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Abstract

This paper summarizes the top contributions to the first
semi-supervised hyperspectral object detection (SSHOD)
challenge, which was organized as a part of the Percep-
tion Beyond the Visible Spectrum (PBVS) 2022 workshop at
the Computer Vision and Pattern Recognition (CVPR) con-
ference. The SSHODC challenge is a first-of-its-kind hy-
perspectral dataset with temporally contiguous frames col-
lected from a university rooftop observing a 4-way vehicle
intersection over a period of three days. The dataset con-
tains a total of 2890 frames, captured at an average resolu-
tion of 1600 × 192 pixels, with 51 hyperspectral bands from
400nm to 900nm. SSHOD challenge uses 989 images as the
training set, 605 images as validation set and 1296 images
as the evaluation (test) set. Each set was acquired on a dif-
ferent day to maximize the variance in weather conditions.
Labels are provided for 10% of the annotated data, hence
formulating a semi-supervised learning task for the partici-
pants which is evaluated in terms of average precision over
the entire set of classes, as well as individual moving object
classes: namely vehicle, bus and bike. The challenge re-
ceived participation registration from 38 individuals, with
8 participating in the validation phase and 3 participating
in the test phase. This paper describes the dataset acqui-
sition, with challenge formulation, proposed methods and
qualitative and quantitative results.
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Figure 1. Example composite RGB rendering of four continu-
ous frames from our dataset for the SSHOD challenge at approxi-
mately 0.7 frames per second. The operating mechanics of a push-
broom sensor camera causes a difference in area observed in con-
secutive time steps.

1. Introduction

Hyperspectral images (HSI) differ from normal color
(RGB) images in that they have roughly 50 - 400 con-
tiguous color bands instead of the conventional three RGB
bands. This increase in resolution along the channel di-
mension provides enhanced detail of the object materials
present within the scene, and this has been shown to en-
hance fine-grained discrimination in deep neural networks
for hyperspectral pixel classification, object tracking, and
super-resolution [8–10, 13, 14, 21, 27]. Hyperspectral pixel
classification, the research area motivating the sensor design

390



and data collection, has been primarily studied using three
datasets: (1) Indian Pines, (2) Salinas Valley, and (3) Uni-
versity of Pavia. Indian Pines and Salinas Valley contain
primarily different types of vegetation and Univ. of Pavia
contains classes typically found around a university - for ex-
ample, trees, soil, and asphalt. In all three cases, the small
spatial extent often leads researchers to use Monte-Carlo
(MC) cross-validation splits for benchmarking the perfor-
mance of various deep learning based architectures.

A large body of previous work in the hyperspectral im-
agery domain [1,19,20,22,25] has attempted to understand
the challenges involved in dynamic scene understanding for
spectral images containing a diverse set of materials. How-
ever, the current non-synthetic datasets suffer from two ma-
jor shortcomings from a dynamic application oriented per-
spective - for example, vehicle object detection. First, they
are captured in a static environment, e.g., the flight line
presented in AeroRIT, captured at a relatively high ground
sampling distance (GSD), but cannot be used for object lo-
calization due to significant overlap between small-size pix-
els [15]. Second, they do not contain rich instances of some
major sources of occlusion in spectral imagery, e.g., adja-
cency effect, glint, and shadows. The need for an anno-
tated dynamic HSI dataset with real-world environmental
challenges is essential as neural network approaches have
been known to be sensitive to image perturbations and the
above-discussed factors with atmospheric variance can sig-
nificantly alter the image composition, thereby resulting in
signatures that may appear to be out-of-the-training distri-
bution for the networks.

With these motivations in mind, we collect a motion
dataset (Fig. 1) - our primary goal is providing informa-
tion to study and solve the challenges that may appear for
creating a deployable model that uses spectral signatures,
or a multi-modal combination with spectral signatures, for
object detection, (future) tracking, and re-identification pur-
poses from the ground and aerial perspectives. The goal of
the RooftopHSI dataset is to improve the recently develop-
ing collection of datasets in spectral imagery and the robust-
ness of spectral imagery exploitation methods. We mount
a hyperspectral imaging system on a university building
rooftop overlooking a 4-way moving traffic intersection and
gather data over a period three days.

