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Abstract This work develops a new architecture for multiple-target track-
ing in unconstrained dynamic scenes. It is conformed by a detection level
which feeds a two-stage tracking system. A remarkable characteristic of the
system is its ability to track several targets while they group and split, with-
out using 3D information. Thus, a special attention is paid to the feature-
selection and appearance-computation modules, and to those involved on
tracking through groups. The system aims to work as a stand-alone ap-
plication in complex and dynamic scenarios. No a-priori knowledge about
either the scene or the targets, based on a previous training period, is used.
Hence, the scenario is completely unknown beforehand. Successful tracking
has been demonstrated in well-known databases of both indoor and out-
door scenarios. Accurate and robust localisations have been yielded during

long-term target merging and occlusions.



1 Introduction

Multiple-target tracking is one of the most complex and active research fields
in computer vision, specially when it concerns the analysis of unconstrained
human-populated environments. People tracking is therefore highly appeal-
ing. This interest is also prompted by an increasing number of potential
applications in which people tracking is a key task. Among these, we may
find smart video safety and video surveillance [2, 7], intelligent gestural user-
computer interfaces [10], or any other applications in orthopedics, sports,
natural-language scene description, or computer-animation fields, related
to Human-Sequence Evaluation (HSE) [5]. Further, trying to emulate the
performances of natural-vision systems represents a real challenge.

In every situation where no a-priori knowledge is available about either
the scene or the targets, motion-based tracking outperforms appearance-
based tracking. This is specially the case when target appearances consider-
ably evolve over time. An accurate initialisation is often not feasible, and the
need of adaptation usually leads to the phenomenon known as model drift.
However, there are many situations where segmentation-from-motion, and
the subsequent observation-tracker correspondence, is not possible. Among
those, one may include target grouping, or even worse, target occlusion, see
Fig. 1.

In order to cope with these events, several approaches have been pro-
posed in the related literature. The target state could be propagated ac-

cording to the learned dynamic model, but this usually does not suffice,



Fig. 1 Target interaction. To keep the identity of multiple targets which can-
not be independently segmented is a challenging task. Notice the different group

membership of targets in blob 1 and 4.

since its motion is generally subject to sudden changes, and the possibil-
ity of losing the target increases with the time the target is non-detected.
A coarse localisation can be obtained by considering that they are inside
the group region [18]. However, grouped targets are not accurately tracked,
and no complex situation can satisfactorily be tackled —for instance, those
in which a group of more-than-two members split. Wu et al. [17] address
occlusions events within a Particle Filter (PF) framework by implement-
ing a Dynamic Bayesian Network (DBN) with an extra hidden process for
occlusion handling. Alternatively, several approaches take advantage of 3D
information by making use of a known camera model and assuming that

the targets move on a known ground plane [19].



Therefore, targets within a group cannot be accurately tracked in 2D
domains without using appearance information. However, appearance-based
tracking may be extremely sensitive to illumination changes; and further,
the background and nearby targets can act as appearance distracters, thereby
causing the tracker to erroneously lock on them. Moreover, in open-world
scenarios the target appearance cannot be specified in advance. It should
also be continuously updated, since it strongly depends on the target posi-
tion, its orientation to the camera and possibly several light sources, or the

body posture in case of people tracking.

Several approaches have been taken in the literature to perform an
appearance-based tracking. Particle Filters (PF), have been widely used to
perform stochastic estimation [8,11,16]. Specifically, Nummiaro et al. [13]
use a PF based on colour-histogram cues. However, no multiple-target track-
ing is considered, which implies that no scene event such as target grouping
or occlusion can be analysed, and it lacks from an independent observa-
tion process, since samples are evaluated according to the histograms of the
predicted image region. Perez et al. [14] propose also a PF based on a colour-
histogram likelihood. They introduce interesting extensions in multiple-part
modelling, incorporation of background information, and multiple-target
tracking. Nevertheless, it may require an extremely large number of sam-
ples, since one sample contains information about the state of all targets,

dramatically increasing the state dimensionality. In addition, no appearance



model updating is performed, what usually leads to target loss in dynamic

scenes.

BraMBLe [9] is an appealing approach to multiple-blob tracking which
models both background and foreground using Mixtures of Gaussians (MoG).
Nevertheless, no model update is performed, there is a common foreground
model for all targets, and suffers for the curse of dimensionality, as all PF-
based methods which tackle multiple-target tracking combining information

about all targets in every sample.

Target localisation following a gradient-descent search on a weighted
image region has also been widely used in the visual tracking field [1,4,3].
In this case, the search is deterministic. This is usually done according to
an histogram similarity measure related to the Bhattacharyya coefficient.
However, these methods do not work in unconstrained situations. Thus, the
approach presented by Comaniciu et al. [4] tracks just one target, initialised

by hand, and the appearance model is never updated.

