target and the output generated
methodsinQlshausen & Fieldl997 Ranzato et a]2006 by the system during training. In this waye seek a system
Lee et al, 2008 Le et al, 20121, Ngiam et al, 2011 donot  optimized for both population and lifetime sparsity in an
explicitly define the proportion of outputs expected to beexplicit way.

active at the same time. The key component of our approach is how to define the

ideal output target based on the above-mentioned proper-
3. Method ties. However, to ensure that the optimization of the system

In this section, we describe how the proposed metho&)arameters converges, we add  third property:

learns a sparse feature representation of the data in terms

of population and lifetime sparsity. The method iteravel ~3- Minimal Perturbation:  The ideal output target
builds anideally sparse target and optimizes the dictionary ~ Should be defined as the best approximation of the sys-
by minimizing the error between the system output and the ~ tem output by means df error fulfilling properties
ideally sparse target. Subsecti@l highlights the algo- 1) &(2).

rithm to enforce lifetime and population sparsity in the-ide

ally sparse target. Subsecti8r2 provides implementation Creating the output target that ensures the above-meutione
details on the system and optimization strategies used tproperties is analogous to solving an assignment problem.
minimize the error between the system output and the ideThe Hungarian methodK(thn, 1959 is a combinatorial

ally sparse target. optimization algorithm, which solves the assignment prob-
lem. However, its computational ca8{ (N Ny, )?/?) is pro-
3.1. Enforcing Population and Lifetime Sparsity by hibitive. Therefore, in the next section we propose a simple
defining an ideal target and fastO(N N;,) algorithm to generate the ideal output

arget, which ensures sparsity properties (1) and (2) and

We_ define population and_ln‘et|me _sparsny as properties 0Lrovides an approximate solution for minimal perturbation
anideal sparse output. GivelV training samples and an property (3)

output of dimensionalityV,,, we define the first property

of the output as: 3.1.1. DEAL TARGET GENERATION. THE ENFORCING

POPULATION AND LIFETIME SPARSITY (EPLS)

1. Strong Lifetime Sparsity: The output vectors must ALGORITHM

be composed solely of active and inactive units (no

intermediate values between two fixed scalars are alLet us assume that we have a system, which produces a

lowed) and all outputs must activate for an equal num~+ow output vectoh. We use the notatioh; to refer to one

ber of inputs. Activation is exactly distributed among element ofh. We define an output matrild composed of

the IV}, outputs. N, output vectors of dimensionalitiy;,, such thatV, <

N. Likewise, we define an ideal target output matiix

Our Strong Lifetime Sparsity definition is a more strict re- of the same size. Algorithrh details the EPLS algorithm
quirement than the high dispersal concept introduced ifi0 generate thédeal targetT from H. For the sake of
(Ngiam et al, 2011), since they only require that “the mean Simplicity, every step of the algorithm where the subscript
squared activations of each feature (output) [...] shoeld b appears must be applieg € {1,2,..., N, }.
roughly the same for all features (outputs)”. While high
dispersal attempts to diversify the learned bases, it does nAlgorithm 1 EPLS
guarantee the output distribution, in the lifetime sense, t Require: H, a, N
be composed of only a few activations. Furthermore, oulE”SU're T, a

=0
definition ensures the absence of dead outputs. 2. for n—1- N,do

Given our definition of Strong Lifetime Sparsity, the popu- 3 h; = Hp ;
lation sparsity must require that, for each training sample ¢ k = argmax; (h; — a;)

5 Tpr=1
only one output element is active: 6 ap—ant e
_ ) o 7: end for
2. Strong Population Sparsity: For each training sam-  8: RemagT to active/inactive values of the corresponding func-
ple only one output must be active. tion.

The rationale of our approach is to appropriately generat&tarting with no activation if" (line 1), the algorithm pro-
an ideal output target that fulfils properties (1) and (2§l an ceeds as follows. A row vectdr from H is processed at
then learn the parameters of the system by minimizing theach iteration (line 3). The crucial step is performed ie lin
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4: the output that has to be activated in thé” row of T ative decrement error between epochs is small {~°).
is selected as the one that has the maximal activation val
h; minus the inhibitora;. The inhibitora; can be seen as

an accumulator that “counts” the number of times an outpu

YWhen updating the system parameters, we assumélthat
goes not depend oF, thus%—? = 0; we carried out ex-
periments that show that this approximation does not sig-

j has been selected, increasing its inhibition progressivel’ .. . ;
by N, /N until reaching maximal inhibition. This prevents nificantly influence the gradient descent convergence nor
h . the quality of the minimization. Moreover, this assumption

the selection of an output that has already been aCtivater%akes the algorithm faster. since we remove the need of
N/Nj, times. The rationale behind the equation in line 4 9 ’

is that, while selecting the maximal responses in the matrixcompu“ng the numerical partial derivativesDf