2. RooftopHSI dataset

2.1. Data Acquisition

We collect images using a custom built imaging sys-
tem with a Headwall Micro HE (High Efficiency) Hyper-
spec E-series camera attached to a high-speed gimbal. In
general, there are four types of hyperspectral imaging sys-
tems that can be distinguished by their scanning mecha-
nisms: whisk-broom, spectral, snapshot, and push-broom.

(a) Data acquisition with the Headwall Hyperspec. We focus on a red
vehicle of interest to show the details captured via spectral imagery.

  

(b) The corresponding scene rendered as the RGB-composite with the
same car highlighted with a red box.

(c) The mask for the corresponding scene highlighting the area of in-
terest while ignoring regions belonging to the parking lot.
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(d) Spectral radiance curves of different objects within the scene. The
x-axis denotes the different hyperspectral bands from 390-1000 nm,
and the y-axis denotes the corresponding values in radiance.

Figure 2. Visualizing the data acquisition setup, corresponding
frame, mask, and spectral signatures plot for a scene instance in
the dataset.

Of these, snapshot and push-broom systems are the more
popular for typical data collections in hyperspectral imag-
ing [1, 5, 21, 24–26]. Snapshot cameras provide high frame
rates but lack both spectral and spatial resolution relative to
push-broom cameras. For example, Xiong et al. use an Imec
snapshot camera with a spatial resolution of 512 × 256 pix-
els and 16 bands from 470 nm to 620 nm, at 25 frames per
second (FPS) [25]. This is a relatively low resolution, both
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spatially and spectrally, when it comes to deploying for ap-
plications in far-range and high-altitude imaging.

Since the goal is to understand challenges in hyperspec-
tral imagery from both a ground and aerial perspective, we
require a system that provides relatively rich spatial and
spectral information. Hence, we use a push-broom sys-
tem which provides temporal, spatial, and spectral data for
scene understanding. Push-broom scanners work by col-
lecting one spatial line at a time along with the associated
spectra at each pixel. In order to generate a second spa-
tial dimension, the camera must be moved over the imag-
ing area (along-track) and then lines are stitched together to
create the hyperspectral cube. The push-broom application
obtains along-track (motion) pixels by nodding the pan-tilt
unit (Fig. 2a), where the motion is also responsible for the
mismatch in consecutive frames as seen in Fig. 1. We use
a frame period and exposure of 5 milliseconds, and hence
the typical image resolution is between 150-190 pixels ver-
tically, 1600 pixels horizontally and 371 bands (390 nm to
1000 nm) in the spectral (channel) dimension at a modest
frame rate of 0.8 ∼ 1.2 FPS.

We gathered data over three days (Table 1) and an av-
erage duration of 1.5 hours each morning. The camera
was mounted at a fixed location on the rooftop (Fig. 2a)
overlooking the same intersection spot, at the same rela-
tive altitude. We observed changes in the atmosphere (i.e.,
the weather changed from clear skies to clouds and back),
which resulted in images that varied in signal magnitude
due to the presence of clouds, variation in illumination, and
other environmental interference. Typically, the resulting
images are processed by converting the data from digital
counts to radiance, then a final conversion to reflectance
units through use of calibration panels. However, real-
time conversion of hyperspectral cubes from radiance to re-
flectance is not possible at all times - there may be scenes
where deploying a calibration panel is not practical (for ex-
ample, deploying the camera on a moving unmanned aerial
vehicle - plane). Hence, from a real-time usability perspec-
tive, we consider the lack of reflectance data as adversary
for radiometric remote-sensing.

Figure 2a shows the RooftopHSI setup for data collec-
tion. The objectives of our collection are multi-fold:

• to obtain short-time interval hyperspectral imagery
that can be used to perform object detection without
losing the object’s structure,

• to ensure there are sufficient sources of occlusion that
cause vehicle misdetections and observe if hyperspec-
tral signatures are helpful for detection under the con-
ditions, and

• to analyze how hyperspectral vehicle detection per-
formance is affected by changes in illumination and
weather conditions.