Recently, Collins et al. [3] presented an interesting tracker, based also on
the mean-shift algorithm, with on-line selection of discriminative features.
It aims to maximise the distinction between the target appearance and its
surroundings. Still, it tracks just one target, and it may suffer from model
drift, although models are anchored to the first frame, which is manually
segmented. Nevertheless, in both cases, just rigid targets are tracked (or

rigid regions of them), appearance changes are limited, and since multiple-



target tracking is not considered, interaction events are not studied. These

facts cannot be seen as minor issues in real applications.

McKenna et al. [12] combined colour and gradient information in their
adaptive background subtraction approach. Tracking is done by means of
data association. Three levels of representation are used, namely, regions,
people and groups. People appearance is modelled using colour histograms.
Visibility indexes, obtained from the probabilities that the pixels corre-
spond to unoccluded people, are used to disambiguate occlusions. However,
problems arise when several people and the background have a similar ap-
pearance. It is also assumed that the target appearance do not significantly

change while the targets are grouped.

Consequently, tracking multiple targets simultaneously as they group
and split remains a challenging task. The tracking success will be deter-
mined by the ability of distinguishing the target from potential distracters.
In this proposal, motion segmentation is used on isolated targets, and the
system takes advantage of these situations to build accurate target mod-
els. Then, a distracter-robust mean-shift method is proposed to track them
inside groups. It copes with clutter distracters by selecting the most conve-

nient colour-related features.

A set of appearance models is continuously conformed, smoothed and
updated. Thus, multiple target representations are built using several mod-
els for each of them, while they are simultaneously being tracked. Fur-

ther, colour information relative to the target surroundings, background and



other close targets is used to tune the appearance models. Potential model
drift is precluded by carefully updating the appearance models, thereby en-
suring proper tracking despite noisy measures, estimate errors, partial or
complete occlusions, and changes in the illuminant and camera viewpoint.
The proposed system aims to work as a stand-alone application in a non-
friendly, complex and dynamic open scenario, which is completely unknown
beforehand. Hence, no a-priori knowledge about either the scene or the tar-

gets, based on a previous training period, is used.

The remainder of this paper is organized as follows. Section 2 outlines the
system architecture. A proposal which specifically addresses independent
target tracking while they group and split is detailed in section 3. Section 4
shows some experimental results obtained from well-known databases, and
finally, section 5 summarises the conclusions, and proposes some future-work

lines.

2 Tracking Framework

Due to the inherent complexity involved in non-supervised multiple-human
tracking, a structured framework is proposed to accomplish this task. This
approach takes advantage of the modular and hierarchically-organised sys-
tem that we have published in some preliminary works [6,15]. It is based
on a set of co-operating modules distributed in three levels, which work fol-

lowing both bottom-up and top-down approaches. These levels are defined



according to the different functionalities to be performed, namely target de-

tection, low-level tracking (LLT), and high-level tracking (HLT), see Fig. 2.

A remarkable characteristic of this architecture is that the tracking task
is split into two levels: a lower level based on a short-term blob tracker,
and a long-term high-level appearance tracker. The latter automatically
builds and tunes multiple appearance models, manages the events in which
the target is involved, and selects the most appropriate tracking approach

according to these.

In any tracking system, reliable target segmentation is critical in order to
achieve an accurate feature extraction without considering any prior knowl-
edge about potential targets, specially in dynamic scenes. However, complex
interacting agents who move through cluttered environments require high-
level reasoning. Thus, our approach combines in a principled architecture
both bottom-up and top-down approaches: the former provides the system
with initialisation, error-recovering and simultaneous modelling and track-
ing capabilities, while the latter builds the models according to a high-level
event interpretation, and allows the system to switch among different oper-

ation modes.

The first level performs target detection. The segmentation task is ac-
complished following a statistical colour background-subtraction approach.
Next, the obtained image masks are filtered, and object blobs are extracted.
Each blob is labelled, their contours are computed, and they are paramet-

rically represented.



TRACKING

HIGH-LEVEL

K Loop

s
EVENT
MANAGEMENT
LDW I.EVEL
X' ;; ]
MEASURE DATA
| VALIDATION ASSOCIAT\ON Fg FILTERING

;-Lcw—\evel‘\ '
\ Loop X' h TRACK
MANAGEMENT

| FEATURE APPEAR. APPEAR.
SELECT. COMP. UPDATING
| Lgbgtv#:ﬂ:(m FEATURE@ APPEAR. \_g APPEAR.
MATCHING (| SELECT. COMP. ASSOC.
gt /v .
| ngh -level | |

lL__;

DETECTION
—

IMAGE
SEGMENTATION

BLOB DETECTION &
REPRESENTATION

Fig. 2 System architecture. I+ represents the current frame, Z: represents the
observation matrix, X; the target low-level state matrix, and S; the target’s high
level state matrix. Matching results are explained in the text. In this paper we
mainly focus on the feature-selection and appearance-computation modules, and
on those involved on tracking through groups, albeit the whole architecture is

used in the presented experimental tests.

