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Abstract. Being aware of other vehicles on the road ahead is a key in-
formation to help driver assistance systems to increase driver’s safety.
This paper addresses this problem, proposing a system to detect vehicles
from the images provided by a single camera mounted in a mobile plat-
form. A classifier–based approach is presented, based on the evaluation
of a cascade of classifiers (COC) at different scanned image regions. The
Adaboost algorithm is used to determine the COC from training sets.
Two proposals are done to reduce the computation needed for the detec-
tion scheme used: a lazy evaluation of the COC, and the customization
of the COC by a wrapping process. The benefits of these two proposals
are quantified in terms of the average number of image features required
to classify an image region, achieving a reduction of the 58% on this
concept, while scarcely penalizing the detection accuracy of the system.

1 Introduction

The research in Computer Vision applied to intelligent transportation systems is
mainly devoted to provide them with situational awareness [1]. An essential task
for demanded applications like Adaptive Cruise Control, or Autonomous Stop-
&-Go Driving is determining the position of other vehicles on the road. This
provides key information to Advanced Driver Assistance Systems (ADAS) in
order to increase driver’s safety. Traditionally this task has been addressed using
active sensors like radar or lidar. However, since vision sensors (CCD/CMOS) are
passive and cheaper, and provide a reacher description of the environment, many
research efforts have also been devoted on applying computer vision techniques
onto this topic [2]. The variety of vehicle appearances, due to the heterogeneity
of this class of objects (many different types of cars, vans and trucks), and
due to the uncontrolled acquisition conditions (different daytime and weather
conditions, presence of strong shadows, artificial illumination, etc.), poses a big
challenge for this detection task.

Our recent work [3] has focused on developing a system to detect vehicles, from
a car equipped with a single monochrome camera, mounted close to the rear-
view mirror facing the road ahead. The system follows the detection methodology
proposed in [4] for face detection, based on scanning video-frames with a cascade
of classifiers (COC). Evaluated image regions are sorted out between positive
and negative categories (i.e., vehicle vs non-vehicle). The general procedure to
construct the COC is the following. Given an initial training set, a classifier is
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learnt, selecting from training data a subset of features that distinguish efficiently
both classes. This classifier conforms the first level of the COC. This cascade is
then applied on a training sequence, where the generation of false positives (i.e.,
non–vehicle regions classified as vehicle) will be usually observed. These miss-
classifications are collected to construct a new training set, which is then used to
learn the next classification level of the COC. This process is iterated, improving
the COC until an acceptable performance in the training sequence is reached.
With this strategy, we developed a vehicle detector showing qualitatively good
results.

This paper extends our previous work on vehicle detection, proposing two
techniques to improve the efficiency of evaluating a COC at different regions in an
image. First, a lazy evaluation of the classifiers in the COC is proposed, in order
to minimize the amount of features computed to classify each inspected region.
Given a testing set of video frames, the benefits of this lazy evaluation have
been quantified by registering for each inspected region the amount of features
needed to evaluate each COC classifier. This information has provided detailed
insight into how detection takes place, and allows to identify the bottlenecks
of this process. Using this information, a tuning of the used COC is proposed,
replacing the critical classifiers in the COC with several new ones, which reduce
significantly the average amount of features required to classify each inspected
region. Experimental work done shows that the resultant COC has a detection
accuracy practically identical to the one of the original COC.

The structure of the paper is as follows. Next section justifies why vehicle
detection has been posed as a classification problem, and gives details on how
the vehicle classifier is constructed. Then, the methodology to scan frames is
presented, based on knowledge on the geometry of image formation. Section 3
proposes a lazy evaluation of the vehicle classifier, and presents the study done to
determine how vehicle detection based on a COC takes place. Section 4 proposes
tuning the COC in order to improve detection efficiency, and section 5 quantifies
the accuracy of the final vehicle detector, and discusses the obtained results.

2 Vehicle Detector

Traditional approaches to detect vehicles are based on guessing in advance which
are the best image features for detecting vehicles and only vehicles. Examples are
works proposing the use of line structures and shadows [5], or symmetry mea-
surements [6]. However, these features do not really account for all the different
appearances that a vehicle may present, due to the effect of the uncontrolled illu-
mination conditions, and the high variability of appearance of the different sorts
of vehicles (figure 1). For this reason, it seems proper to determine the features
used to detect vehicles in a learning process. In our work, the Real Adaboost
algorithm [7] has been used to construct a vehicle classifier. Given a training set
T = {(H1, l1), . . . , (Hnr , lnr)}, where Hi = {fi}N

1 is an over-complete set of N
Haar-like1 features describing the i-th example, and li ∈ {v, nv} a flag indicating
1 The responses of filters proposed in [4], and their absolute value are considered.
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if this example is a vehicle or not, the Adaboost algorithm selects a subset of
nf � N features F = {fi}nf

1 ⊂ Hi, each one with an associated weak classifier
ri, that when combined correctly classify the training examples. The resultant
classifier follows the expression

R(F) =
nf∑

i=1

ri(fi) , (1)

where ri is a decision stump on fi that returns a positive (v+
i ) or negative (v−i )

value according to its classification decision. That is,

ri(fi) =
{

v+
i if fi ≤ (or ≥) threshold ,

v−i otherwise .