Split Date Images
Instances

Vehicle Bus Bike Total

Train 09-09-19 989 3299 80 41 3420
Val 08-29-19 605 3088 16 12 3116
Test 09-10-19 1296 3502 44 34 3580

Table 1. Statistics of objects in RooftopHSI over the train, valida-
tion and test sets.

2.2. Data Preprocessing

Before recording data from the camera, we closed the
shutter and obtained dark current readings at every new set
of video captures. These dark current readings were used
along with the camera’s proprietary processing software to
calibrate all images from digital counts to at-sensor spec-
tral radiance in units of mWm−2sr−1µm−1. Randomly
sampled spectra from vehicles, road and vegetation found
in the scene are shown in Fig. 2b and plotted them in Fig.
2d. We observed low signal-to-noise ratio (SNR) below 400
nm, and a lot of similar spectra with low SNR in the 900 nm
to 1000 nm range, with differences in amplitude. As these
bands do not contain discriminative spectral information,
we do not use them in our analysis. In addition, we used
a sub-sampled band version by sampling at every 10 nm to
optimize computation cost versus disk occupancy and re-
duce adjacent band redundancy. Our final dataset contains
51 bands, from 400 nm to 900 nm, in 10 nm intervals.

2.3. Data Annotation

We used LabelImg to label bounding boxes into three
categories (i.e., vehicle, bus, and bike) within the data fol-
lowing a two-step approach: (1) as we are interested in mov-
ing vehicles on the road, we created a mask per image that
covers the parking lot within the scene (see Fig. 2c), and
(2) we then proceed to image labeling the images within the
area of interest using a modified version of LabelImg that
provides insights into occlusions due to vegetation by us-
ing the normalized difference vegetation index (NDVI) al-
gorithm [11]. We annotated every object within the 4-way
intersection that is visible or partially occluded to the hu-
man eye, as we hypothesized hyperspectral signatures can
help compensate for lack of color and edge-based detec-
tions. To avoid labeling discrepancies, a team of annotators
(scale.ai), the student challenge organizers and two exter-
nal volunteers further confirmed all labels, for an average
of four checks on each labeling instance.

We split the data into train, validation, and test sets based
on the days they are captured as shown in Table 1. Our rea-
soning behind this distribution split is the fact that our cam-
era overlooks the same 4-way intersection over the three
days, with minor changes to the observation altitude and
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(a) Set of ordered frames from the dataset: the vehicle, along with others in the dataset, appears distorted once the push-broom tilt sweep is complete and
all lines stitched together depending on their relative speed to the camera’s frame rate and its tilt motion.

(b) Vehicles occluded by trees in the scene.

(c) Vehicles occluded by other vehicles in the scene. The second figure from the left also shows the image perturbations caused by glint in the scene.

Figure 3. Zoomed in composite RGB images of instances from the dataset showing sources of noise and occlusions.

angles. Hence, the data split prevents quick scene general-
ization, which in turn may cause the convolutional neural
networks to overfit quickly. Having different days makes
the task relatively difficult as we now have to take into con-
sideration the network’s potential to overfit as well as ac-
count for changes in atmospheric conditions and surround-
ings that may cause a shift in the spectral signatures of mov-
ing objects. Table 1 also shows a huge imbalance in the
number of examples over classes, with the vehicle category
dominating the other two classes - which is a realistic sce-
nario over campuses. We do not label the dataset for sin-
gle or multi-object tracking as the average track length is
around 3-4 frames at 0.7 FPS and discussing and develop-
ing algorithms for low frame rate tracking is beyond the
scope of the current SSHOD challenge.

2.4. Data Exploration

The RooftopHSI dataset contains a total of 2890 man-
ually selected and labeled frames (Table 1). HSI data is
relatively expensive to store and process and therefore, we

only consider frames that have at least a single-car instance
through the intersection in our dataset.