By using a parametric representation to model each blob, the spuri-
ous structural changes that they may undergo are constrained. These in-
clude target fragmentation due to camouflage, or the inclusion of shadows

and reflections. Moreover, this representation can be handled by the LLT’s,



thereby filtering the target state and reducing also these effects. Representa-
tions based on ellipses are commonly used [4,13]. Here an orientable ellipse is
chosen —which keeps the blob first and second order moments. Thus, the j-
observed blob at time ¢ is given by the vector z} = («§,y!, ht, w!, %) , where
%, yj represent the ellipse centroid, h},w? are the major and minor axes,
respectively, and the 9; gives the angle between the abscissa axis and the
ellipse major one. Low-level motion trackers establish coherent target rela-
tions between frames by setting correspondences between observations and
trackers, and by estimating new target states according to the associated
observations using a bank of Kalman filters. Finally, the track-management
module (i) initiates tentative tracks for those observations which are not as-
sociated; (ii) confirms tracks with enough supporting observations; and (iii)

removes low-quality ones. Results are forwarded to HLT’s, and fed back to

the measure-validation module. See [6] for details.

A HLT is associated to each confirmed LLT. Hence, tracking events
are managed. This allows target tracking even when image segmentation
is not feasible, and low-level motion trackers are removed, such as during
long-duration occlusions or grouping events. As a result of the matching,
three cases are considered: (i) if the track is stable, the target appearance is
computed and updated, see matching result (1) in Fig. 2; (ii) those HLT’s
which remain orphans are processed to obtain an appearance-based data
association, thereby establishing correspondences between lost HLT’s and

new ones, see matching result (2). The details of these procedures can be



found in [15]; and, (iii) those targets which have no correspondence are
tracked in a top-down process using low-level appearance-based trackers,
see matching result (3). An event module determines what is happening
within the scene, such as whether target is grouping or a target is entering
the scene. These results are fed back, thereby allowing low-level and HLT
matching. In this paper we develop the feature-selection and appearance-
computation modules, by paying special attention to grouping situations,
and those modules involved on the third matching result, namely, weight

computation and mean-shift tracking through groups.

3 Tracking Inside Groups

As it has been above stated, targets within a group cannot be accurately
tracked without using appearance information, since motion cues are not
sufficient. The task of the appearance-based trackers in the proposed system
is to track those targets whose low-level motion tracker has been removed
due to the lack of associated observations. Further, in order to increase
the system performance, this is also done in every grouping or splitting
situation, when the corresponding target has no observation associated —
which means that a group is formed, but its tracker is not confirmed yet.
However, the target’s appearance evolves in a unknown manner over
time, and the local background and nearby targets may mimic its appear-
ance. In order to achieve a successful tracking, this ambiguity must be

minimised. Thus a feature space is selected by taking all distracters into



account, and model bins shared with distracters are made less significant.
Further, potential drift of the appearance models is precluded by perform-
ing a careful updating according to the detected events and the evaluation

of the tracking results.

3.1 Appearance representation

The target appearance is represented by means of colour histograms. His-
tograms are broadly used to represented human appearance, since they are
claimed to be less sensitive than colour templates to rotations in depth,
the camera point of view, non-rigid targets, and partial occlusions [3,4,12,
13]. They are also usually used to represent non-parametric distributions,
provided that they allow one to achieve real-time performances given the
low computational cost required. Thus, the histogram of a target is given

by:

p={p;k=1:K}, (1)

where K is the number of histogram bins, and the discrete probabilities of

each bin are calculated as:

M

pi = OnY_ g5 (lIxall”) 6 (b (xa) = k), (2)

a=1

where C'y is a normalisation constant required to ensure that Eszl pr =1,



d the Kronecker delta, {x,;a =1: M} the pixel locations, M the number
of target pixels, and b (x,) a function that associates the given pixel to its
corresponding histogram bin. gg (x) is the convex and monotonic profile
of an isotropic kernel which allows one to perform gradient-based searches,
which need differentiable similarity functions. Further, by assigning lower
weights to pixels farther from the centre, the influence of boundary clutter
is diminished. Here, an elliptical Epanechnikov kernel has been used [4,13].

The above-defined appearance histograms are computed given a cropped
image region. Two sources of information are available to decide which pixels
should be considered as belonging to the target, namely the silhouette of the
associated observation —given by the detection module— and the filtered
ellipse —given by the LLT. In this work a conservative approach has been
used in order to minimise the risk of failures caused by model drift. Thus,
only those pixels which belong to both the detected silhouette and the
filtered ellipse are considered. By doing so, background pixels which have
been erroneously detected —e.g due to reflections— or those inside the
tracked ellipse are removed. Also, non-reliable boundary foreground pixels,

such as those of the end of the limbs, are usually not taken into account.