Given features F computed in an image region, R(F) returns a value whose
sign provides the final classification decision (positive for vehicles, negative for
non–vehicles). Haar–like filters are used because of their reduced computational
cost, which is independent of their evaluation scale. This is very relevant for
vehicle detection, as vehicles are observed in frames in a wide range of scales
(the proposed system considers regions from 24 × 18 up to 334 × 278 pixels),
and Haar-like features does not demand and explicit size normalization of image
regions. In order to achieve a desired detection performance, several classifiers
are iteratively learnt and arranged in a cascade. Figure 2 sketches details on the
Adaboost learning algorithm.

Once we have a COC, the next step is scanning with it images for detecting
vehicles. An scanning process is proposed, derived from the assumption that
the road where vehicles move (the one holding the camera, and the observed

Fig. 1. Top) Heterogeneity of the objects to be detected, just from their rear–view.
Bottom) Pairs of the same vehicle, acquired under different illumination conditions.



Cascade of Classifiers for Vehicle Detection 983

�������

��	 ��
 �	��


�����
�	���������
����

�������	�����
�	���������



�
��������

����	
����


�
��������

�


�
��������

�


�
��������

�� � 


����������������������������
������������ ����	��!��������


�

��

	�

�
"�
���

 �����#��������
$�������


%	��
�
&�$�'��
��

(��	� ����	�
)���������
���� *+�,����

(��	� ����	�
)���������
 *+�,���� ���

���

���

���������������������&��
�������-��
��������	������	��������.��������	��

Fig. 2. a) Training set normalization. b) Process to construct the COC. c) Evaluation
of the COC. True positives should be processed by all the COC layers.

ones) conforms to a flat surface. Knowing this plane and the geometry of image
formation, the regions of the image where putative vehicles at different road
locations project is determined, and then these regions are evaluated with the
COC to verify the presence of a vehicle (figure 3). It is out of the scope of the
paper describing how the road plane is estimated from images. Details can be
found in [8]. In our acquisition system, estimating the road plane is equivalent
to estimate the pose of the camera with respect to a world coordinate system
placed on the road that sustains vehicles. In the experiments done in this paper,
this information is obtained from ground truth data.
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Fig. 3. Frame Scanning Process. For each inspected road point, rectangular regions of
different widths and aspect ratios are evaluated.

The image regions to be scanned are determined from the projection onto im-
age coordinates of a regular grid on the ground plane, inspecting the road ahead
up to 70 meters away. For each projected grid point, several regions of different
sizes are considered, to account for vehicles of different widths. Obviously, differ-
ent grid points projecting onto the same image pixels are considered just once.
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For a dense scanning of the road ahead (that is, dx = 10 cm and dz = 10 cm in
figure 3), this means classifying between 350.000 and 500.000 image regions per
frame, depending on the acquisition system parameters. This is a remarkably
huge number of regions, if it is compared with the amount inspected in other
application domains (for instance, in [9] a dense scanning to detect pedestrians
consists on evaluating just 12.800 regions per frame). Thus, improving the effi-
ciency in the COC evaluation is very important for the described application.
Once a frame has been scanned, a list of image regions that may contain a vehicle
is obtained. As a same vehicle is usually detected in several neighboring over-
lapping regions, a clustering algorithm fuses them in order to provide a single
detection per vehicle.

3 Lazy COC Evaluation

Each level of the COC is constituted by a classifier R as defined in (1). Since
classification is done in terms of the sign of the value returned by R, it is not
always necessary to evaluate all their weak classifiers ri to give the classification
decision. The classification decision can be taken, as soon as the sum of the ac-
cumulated ri responses has a magnitude bigger than the summation of responses
of opposite sign in the remaining rules. More formally, given a classifier R and
the set of features F = {fi}nf

1 of the region evaluated, the number of features
neff required to establish a classification decision corresponds to the minimum
n accomplishing

n∑

i=1

ri(fi) >

nf∑

j=n+1

v
−sign(�n

i=1 ri(fi))
j .

Thus, the number of features of F evaluated at each COC level depends on
the image region content. It is proposed to take advantage on that to minimize
the computation required by the described vehicle detection process. To quantify
the significance of this lazy evaluation scheme, the presented vehicle detector has
been applied on a set of testing frames, registering for each region processed the
details of the COC evaluation, namely:

– the number of COC layers evaluated to give a classification decision 2,
– the number of features evaluated at each COC layer.

