
23

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  2

DOI: 10.4018/978-1-4666-2672-0.ch002

INTRODUCTION

Two-dimensional shape models are able to change 
their shape according to a labeled training set. 
A shape is composed by a finite set of land-
marks whose geometrical information remains 
unchanged when the shape suffers from rigid 
transformations. Common 2D shape models (e.g. 

Point Distribution Models, Active Shape Models) 
have been successfully applied to solve several 
problems in Computer Vision, such as face track-
ing, object recognition, and image segmentation. 
Usually, these models are learned from a discrete 
set of 2D shapes once the rigid transformations 
are removed by aligning the training set, i.e., ap-
plying Procrustes Analysis (PA). However, PA is 
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ABSTRACT

Different methodologies of uniform sampling over the rotation group, SO(3), for building unbiased 2D 
shape models from 3D objects are introduced and reviewed in this chapter. State-of-the-art non uniform 
sampling approaches are discussed, and uniform sampling methods using Euler angles and quaterni-
ons are introduced. Moreover, since presented work is oriented to model building applications, it is not 
limited to general discrete methods to obtain uniform 3D rotations, but also from a continuous point of 
view in the case of Procrustes Analysis.
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sensible to incomplete and biased set of views of 
the objects in the training set. In order to solve this 
problem, examples of 3D objects can be used in 
two ways: on the one hand, 3D objects are used 
to extract uniform 2D views to be aligned by 
standard PA; on the other hand, Continuous Pro-
crustes Analysis (CPA) is used to learn all 3D rigid 
transformations directly from the 3D examples. In 
the past, such techniques could only be applied to 
a limited number of objects, since the most part 
of databases were storing two-dimensional infor-
mation. However, recently many 3D databases, 
as well as 2D databases with three-dimensional 
information, have become available because of 
the market release of low cost depth cameras. It 
is illustrated in Figure 1 how 2D data could be 
extracted from 3D information provided for this 
kind of cameras. Different approaches to achieve 
non biased 2D shape models from 3D data will 
be explained and discussed along this Chapter.

Uniform sampling of 3D objects is considered 
a key step when building unbiased 2D shape 
models. Frequently, Euler angles are used to 
define three dimensional rotations; however, 
Euler angles suffer from known problems like 
gimbal lock or non-uniform rotations (Kuffner, 
2004). The main part of this Chapter will be de-
voted to discuss different configurations to pa-

rameterize 3D rotations: usual non-uniform rota-
tions and uniform sampling alternatives using 
quaternions and Euler angles.

2D shape models are also able to modify their 
shape in a non-rigid mode, consistent with shape 
deformations in the training set. The extraction 
process for non-rigid variations is outlined in the 
next section; however, deformable models are not 
addressed in this research, though they could be 
a direct extension.

BACKGROUND

Building 2D shape models will be the main goal 
when generating and analyzing uniform rotations. 
From this perspective, construction of statistical 
models will be introduced and, specifically, the 
Procrustes Analysis (PA) technique is described. 
PA is an important step in model building, as 
well as it is closely related with the continuous 
approach of uniform sampling.

2D Shape Models

Two-dimensional shape models are statistical 
models which are able to modify their shape ac-
cording to the different transformations present 

Figure 1. (left) Image sequence obtained from a depth camera; (middle) 3D skeletons extracted using 
Kinect© for Windows SDK; (right) 5 cameras, randomly distributed around the 3D skeleton, are displayed.
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in a training set (Cootes & Taylor, 2001). The 
training set should be labeled with landmark cor-
respondences across all the training shapes, where 
a shape is defined as a finite set of landmarks whose 
geometrical information remains unchanged when 
the shape suffers rigid transformations.

The building process for 2D shape models 
requires a set of training shapes composed by a 
number l of landmarks, where each landmark 
should be consistently labeled, representing the 
same anatomical location across all training 
shapes. The building process starts by removing 
rigid transformations in the training set using 
Procrustes Analysis (PA), which minimizes the 
least squares error between landmarks from train-
ing shapes and the mean shape m,which is also 
computed.

After aligning the shapes, each d-dimension-
al training shape is represented as a point s dl∈  ,
as well as the mean shape m dl∈  . In the case 
of three dimensional shapes, each point has the 
form s x y z x y zl l l= ( , , , ..., , , ).1 1 1 In the second 
step of model building, it is assumed that all points 
represented in the space dl follow a Gaussian 
probability density function. Eigenvectors and 
eigenvalues are computed using Principal Com-
ponent Analysis (PCA), and the set of most in-
formative eigenvectors is used as the basis of a 
subspace B, which summarizes the non-rigid 
variations among all the training shapes. The 
percentage of information explained using the 
subspace B is selected by choosing the number r 
of ordered basis. Columns in matrix B dl r∈ ×



are the most informative eigenvectors, each one 
describing a principal mode of variation in the 
training set.

The last step of the process is shape represen-
tation using the computed information. Following 
the Point Distribution Model (PDM) approach, 
new shapes can be represented as s m Bc= + ;
where c l r∈ ×

 is a vector weighting each basis 
over the shape s. Hence, an infinite number of 
shapes can be created by modifying parameters 

in c. Moreover, limits over c guarantee that new 
shapes will follow the variations present in the 
training set. Usually, c parameters are limited such 
as ci i< 3 λ , where λi is the i-th eigenvalue, 
which means that c parameters are limited with-
in ±3 their corresponding standard deviation. 
Further details are specified in (Cootes & Taylor, 
2001).