3.2 Feature selection

Colour cues have been here selected to model the target appearance. Nu-
merous colour spaces can be used, and each of them has tunable parameters,

resulting in an enormous space of potential features. By selecting the most



appropriate one, a maximum discrimination between the target and local
distracters is obtained. The following feature-selection technique has been
used in [3] to maximise the target discrimination from its surroundings.
There, features are selected from a set of linear combinations of the R, G

and B channels:

F =w1 R+ wsG+ wsB|lwe € {-2,-1,0,1,2} ,C=R,G, B (3)

which includes raw R, G, and B, intensity, and common chrominance
approximations. The total number of candidates is 5%. Non-independent
combinations are removed, leaving a set of 49 features. Computed values
are then normalised to the range [0 : 255], and subsequently discretised. In
the present implementation the number of bins is set to K = 64. This is
a sensitive decision since a low number of bins will prevent from target-
clutter disambiguation, but, on the other hand, a high value favours erro-
neous representations that appear when distributions are estimated from an
insufficient number of samples, and makes the representation too sensitive
to minor illumination changes. The i-th target histogram is given by p?,
while q’ represents the background histogram, computed from the back-
ground model. Features are then ranked in the following way. First, the

log-likelihood ratio of each feature is computed:

max (p};, e)

Li=1lo :
k & max (q’k, e)

; (4)



where € is set to prevent dividing by zero or taking the logarithm of zero.
Thus, shared colour bins have a log-likelihood close to zero, whereas fore-
ground bins have a positive one, and background bins a negative one.
Features are then evaluated according to the variance-ratio of the log-
likelihood. The variance of the log-likelihood according to a general discrete

distribution ¢ can be computed as:

var (Ly¢) = E [L?] - E[L)* = ¢p L% — (Zd)kLk) : (5)
k k

The variance ratio of the log-likelihood for each feature VR? is defined

as:

var (L (p' 4+ q*) /2)

VR (L% p',q') = — v
(52", o) var (L#; p?) + var (Li; qf)”

and then, features are ranked according to these values: the higher, the
better. Thus, the selection maximises the inter-class variance —that is, the
distance between background and target clusters of bins— while minimising
the intra-class variance —tightly clustering both background and target
bins.

This feature-selection scheme is enhanced in this work by solving the ini-
tialisation, smoothing the representation, and completing it so that tracker
association is feasible once the event that cause the target loss is over. The

possibility of an inconsistent localisation due to feature switch is also min-



imised, by introducing the distinction between long-run features and the
current best ones (as explained next). Further, this scheme is generalised in

order to take into account distracters caused by nearby targets.

3.2.1 Feature Selection in a n-Class Problem Features are here selected
considering not only the best distinction between the local background and
the target, but also between the target and its group partners. This is done
by generalising the variance-ratio expression given in Eq. (6) to a n-class

problem:

J
var Li; %ﬂ qi + Z pi’j

VR (Lip", ... p™, .o ™. ) = =

. (@)
var (L?; q°) + Zvar (Li; phd)
j=1

being n = J+ 1, where J gives the number of partners including the target,
whose histograms are given by p*/, where i denotes the feature index, and j
the target one; and q* models the ith—background colour distribution. Thus,
in order to allow the system to build reliable appearance models using the
features which best distinguish a target from its potential distracters, once
a grouping event is detected, the partners histograms are also used in the

feature selection procedure.

3.2.2 Model pool Contrary to the paper of Collins [3], long-run features
are here kept and smoothed. As it will be shown, these features are useful

later on, after a target loss caused by an occlusion. Further, by smoothing
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Fig. 3 Selected features. (a) Example of selected features on a given interval

where targets are grouped. (b) Histogram of selected features on the whole se-

quence.

the histograms, the representation is less sensitive to potential initialisation
and subsequent localisation errors, and to sudden and temporal appearance
changes, for instance due to illumination fluctuations.

Hence, a pool of M 4+ N features is kept: the best M features at time ¢,
and the best N long-run features, i.e. those which have been at the top of
the feature ranking more times. These features are only dropped when new
features enter the pool, and eventually overcome the formers.

By analysing the evolution of the model pool —see Fig. 3— several
facts can be noticed: some features are periodically among the best ones;
this repetitive behaviour is presumably due to similar agent orientations
and gait during tracking. Some features join the pool and quickly become
one of the best ones, as the agent moves and the local background changes.

Finally, other features are dropped and re-selected several times: they are



periodically among the best ones, but they are not selected enough times,
and due to the pool size are dropped when others join the set. These be-
haviours strongly suggest that keeping a stable set, of features may be useful
for tracker association after a tracking failure.

Whenever there is enough confidence on the tracker to update the ap-
pearance, all M + N models are updated. This is done in a recursive way

using an adaptive filter:

P’ =p +ap (pi’j - 51’21) 5 (8)

where ap € [0, 1] denote the adaptation rate which weights the most recent
values versus the historic one, and ﬁi’j the smoothed histogram of target
j at time ¢ using the i-th feature. Old values are exponentially forgotten
according to this rate: the bigger it be, the faster old data are forgotten.
However, contrary requirements must be fulfilled: (i) when a feature is
recently added, the model should be fast adapted, in order to cope with po-
tential detection errors during the initialisation; (ii) medium-term models
should not be excessively adapted, to prevent model-drift phenomena; (iii)
long-term models should be adaptive enough, so that the system can handle
unexpected appearance changes. This suggest defining the adaptation rate
in terms of time, and to employ a principled function oy, (¢). Thus, a recur-
sive mean filter is first used, thereby fulfilling the two first requirements, but

the adaptation rate is fixed to a high enough value after an initialisation pe-



riod, and thus model adaptation could be performed during arbitrary long
time periods.