Figure 4 displays the statistics of the obtained results, showing the percentage of
processed regions that receive a final classification decision at each COC layer,
and for each layer, the percentage of regions that require the evaluation of a given
number of features. For each layer, the expectation of the number of features
evaluated vs the number of features nf of the classifier is presented. Results show
that, on average, the standard evaluation of the COC requires computing 102.82
features per region, while the lazy evaluation requires just 76.06. This means a
reduction of the 26% in the number of features computed.
2 Note that only positive regions are expected to be evaluated in all COC layers.
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Fig. 4. Statistics of the lazy evaluation of a COC. For each layer, the average number
of features evaluated vs. the total number of features of its classifier is shown.

Results also show that on average, the 96% of regions are discarded (i.e.
classified as non–vehicles) at the first COC layer. This comes from the fact that
processed images present a large homogeneous area (the road), and the image
regions evaluated there are easy to distinguish from vehicles. However, although
most image regions just require the evaluation of a single COC layer, they require
on average evaluating 64.34 features, which results in a noteworthy amount of
computation, due to the big amount of image regions that are inspected. In order
to obtain a more efficient vehicle detector, less features should be used to discard
this greater part of analyzed regions. Next section proposes a methodology to
tune the learned COC in order to achieve that.

4 Tuning a COC

In order to implement with lower computational cost the task of a given level
of a COC, it is proposed to substitute its corresponding classifier R by another
COC. Ideally, this COC should achieve an equivalent classification performance,
requiring the analysis of a fewer amount of features when a frame is processed.
The method proposed is based on a partition of the training set T used to
generate R, in order to obtain new classifiers of lower complexity. Let’s denote
T⊕ and T� the positive and negative examples in T (i.e. T = T⊕∪T�). Using
the classifier R learned from T, elements in T� are classified, selecting then the
ones whose classification remain negative during the evaluation of the last 90%
of the weak rules ri in (1). This selection groups negative examples according to
the similarity of how they are classified (that is, that from the evaluation of the
first 10% of weak classifiers in R, they are always considered as negative). This
partitions T� in two groups:

– one with elements easily distinguishable from positive examples (T�1);
– the other with elements more difficult to classify (T�2).



986 D. Ponsa and A. López

Heuristicly it is guessed that from these two sets new classifiers will be learned
that jointly require a lower complexity than R. From the set {T ⊕ ∪T�1}, as
contains clearly negative examples, it seems logical to expect classifying them
with less features. For {T ⊕ ∪T�2} it is also possible to obtain a classifier of
lower complexity, as the Adaboost will select a different subset of features F2
specially tuned to distinguish just the elements in T�2

3. Thus, in this paper we
propose to recursively apply such a divide and conquer strategy, attempting to
obtain classifiers of a desired complexity. This procedure can be seen as a wrapper
method devoted to iteratively select negative examples that simplify (in terms of
the number nf in R) the learned classifier. Figure 5 sketches the specific proposed
strategy. The subset T�1 is recursively purged using the described method,
until either a classifier with a constrained maximum complexity is obtained, or
the complexity of the classifier obtained does not decrease. Then, the examples
discarded during this process are grouped in a new training set T�′, and the
process is started again. The process is stopped when no significant improvement
is achieved.

�� �
���

���

��
����

����

�������
���������

������������

��������

��� ��� �����

Fig. 5. Strategy used to substitute a classifier R by a COC

Using this strategy, the first level of the cascade analyzed in figure 4 has been
replaced by 4 new sub-levels which, when applied on testing frames, display the
statistics of figure 6.
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Fig. 6. Statistics of the COC levels that replace the first layer of the COC in figure 4

The joint performance of these new 4 layers is compared in figure 7 with the
performance of the replaced layer. Now the 96% of analyzed regions require on
average the evaluation of 33 features, when the original COC required 64 fea-
tures. Considering the overall COC performance, the average number of features
required per inspected region is now 43.35, which with respect to the 76.06 of
the original COC, it means a reduction of the 43%.
3 If this does not happen, one can just use the original R for classifying T�2.
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Fig. 7. Performance of the initial COC layer vs. the new learned sub-layers