H, we have to take care to distribute them evenly amondhe mini-batch vSGD allows to scale the algorithm easily,
all outputs (in order to ensure Strong Lifetime Sparsity).especially with respect to the number of sampies

Using this strategy, it can be demonstrated that the result-

ing matrix T perfectly fuffills properties (1) and (2). In Algorithm 2 Standard EPLS training

line 5, the algorithm activates thi€" element ofn’" row  Require: D

of the target matrixI’. By activating the “relative” maxi- Ensure: T

mum, we approximate property (3). Finally, the inhibitor ~ 1: T' = small random values

is updated in line 6. 2: repeat

ShuffleD randomly

a = flat activation

forb=1— [N/N,] do
Select mini-batch sampl&®
H® = f(D"),T)

3.2. System and Optimization strategies

Let us assume that we have a system parameterizEd-by
{W, b}, with activation functionf, which takes as input a (T®) a) = EPLS(H®, a, N)

data vectod and produces an output vecler= f(d,T). o: G 7Vr||H(b) B T<”)||§7 ;

We use the same notation as in SecBamnd define a data 1. Estimate learning ratgas in Gchaul et a].2013
matrixD composed ofV rows andV; columns, whereV, 11: r=r—-,G

is the input dimensionality. 12:  end for
o ) 13:  Limit the basedV inT" to have unit norm
To compare our training strategy to previous well known14: until stop condition verified

systems, we tested our algorithm using

O N AR

H=f(DW +b), (1) 4. Experiments

wheref is a logistic non-linearity. The performance of training and encoding strategies in

single layer networks has been extensively analyzed in
the literature Coates et al. 2011, Coates & Ng 201Z%

The system might be trained by means of an off-the-shelNgiam et al, 201 on STL-10 dataset. STL-10 dataset
mini-batch Stochastic Gradient Descent (SGD) methodonsists of 96x96 pixels color images belonging to 10 dif-
with adaptive learning rates such as variance-based SGferent classes. The dataset is divided into a large unldbele
(vSGD) (Schaul et al.2013. Algorithm 2 details the latter ~ training set containing 100K images and smaller labeled
training process. The mini-batch si2g can be set to any training and test sets, containing 5000 and 8000 images,
value, in all the experiments we have 26t = N,. Start-  respectively. It has to be considered thatin STL-10, the pri
ing with I" set to small random numbers asieCun etal.  mary challenge is to make use of the unlabeled data (100K
1998 (line 1), at each epoch we shuffle the samples of thémages), which is 100 times bigger than the labeled data
training set (line 3), reset the EPLS inhibitarto a flat ~ used to train the classifier (1000 images per fold). In this
activation (line 4) and process all mini-batches. For eacltase, the supervised training must strongly rely on the abil
mini-batchb, sampled () are selected (line 6). Then, the ity of the unsupervised method to learn discriminative fea-
outputH® is computed (line 7) and the EPLS is invoked tures. Moreover, since the unlabeled dataset contains othe
to computeT'®) and update (line 8). After that, the gra- types of animals (bears, rabbits, etc.) and vehicles @rain
dient of the error is computed (line 9) and the learning ratéuses, etc.) in addition to the ones in the labeled set, the
7 is estimated as ifgchaul et a].2013 (line 10). The sys-  unsupervised method should be able to generalize well.
tem parameters are then updated to minimizeltherror
E® = |[H® —T®)|2 (line 11). Finally, the basé& in T
are limited to have unit norm to avoid degenerate solution§
(line 13). This procedure is repeated until a stop conditio
is met; in our experiments, the training stops when the rel-  *http://www.stanford.edu/acoates/stl10/

3.2.1. GPTIMIZATION STRATEGY

To validate our method, we follow the experimental
ipeline of Coates et al.2011). We first extract random
atches and normalize them for local brightness and con-
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Figure 1.Random subset of bases learned by EPLS, a receptiv

field of 10 pixels andV;, = 1600 (better seen in color).

Table 2.Classification accuracy on STL-10.