In this way, once a target is detected, and the corresponding low-level
motion-based tracker is confirmed, the target is being tracked while it is si-
multaneously being modelled by the HLT. New features can be added, while
stable ones build robust appearance models, even during hard situations, as
it will demonstrated later on.

A similarity measure between two histograms can be computed using

the following metric [4,13]:

dB =V 1- p(p7q)7 (9)

where p is the Bhattacharyya coefficient:

K
p(P.a) =D \Prak- (10)

k=1
A similarity criterion must be set in order to establish when two his-
togram are close enough. For this purpose, every time the smoothed his-

togram is updated, the mean and variance of Bhattacharyya metric dp

between the former histogram and the new one, are recursively updated:

i = wiy e (A - mh ) (1)
N2 b 3 N2 o o N
(o) = nid — 2 (o) + (7 = 1) (7 = i?), (12)

where n®J is the number of times this particular feature histogram has been
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Fig. 4 Weighted image. (a) Image mapped according to the selected feature.

(b) Corresponding weighted image. (¢) Weighted image for a feature with higher

Variance Ratio.

updated. In this way, the metric distribution can be parametrised and used

to establish a confidence measure.

3.8 Mean-shift Tracking

This technique achieves target localisation by performing a gradient-descent
search on a image region of interest, which is previously weighted. The target
model is given by the histogram P, while the target candidate distribution
at the image location X is represented by p (Xg). The similarity between
two histograms is computed using the metric defined in Eq. (9).

The mean-shift procedure recursively moves the candidate position to
a new location, while searching the local maximum according to the afore-
mentioned metric [4]. That is to say, a new location is searched in the
neighbourhood of the former one by maximising the similarity between the
target model and the candidate one, computed from the current image at
this location, see Fig. 4. This is approximately equivalent to minimise the

second term of the Taylor expansion of the Bhattacharyya coefficient which



represents a weighted-data density estimate computed with the kernel pro-

file [4]. Thus, the new location is given by:

M

2
> Xawag (IIXo — Xa| )

~ a=1

X1 = IY; 5 (13)
2
> wagi (1% —xal)
a=1

where the weights w, are given by:

Py
(&0)5 (b(xq) — k). (14)

K
wa=) /5
i1 | Pk
By choosing an Epanechnikov kernel, both kernel profile derivatives gz
in Eq. (13) can be removed by taking into account that the derivative of the

profile of an Epanechnikov kernel is a constant. Thus, the algorithm works

as follows:

1. the histogram of the target candidate p is computed at location Xg,

2. weights are computed according to Eq. (14),

3. the next target location X; is derived following Eq. (13),

4. if ||%o — %1|| < €, or the maximum number of iterations has been reached,

stop. Otherwise set Xy < X1 and go to step 1.

This procedure is here enhanced by making a principled use of all avail-
able sources of information in order to minimise the risk of target loss when
no accurate motion-segmentation can be performed, see Fig. 5. These in-

clude an updated background model, the current frame segmentation, the



Fig. 5 Sketch of merging targets. Foreground candidate regions include pixels of
the background and of nearby targets. The detection mask include shadows and

reflections, but do not enclose all target pixels due to camouflage problems.

estimate state of all targets within the scene, their multiple-appearance
models, and the prediction of collisions according to the learned dynamic

models.

3.3.1 Introducing Motion Cues The current segmentation can be used to
weight the influence of each pixel on the candidate histogram, and on the
weighted sub-image where the search is performed. By doing so, the system
is making use of the results obtained by the detection level, but without
neglecting the possibility of segmentation errors.

A mean-shift procedure assigns weights to each histogram bin accord-
ing to a relation between the model and candidate histograms, and then
back-projects these values into the image, before computing the new pro-
posed localisation. Thus, each pixel is weighted according to its supposed
membership to a determine target, given its appearance model.

By using motion information, those pixels within either the target can-
didate region or the search region which are not segmented are weighting

according to an estimate error-segmentation rate, see Fig. 6. In addition,
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Fig. 6 Segmentation weighting. (a) Cropped candidate. (b) Search region mask.

(c) Candidate region mask (previous to apply the Epanechnikov kernel).

candidate pixels contribute to the histogram with a value in the interval
[0 : 1], according to the applied kernel. In this proposal, the Epanechnikov
kernel is used combined with the resulting detection mask, thereby min-

imising the risk of over-weighting significant distracters bins.

3.3.2 Bin-weighting So far, background and partners’ information has been
used to select the features that best discriminate the target from a local en-
vironment. However, even for the best features, histogram bins could be
shared between the target and potential distracters. This fact leads to an
erroneous localisation, which finally ends causing the drift of the appearance
models. This can also be accelerated due to the fact that the foreground is
hardly ever perfectly delineated. To minimise tracking failures due to this
issue, the following approach is proposed.