5 Classification Rate Evaluation

To objectively evaluate the performance of the proposed method, the follow-
ing experiment has been carried out. First, sequences different to the ones used
for training has been used, which where acquired using three different vehicles
with different video cameras. Each camera has premounted optics, and has been
roughly calibrated assuming a pin–hole camera model with zero–skew. The im-
ages provided by each camera are significantly different, due to their different
behavior with respect to the automatic control of the camera gain, and their
spectral sensitivity. Sequences has been acquired in different times of the day
(midday and sunset) and environmental conditions (cloudy day and sunny day,
etc.). From them, 500 frames has been selected in order to construct a testing set
to validate the system. The selection criterion has been collecting frames signif-
icant with respect to the different kinds of vehicles acquired and to the lighting
conditions (presence of shadows, specularities, under-illuminated environments,
etc.). All selected frames accomplish the restriction that a user can easily anno-
tate a planar surface approximating the observed road. This annotation is easy if
parallel road structures (lane markings, road limits, etc.) are clearly observed in
the image. The annotated plane provides the ground truth information used to
determine the frame regions that are inspected. With this information, an ideal
scanning of video frames is carried out, and the best performance achievable for
the proposed method can be quantified. The vehicles in testing frames have also
been manually annotated, being labeled depending of if their detection should be
mandatory, or if they can be miss-detected due to some of the following causes:

– present partial occlusions;
– are farther than the maximum operative detection distance (70 meters);
– lay in a plane different than the one used for scanning the image.

The labeling of observed vehicles in these two disjoint classes is done to bet-
ter quantify the detection performance (i.e., count properly the number of false
positives and false negatives). The miss-detection of a miss-detectable vehicle do
not have to be interpreted as a false negative, as the objective in this papers
is not evaluating the detection performance in this challenging cases. On the
other hand, miss-detectable vehicles, being detected or not, are counted neither
as true nor false positives, in order to do not distort results. Thus, classifica-
tion ratios are computed taking into consideration just vehicles that should be
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detected obligatorily. Table 1 shows the results obtained for a dense scanning
of testing frames, using the original and the tuned COC respectively. Using the
tuned COC, a slightly lower detection rate is achieved (93.91% versus the 94.13%
of the original COC), but also a lower false positive rate per region evaluated.
The detection accuracy achieved is remarkable, due to the complexity of the
faced problem (detection of vehicles up to 70 meters away), and the challeng-
ing conditions considered in the testing (different acquisition cameras, daytime
conditions, frontal and rear vehicle views, etc.).

Table 1. Detection results of the original (top) and tuned (bottom) COC

Original COC - True Positives Detection rates
Car Van Truck Acum.

Rear 547/570 95.96% 163/169 96.45% 67/78 85.90% ⇒ 777/817 95.10%
Front 67/80 83.75% 11/12 91.67% 11/11 100.00% ⇒ 89/103 86.41%

⇓ ⇓ ⇓ ⇓
Acum. 614/650 94.46% 174/181 96.13% 78/89 87.64% ⇒ 866/920 94.13%

Original COC - False Positives Detection rates
FP per Window evaluated: 1.509e-004 FP per Frame: 1.07

Tuned COC - True Positives Detection rates
Car Van Truck Acum.

Rear 545/570 95.61% 162/169 95.86% 68/78 87.18% ⇒ 775/817 94.86%
Front 67/80 83.75% 11/12 91.67% 11/11 100.00% ⇒ 89/103 86.41%

⇓ ⇓ ⇓ ⇓
Acum. 612/650 94.15% 173/181 95.58% 79/89 88.76% ⇒ 864/920 93.91%

Tuned COC - False Positives Detection rates
FP per Window evaluated: 1.426e-004 FP per Frame: 1.02

The detector has a better performance in detecting the back of vehicles, prob-
ably due to the fact that frontal views are underrepresented in the training set
(they constitute less than the 10% of positive training examples). Concerning the
type of vehicles, the ones more difficult to detect are trucks. We guess that this
is due to two factors. On one hand, trucks conform a class more heterogeneous
than other types of vehicles. On the other hand, the appearance of their back
side usually vary very significantly depending on the camera viewpoint. This
does not happen with the other type of vehicles, where their backside commonly
conforms approximately a vertical plane, and for this reason their appearance
scarcely varies with the camera viewpoint. Another point worth to mention is
the number of false positives. On average 1.02 false positives per frame are
generated, but this does not mean that when a real sequence is processed, a
false alarm is generated at every frame. In real sequences it can be seen that
false positives do not present spatio–temporal coherence, while true vehicles do.
Using this fact, it is easy to differ false from true detections with the help of
tracking.
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6 Conclusions

A system has been presented to detect vehicles from images acquired from a
mobile platform. Based on the Adaboost algorithm, a COC has been learnt
from training data. Two proposals have been presented to reduce computational
cost in the detection process, namely the lazy evaluation of classifiers, and a
wrapping process to tune the initial learned COC. Thanks to these two proposals,
the average number of features computed per inspected region has reduced from
the 102.82 of the original COC with standard evaluation, to the 43.35 of the
tuned COC with lazy evaluation (a reduction of around the 58%). The detection
accuracy of the tuned COC is scarcely inferior to the one of original COC,
showing also an inferior false detection rate.

Acknowledgments. This research has been partially funded by Spanish MEC
project TRA2004-06702/AUT.
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