[ Algorithm |  Accuracy |
Single-Layemwith meta-parameters
RICA (Le et al, 2017 (1600/Natural) 52.9%

OMP-1 (1600/Natural)

OMP-1 (whitening,1600/Natural)
OMP-1 (whitening,1600x2/Natural)
OMP-1 (whitening,1600x2/SC)

Single-Layemwithout meta-parameters
Raw pixels

ICA (whitening, Complete/Natural)
K-means-tri (whiteningl1600)

51.8% (0.47%)
53.1% (0.52%)
54.5% (0.66%)
59.0% (0.80%)

31.8% (0.62%)
48.0% (1.47%)
51.5% (1.73%)

Sparse Filtering1(600/Natural) 53.5% (0.53%)
Natural Natural SC
(1600) (1600x2) (1600x2)

EPLS | 56.6% (0.66%)| 56.9% (0.50%)| 61.0% (0.58%)

over, the standard deviation of the folds is lower than the
one provided by OMP-1 with sparse coding encoding. Re-
sults are even more impressive if we compare them to meta-
parameter free algorithms.

Figure 1 shows a subset of 100 randomly selected bases
gearned by our method, 10x10 pixel receptive field and a
system ofN;,, = 1600 outputs. As shown in the figure,
the method learns not only common bases such as oriented
edges/ridges in many directions and colors but also corner
detectors, tri-banded colored filters, center surrounds an
Laplacian of Gaussians among others. This suggests that
enforcing lifetime sparsity helps the system to learn a set
of complex, rich and diversified bases.

5. Computational complexity

The EPLS algorithm requires the computatioriihfwhich
hasO(NN;,) cost, and therefore scales linearly on both
N and N;,. Since we can use vSGD for optimization,
the method scales linearly oM given a fixed humber of
epochs. Finally, applying the activation function, thetcos
of computing the derivative is linear witN,;, since we use

a closed form fo2Z.

The memory complexity is related to the mini-batch size
N,. Consequently, the method can scale gracefully to very

trast. Note that EPLS does not require any whitening of thearge datasets: theoretically, it requires to store in mem-
input data, since it decorrelates the data during the trainory the mini-batch input dat®(® (N, N, elements), out-
ing by means of the imposed strong sparsity propertie_s oput H®) (N, N, elements), targeT®) (N, N;, elements)
the output target. Then, we apply the system to retrieveind the system parameters to optimize\V;, (N, + 1) el-

sparse features of patches covering the input image, po@iments); a total amount o¥;, (N + 1) + N, (N4 + 2N},)
them into 4 quadrants and finally traifa SVM for clas-  elements.

sification purposes. We tune the SVM parameter using 5-
fold cross-validation. As inNgiam et al, 2011), we use a
receptive field of 10x10 pixels and a stride of 1. The num-
ber of outputs is set t&/;, = 1600 for fair comparison with  Qur results show that simultaneously enforcing both pop-
the other state-of-the-art methods. We also provide the reglation and lifetime sparsity helps in learning discrimina

6. Discussion

sults of our method with sign split\;, = 1600x2, using
W and—W for encoding as inGoates & Ng2011) and
using the sparse coding (SC) encoder, whgbdtes & Ng

tive dictionaries, which reflect in better performance, es-
pecially when compared to meta-parameter free methods
(Ngiam et al, 201% Le et al, 2011). Experiments suggest

2017 found to be the best when small number of labeledihat our algorithm is able to extract features that general-
data is available. For this encoder, we searched over thige well on unseen data. When comparing the performance
same set of parameter values @odtes & Ng201J), i.e.,  STL-10 dataset, our algorithm outperforms state-of-thie-a

A = {0.5,0.75,1.0,1.25,1.5}. The parameteh is tuned  best performers. Results suggest that our algorithm helps
to consider the use of sparse coding as encoder after thRe classifier in generalizing with a few training examples
training and, thus, does not belong to the method that w1 % of the dataset), gaining% accuracy w.r.t. the state-
propose. of-the art best performer (OMP-1 paired with sparse cod-

Table 2 summarizes the results obtained on this datasef'9) With a lower standard deviation across folds, suggest-
compared to other state-of-the-art methods. When paif"d more robustness to variations in the training folds.

ing each training method with its associated natural encodt is important to highlight that OMP-1 can be seen as a
ing, EPLS outperforms all the other methods. When pairspecial case of our algorithm, where the activation fumctio
ing the training methods with sparse coding, EPLS outperis [DW | and lifetime sparsity is not taken into account in

forms the state-of-the-artbest performerin single lagg n - the optimization process (potentially leading to dead out-
works as well, achieving1.0% (0.58%) accuracy. More-
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puts). Our algorithm has several advantages over OMP-Iness across training sets.

(2) It can use any activation function; (2) by enforcingife

time sparsity it .does not suffer of the dgaq outp_ut probIemReferences
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