The background-weighting approach proposed in [4] is here generalised
by including three sources of information: the appearance models of the
partners, the learned background model, and the current surroundings. Fur-
ther, this is applied to each appearance model computed from a particular

feature f;. The learned background presents the advantage that it contains



Fig. 7 Examples of centre-surround model with safety margin. Regions from
centre to border: target estimation, safety margin, surrounding background, and

non-local background.

no foreground information, but it may differ from the current one due to
the occlusion of some light source. A centre-surround approach which also
includes a safety region between them, is used to cope with these effects,
see Fig. 7. It also includes information about nearby targets, at the cost of
potential incorporation of target pixels, specially if the target shape cannot
be fairly represented by an ellipse. This is minimised by the inclusion of the
safety margin. A conservative approach has again been chosen: all signif-
icant bins in any of the aforementioned sources of knowledge of potential
distracters will have its importance diminished.

The surroundings histogram is computed using the outer region which

encloses the target:

si:{s};;kzlzk}. (15)
Hence, this histogram is used to compute a weight for each bin, depend-

ing on its significance:

Wi® = {min (si> k=1: K} (16)
Sk
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Fig. 8 Involved histograms. (a) Model histogram. (b) Partner histogram. (c)

Weighted model histogram

where sk* is the minimum non-zero value. The same technique is used to
compute weights according to the learned background model, wZ’q, and each
partner, wz’j . Thus, for the [-target among the J targets of the group, the
total weight of each model bin, given the i-th model feature, is obtained

combining these weights:

J
oWl d,s d,q ,]
wy = wy wy H wy’. (17)
i=1#l

These weights can then be applied to the target model to diminish the
importance of those bins which are shared with potential distracters, see
Fig. 8. Bin weighting according to the appearance of local distracters can
be seen like a probabilistic exclusion principle. Such a technique has also
been used in [11] in order to avoid that an edge feature can correspond
to several targets. In other words, one particular evidence must not con-

tribute to mutually exclusive hypotheses. In our case, shared model bins
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Fig. 9 Disambiguating target and clutter appearances.
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Fig. 10 Combined motion and appearance weighing approaches.

must not reinforce the same local maximum in the weighted image where
the mean-shift is computed, see Fig. 9. The complete approach which com-
bines both motion and appearance cues to perform target localisation is

shown in Fig. 10.

3.4 Criteria to Perform an Appearance Updating

A bank of M + N mean-shift procedures is run, and each of them uses an

appearance model tuned at one of the selected features. These models need



to be updated even when the targets are grouped, since their appearances
are always subject to undergo significant changes, specially when the targets
are in motion. However, the updating of the appearance models must be
carefully done in order to avoid model drift. Therefore, the results of the
different mean-shift runs are only fused once they have been properly filtered
according to appearance and localisation criteria.

First, those mean-shift procedures which have not converged after a
number of iterations are not considered reliable enough to take them into
account to perform the updating. Next, an appearance gate is computed
to filter those features whose histograms significantly differ from the mod-
els according to the learned feature statistics based on the Bhattacharyya

coefficient:

&, < 7 + cal?, (19

where c is the factor which set the confidence region. Finally, a robust target
localisation is obtained by filtering potential position outliers among the
remaining features. This avoids that a feature model locked on a distracter
similar in appearance corrupts the localisation computation. This is done
by computing the position mean and variance, and removing the outliers.
The procedure is iterated until convergence.

When at least one model survives the appearance filtering, the localisa-

tion is considered reliable enough to perform a model updating and a new



feature selection. Given that a candidate localisation is always necessary,
in the event of non having any reliable result according to the appearance
criterion, the above robust-target localisation is performed, and the position

is updated, but the appearance models are kept unmodified.

4 Experimental Results

The performance of the system has first been tested using sequences taken
from two well-known databases —the CAVIAR database' and PETS 2001

Test Case Scenario?

— and own sequences from the projects in which the
authors are involved. CAVIAR sequence corresponds to indoor sequences
which have been recorded in a mall centre; PETS one contains outdoor
sequences taken in a scene which includes roads, parking places, and green
areas surrounding several buildings; a crosswalk scene is analysed in
CVC _Zebral; finally, Hermes_Qutdoor Caml sequence presents a great
diversity of situations, where three people and three cars act on a robbery
sequence, while suitcases and bags are carried, left and picked from the floor.
In the sequence OneLeaveShopReentericor (CAVIAR database, 389 fra-
mes at 25 fps, 384 x 288 pixels), two targets are tracked simultaneously,
despite their being articulated and deformable objects whose dynamics are
highly non-linear, and that move through an environment which locally

mimics the target colour appearance. The first target performs a rotation

and heads towards the second one, eventually occluding it. The background

! http://homepages.inf.ed.ac.uk /rbf/ CAVIAR,
% http://peipa.essex.ac.uk/ipa/pix/pets
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Fig. 11 Sample tracking results on a indoor sequence. Targets are accurately

tracked despite strong occlusion of target 2, the fact that the floor and the torso
of target 1 have the same colour distribution, and that this distribution evolves

from reddish to bluish hues as the motion is performed.

colour distribution is so similar to target one that it constitutes a strong
source of clutter. Furthermore, several oriented lighting sources are present,
dramatically affecting the target appearance depending on its position and
orientation (notice the bluish effect on the floor on the right of the corridor,

and the reddish one on the floor of the left of the corridor). Thus, significant
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Fig. 12 Sample tracking results on a PETS sequence. An accurate localisation
of tg 1 is obtained despite no segmentation is available (a); robust performance
under a heavy occlusion are shown in (c),(d); tg 6 is accurately tracked despite it

is grouped, and it cannot be segmented during most of the sequence.