Environment: The camera was mounted on the univer-
sity rooftop and observed a 4-way intersection as described
in Section 2.1. There are multiple trees present throughout
this scene and they account for the primary source of occlu-
sion throughout the dataset (Fig. 3b). We also continued to
gather data when the environment shifts from clear skies to
cloudy weather to replicate aerial data collection settings.
This is contrary to common data collection settings in HSI,
where images are gathered during particularly clear skies to
prevent signal contamination from atmospheric noise. Va-
riety in the atmosphere makes our dataset more challenging
from an HSI processing standpoint.

Camera noise: The tilt motion of the Hyperspec cam-
era, to write data in a push-broom setting, introduces mo-
tion artifacts in the images as seen in Fig. 3a. The vehicle
appears to be deformed right-inclined or left-inclined de-
pending on if the unit is moving from up-down or down-up
respectively, which can be considered a low frame-rate mo-
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tion blur that occurs due to a mismatch in vehicle speed and
camera frame rate. We account for this deformity by inter-
polating the bounding box throughout the deformed shape
and consider it a form of dataset noise. In addition, the most
common sensor noise in HSI systems are smile and key-
stone effects. However, the data did not contain enough dis-
tortions as we imaged from ground level at relatively close
range and hence, do not consider them in the preprocesing
stage (Section 2.2).

Glint: Sun glint, the most common source of occlusion
in remote sensing, occurs due to the material’s bidirectional
reflectance mechanics directly reflecting sunlight into the
camera sensor. We observe this only occurs in certain parts
of the imagery and is almost always associated with vehi-
cles, and sometimes water (Fig. 3c).

Moving objects: Fig. 3c shows vehicle-to-vehicle oc-
clusion, which most often occurs along the intersection box
borders. These are the secondary source of occlusion in the
RooftopHSI dataset.

The presence of such variations, coupled with changes in
atmospheric settings - clear skies and cloudy weather, make
our dataset the first of its kind to tackle object detection with
ground hyperspectral imagery.

2.5. SSHOD Challenge 2022

The SSHOD challenge is a semi-supervised object detec-
tion problem. Particularly, we provide labels for only 10%
of the data from the 989 training images, ensuring the tail
classes, namely bus and bike are sufficiently sampled for
learning useful features. We also provide a starter code 1 on
our baseline MobileNet-v2 Faster-RCNN, which is trained
on only the labeled examples within the dataset [4, 16, 17].
The challenge was formulated as a means to encourage par-
ticipants to develop frameworks for learning meaningful
representations that can make up for the loss of labeled ex-
amples, while maintaining a backbone complexity not dras-
tically exceeding the MobileNet-v2 architecture. After reg-
istration, participants were able to access the links to all
the data via CodaLab and submit predictions for automatic
evaluation on the competition server. The COCO evaluation
metric was used for determining the rankings of all sub-
missions [12]. From 38 registered participants, 8 submit-
ted their predictions in the validation phase and 3 submitted
their predictions in the test phase, with corresponding fact
sheet and model weights, with only 2 of the entries above
our baseline (Table 2). We discuss the approaches and team
formations, with a distinct observation that both the teams
used a student-teacher framework to generate pseudo labels
as a means of compensating for lack of sufficient data.

1https://codalab.lisn.upsaclay.fr/

Figure 4. Framework: USTC-IAT-United

3. Proposed Approaches and Teams

This section briefly presents the approaches proposed by
the different teams.

3.1. USTC-IAT-United

Figure (4) shows the USTC-IAT-United team’s approach
for this challenge. The authors modified the standard Faster
R-CNN framework with a Cascade R-CNN [3], taking into
account the computational complexity of backbone equiv-
alent or lesser than MobileNetv2 [17] (in terms of pa-
rameters and GFlops). During training, the team used a
multi-scale strategy, setting the scale to [(1600, 188),(1600,
189)]. The second phase of the training included training on
pseudo labels obtained on the remaining unlabeled training
set, by choosing the predictions from the model trained on
the initially labeled set with confidence scores higher than
0.99. In the second stage of training, the team added much
stronger data enhancement strategies than before, such as
cutout [6], ShiftScaleRotate, RandomBrightnessContrast,
and RandomResizedCrop. In the testing phase, the team
used a multi-scale testing with Soft-NMS [2] to further im-
prove the accuracy of the model. Table 2 shows that this
approach overcomes the baseline resluts on using the entire
labeled data, and we believe its primarily due to replacing
Faster R-CNN framework with the Cascade R-CNN frame-
work. All models were trained on Nvidia V100 GPUs, with
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Figure 5. Framework: MSC-1

the MMdetection framework [4].