(d) (e) ()

Fig. 13 Sample tracking results on CVC _Zebral sequence. Targets are success-

fully tracked despite mutual occlusions in (a) and (d), or occlusions with the

background in (c) and (e); interaction and scene events are correctly inferred.

speed, size, shape and appearance changes can be observed, jointly with
events such as people grouping, partial occlusions and group splitting.
The sequence DATASET1 TESTING_CAMERA1 (PETS database,
2688 frames at 29.97 fps, 768 x 576 pixels) presents a high variety of tar-
gets entering into the scene: three isolated people, two groups of people,
three cars, and a person who exits from a parked car. These cause multiple
tracking events in which several targets are involved in different grouping,

grouped, and splitting situations simultaneously.

Successful results are obtained in the analysed sequences®. This field

still being a novel open research line, there is unfortunately a lack of widely

3 The reader is encouraged to see the whole processed sequences at

http://iselab.cvc.uab.es/?q=agent_motion


http://iselab.cvc.uab.es/?q=agent_motion

(d) () (f)
Fig. 14 Sample tracking results on HERMES Outdoor_Caml sequence. The

dissolution of a non-detected group is correctly detected in (a), (e); targets are
successfully tracked through groups in (b), partial occlusions in (c), and complete
occlusions in (d); left objects are detected in (e), an correctly tracked after being

picked up in (f).

accepted test data-bases, ground-truth data, and evaluation criteria. Perfor-
mance evaluations are often based on quantitative metrics which depends
on qualitative events, and results are usually evaluated by means of visual
inspection. In order to allow algorithm comparisons, a standard methodol-
ogy must be developed and assumed, test sequences should be synchronised
and calibrated, and ground truth data must be available.

A ground-truth annotation tool has been developed, and the interaction
between human and computer is aided by using a pen tablet. Thus, fore-
ground regions can be annotated, visualised and edited. Targets are labelled,

and visible and occluded regions are pointed out, as well as significant parts



as head or feet. As a result, a XML file is generated with the annotation

data, and a set of target image masks are stored.

This data is used to measure the system performance. Events are cor-
rectly detected, albeit cannot ever be placed at a exact time instant, due
to its inherent subjective component, see Table 1 relative to the sequence
shown in Fig. 14. However, target 1 does not keep its ID after leaving the
bag, due to major shape and appearance changes, and two new trackers are
instantiated —target 3 and target 4. Hence, target 1 is referred as target 4
after bag —target 3— is left. Consequently, subsequent tracker instantia-
tions have the labels shifted. For instance, group is referred as target 4 in
the annotated events and target 5 in the computed ones. Nevertheless, this

ID change is desirable in other cases, such as a man leaving a child.

Further, several trajectory indicators over the tracked targets are com-
puted and presented in Table 2. Thus, every time a new blob is detected, a
LLT is instantiated. This usually happens when targets merge into groups,
they dissolve themselves, or targets undergo significant changes due to cam-
ouflage, occlusions, etc. Thus, the number of LLT’s is much higher than the
number of targets in every analysed sequence. When a LLT become stable,
a HLT is created and associated with it. These are hopefully subsequently
associated with the HLT that is already tracking the target. In this case, the
target identity is not broken. When this process last more than one frame,
the identity is temporarily broken. Since a HLT is created after the event is

over, together with the fact that HLT are also instantiated to track groups,



Table 1 Annotated and computed events on Hermes sequence. The attribute

denote the targets involved.

Annotation (t) ID Attrib. | Result (t) ID Attrib.
observed (550) 1 - observed (550) 1 -
entering (629) 2 - entering (629) 2 -

— dissolving (655) 1 -

splitting (662) 1 3 splitting (655) 4 3
splitting (662) 3 1 splitting (655) 3 4
grouping (681) 1 2 grouping (682) 4 2
grouping (681) 2 1 grouping (682) 2 4
grouped (689) 1 4 grouped (697) 4 5
grouped (689) 2 4 grouped (697) 2 5
group (689) 4 1&2 group (697) 5 2&4

the number of HLT’s is higher than the actual number of targets, even if
the identities are correctly kept.

Temporarily broken ID in CVC _Zebra sequence is due to an important
partial occlusion of target 3 with a tree, see Fig. 13.(e). In the Hermes
sequence this fact happens when the suitcase is picked up, due to significant
segmentation errors. The permanent broken ID, and the false positives are
due to ghosts yielded by a non-detected motionless car which starts motion.
No target is ever undetected: the rate of false negative is zero in all the
sequences analysed.

In order to to experimentally explore the effect of the different modules,

several tests on the Hermes sequence have been carried out using the previ-



Table 2 Trajectory measures.

Measure\Sequence CAVIAR PETS CVC  HERMES
Targets 2 8 4 8
LLT 8 78 138 86
HLT (targets) 4 28 11 36
HLT (groups) 1 13 3 11
Temp. Broken ID 0 0 1 2
Perm. Broken ID 0 0 0 2
False Positives 0 0 0 2
False Negatives 0 0 0 0

Table 3 Effect of the different modules on tracking performance.

Module\Measure Temp. Perm. FP FN
Broken ID  Broken ID

Normal operation 2 2 2 0

No use of bin weighting* 2 2 2 0

No ABT updating 4 4 2 0

No motion cues in ABT 3 6 2 0

Combined removal 3 9 2 0

*The indicators do not show a worse performance since the redundancies provided
by the different modules make the errors no catastrophic enough to cause a target

loss. However, a poor target localisation is obtained, as shown in Fig. 15.

ous indicators. Thus, as shown in Table 3, the removal of any of this modules
cause make the performance worse. Nevertheless, it should be remarked that

these modules work in cooperation to maximise the target disambiguation



Target?: Tracked (ABT). Grouped (10). Target?: Tracked (ABT). Grouped (10).

(a) (b)

Fig. 15 Target localisation. Example of a poor target 4 localisation due to the

fact of no using the bin-weighting module in (b) in comparison with (a).

from potential distracters. Therefore, since they provide some redundancy
for the sake of robustness, the effect of removing only some of them may be

not significantly noticeable.

Finally, it worth to say some remarks on real-time performances. Multiple-
people tracking in unconstrained and dynamic scenarios are one of the
most computationally-speaking demanding task in Computer Vision. Image-
sequence capture and transfer is already feasible in real-time. Nevertheless,
real-time performances may be achieved without excessively compromising
accuracy and robustness by placing special care in three main tasks, namely,
hardware implementation, code optimisation, and algorithm designing. The
computational load at any time t depends on particular issues which can-
not be controlled, such as the number of targets within the scene, and the
size of these targets or the scene itself in number of pixels. It also depends

on design decisions which may be critical to achieve robust and accurate



performances —such histogram sizes, or the number of features selected in
this the proposal.

Thus, the computational complexity will be given by the complexity of
each of the algorithms run at each module. For instance, the cost of the

mean-shift algorithm is given by [4]:

Co ~ N; (Ch + MCS) s (19)

where N; is the mean number of iterations per frame an target, ¢;, the cost
of computing the candidate histogram, M the number of target pixels, and
¢s the cost of an addition, a squared root, and a division.

Significant speed improvements can be achieved by processing pixel-
wise operations in parallel. In addition, many systems can benefit from
specific hardware implementations like FPGA, DSP, GPU, etc. Low-level
languages which give more direct access to the underlying machine allow
faster computation as the expense of less readability and maintainability.
On the contrary, interpreted languages are executed from source form, and
are consequently slower. However, the code is often more flexible, allowing
a faster prototyping.

The current system is implemented as a Matlab prototype. The focus
has been placed on achieving robust and accurate performance, instead of
on a careful code optimisation. Subsequent implementations of bottleneck

modules in C++ have yielded speed improvements which reduce 25 times



the computation time of these particular functions. This would allow the

system to process the above sequences at an average rate around 10 fps in

a Pentium V @ 3200Mhz.

5 Concluding Remarks

A structured framework is here used to combine in a principled way both
bottom-up and top-down tracking approaches. It consists in modular and
hierarchically-organised architecture able to track multiple targets simulta-
neously. In this paper we focus on tracking several targets independently
while they are grouped, thereby yielding an accurate and robust target local-
isation. Thus, we develop the feature-selection and appearance-computation
modules, by paying special attention to the special characteristics of group-
ing situations. Features are selected considering not only the best distinction
between the local background and the target, but also between the target

and its group partners.

A model pool is built, and long-run features are kept and smoothed.
These features are useful after a target loss caused by an occlusion to recover
the target. Further, by smoothing the histograms the representation is less
sensitive to potential initialisation and subsequent localisation errors. Then,
a second operation mode, consisting in an appearance-based tracking, is
added to tackle grouping and occlusion events. Motion and appearance cues,

relative to potential distracters, are taken into account when performing the



gradient search. A principled model updating scheme is followed to avoid

model drift.

Experiments on complex indoor and outdoor scenarios have been suc-
cessfully carried out, thereby demonstrating the system ability to deal with
difficult situations in unconstrained and dynamic scenes. No a-priori knowl-
edge about either the scene or the targets, based on a previous training
period, is required.

Future work will focus on distinguishing among people, vehicles and
other objects in motion. Next, body parts could be extracted and tracked.
This can enhance agent tracking during long-term occlusions. Finally, ini-
tialisation should include a group segmentation method so that agents who

enter the scene together could be segmented and independently tracked.
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