3.2. MSC-1

Figure (5) shows the MSC-1 team’s approach for this
challenge. The team trained a teacher-student network,
where the teacher network was used to generate pseudo la-
bels on the unlabeled data which is used to train the stu-
dent network. They also modified the framework to address
the class imbalance within the training dataset by adding
a sampling technique to increase the frequency of occur-
rence for rare-classes (bus and bike). The team used a Pyra-
mid Vision Transformer-b5 as the backbone encoder for
the teacher network [23], with a modified feature pyramid
network [18] and Task-aligned One-stage Object Detection
(TOOD) block [7] as the detection head. The team used
a PVT-B0 backbone, which is a lightweight version of the
PVT family of networks, as the student network for their fi-
nal submission to meet the computational requirements. All
models were trained on Nvidia Titan RTX GPUs, with the
MMdetection framework [4].

3.3. Discussion

The winning results are summarized in Table 2 and make
two important observations. We observe, for the test set,
that the Cascade R-CNN approach (USTC-IAT-United) is
able to outperform the performance of a Faster R-CNN
network that is trained with the entire set of labeled data,
while struggling with the bike class, which is the most in-
frequently occurring class. The other entry (MSC-1), that
uses PVT-B0 backbone, is able to outperform our baseline
by using pseudo labels. However, since is not close to the
USTC-IAT-United performance, we conclude that the mod-
ification of Cascade R-CNN is crucial for better results.
We observed that both approaches used some form pseudo-
labeling: USTC-IAT-United uses the same set of networks,
while MSC-1 uses a relatively expensive backbone PVT-B5
for generating the predictions, and then train a lighter back-
bone PVT-B0 on the combination of labeled and pseudo-

labeled data. Figs. 6, 7, 8 provide some examples of predic-
tions from each of the submissions (USTC-IAT-United and
MSC-1), our baseline and our fully-supervised approach for
comparison, and discuss the most noticeable points in their
captions.

4. Conclusion
In this paper, we introduce the RooftopHSI dataset, a

first-of-its-kind dataset to benchmark hyperspectral object
detection in realistic scenarios, that includes occlusion, de-
formations and changes due to weather conditions. We con-
structed the SSHOD challenge as a semi-supervised learn-
ing scenario, by providing labels for only 10% of the train-
ing data, and encouraging participants to use algorithms
in semi-supervised learning for boosting performance. We
hope our dataset and initial survey of methods will boost
research in this area of designing frameworks that rely on
hyperspectral features for object detection.
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Framework
(No. of Params)

Validation set Test set
AP-Vehicle AP-Bus AP-Bike AP AP-Vehicle AP-Bus AP-Bike AP

Baseline
MobileNetv2
(14.11 M)

48.66 12.85 14.67 25.39 28.00 34.20 0.00 20.70

USTC-IAT
-United

MobileNetv2
(31.68 M)

56.80 51.40 52.60 53.60 39.70 61.50 4.30 35.10

MSC-1
PVT-B0
(32.77 M)

49.50 39.80 31.90 40.40 31.80 56.30 0.20 29.40

Fully
-Supervised

MobileNetv2
(14.11 M)

58.10 42.60 28.00 42.90 38.50 51.80 6.70 32.30

Table 2. Summary of results, comparing the baseline network (MobileNetv2-Faster-RCNN) trained on 10% data, to the two submissions
(USTC-IAT-United and MSC-1), and the fully supervised version of our network trained with 100% of the training examples.

(a) Baseline

(b) USTC

(c) MSC

(d) Fully Supervised

Figure 6. (a), (c) have relatively confident false detections of bus, and only (c) is able to detect a heavily occluded vehicle around the trees,
thus indicating a possible advantage of using a vision transformer backbone for hyperspectral object detection.

Advanced Institute of Science and Technology, Daejeon,
Republic of Korea
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