The most popular techniques using 2D shape 
models are PDM and Active Shape Models (ASM) 
(Cootes & Taylor, 2001). Many computer vi-
sion problems have been successfully treated by 
their application: image segmentation (Osher & 
Paragios, 2003; Mumford & Shah, 1989), object 
recognition (Ullman & Basri, 1991; Jones & 
Poggio, 1989), and face tracking (Baker et al., 
2004; Dela Torre & Nguyen, 2008; Blanz & Vet-
ter, 1999; Cootes et al., 2001; Gong et al., 2000), 
among others.

Procrustes Analysis

Rigid registration among different shapes, com-
posed by labeled landmarks, is usually addressed 
by Procrustes Analysis (PA) (Goodall, 1991). 
More precisely, it is called Generalized Procrustes 
analysis (GPA) when more than two shapes are 
aligned (see Figure 2). GPA minimizes the least 
squares error between the landmarks of each 
training shape and a mean shape, while this mean 
shape is as well estimated:

E M A A AD Mn ii

n

i F1 1 1

2
( , , ..., ) .= −

=∑

PA is used to compute the mean shape 
M l∈ ×



2 of the training set and the n rigid trans-
formations Ai ∈

×


2 2 between the mean shape 
and each training sample Di ∈

×


2 1, where n is 
the number of training shapes, l is the number of 
landmarks that compose each shape, and 
X tr X X

F

T2
= ( )designates the square of the 
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Frobenius norm of a matrix. PA is usually ex-
pressed as a vector (Cootes & Taylor, 2001), 
however E1 is formulated using matrices for easy 
comparison with Continuous Procrustes Analysis 
(CPA), later introduced.

Though analytic solutions exist for training 
set alignment (Horn, 1987), iterative approaches 
are commonly used (Eggert et al., 1997; Cootes 
& Taylor, 2001) because of their intuitiveness and 
fast convergence. A standard iterative approach 
proceeds as follows. First of all, shape transla-
tions are removed by displacing the centers of 
gravity of all shapes to the origin. The second step 
of GPA consists on choosing one training shape 
as an initial estimate of the mean shape. In the 
third step, all training shapes are aligned with the 
estimation of the mean shape. Finally, the mean 
shape M is re-estimated from the aligned shapes. 
The algorithm iterates from the third step until 
convergence of M.

It is known that neither iterative methods nor 
analytic approaches guarantee the convergence 
to the global optimal solution. Recent works 
have proposed more accurate solutions (Bartoli 
et al., 2010) and new optimization procedures 
for finding the global optimal solution (Pizarro 
& Bartoli, 2011).

UNIFORM ROTATIONS

Building 2D shape models from 3D objects 
databases can be addressed by applying 2D tech-
niques over 2D views, sampled from 3D training 
examples. Since 2D views from training set can 
bias the estimation of the shape model, an uniform 
coverage of all 3D transformations of the objects 
is needed, which can be addressed from both, 
discrete and continuous formulations.

Issues, Controversies, and Problems

The final goal of uniform rotations in our domain 
is obtaining a set of 2D object views, uniformly 
distributed along all possible rotations of a 3D 
object. Given a 3D shape and a virtual camera 
with a fixed point of view, it could be achieved 
by rotating the three-dimensional object over the 
rotation group SO(3) in a uniform way.

The Special Orthogonal group in three dimen-
sions, SO(3), forms a group with its action being 
the composition of rotations. Each rotation is a 
linear transformation that preserves vectors length 
and space orientation. SO(3) is not only a group, 
but also a manifold, which makes it a Lie group. 
Moreover, this manifold has the topology of real 
3-dimensional projective space 3.

Figure 2. (left) Training set after translation removal; (right) aligned training set (blue points) and the 
mean shape (red line) using Procrustes analysis
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In order to appreciate the transformations suf-
fered for a 3D object by the rotations, its minimal 
representation is the composition of two unit 3D 
vectors from the origin (see Figure 3). Our problem 
about uniform sampling of rotations, therefore, 
can be understood as the uniform distribution of 
couples of unit vectors into the unit 2-sphere, so 
that both vectors follow a uniform density function 
over the sphere surface, and the angle represented 
by the union of both vectors in the sphere surface 
follows a uniform distribution.

There exist several representations for 3D 
rotations, the most common of them Euler angles 
and quaternions. In the following sections differ-
ent parameterizations for Euler angles and qua-
ternions are presented. Moreover, in order to 
achieve uniform rotations with the final goal of 
building 2D shape models, a continuous method-
ology is also described in the scope of Procrustes 
Analysis.

Euler Angles

Euler angles represent orientations in the rotation 
group SO(3) through the composition of three 

rotations ( , , ),a β γ each one around a single axis 
of a basis. The final rotation is obtained multiply-
ing three rotation matrices:

R R R Rxyz z y x= ( ) ( ) ( )γ β α

where:
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Since matrix product is not commutative, dif-
ferent permutations of the axes result in different 
orientations. There are at least 24 conventions for 
Euler angles, depending on the chosen Cartesian 
axes and which order is applied: 3 (first axis: x, 
y, z) × 2 (second axis) × 2 (first axis repetition, 
or not) × 2 (static or rotating axes) = 3 × 2 × 2× 
2 = 24 possibilities.

Nevertheless, all of them suffer the same is-
sues: non-uniform distribution of orientations, 
singularities, and the gimbal lock problem.

The gimbal lock problem for rotations in the 
three-dimensional space appears when two out 
of the three axes are parallel. One degree of free-
dom is lost and, therefore, only rotations in two-
dimensional space are performed. An easy ex-
ample to understand this issue appears when 
using the convention Z-Y-Z, i.e., first, a rotation 
on the Z-axis by α angle, followed by a turn on 
the rotated Y-axis of β angle and, finally, a rotation 
by γ angle on the new Z-axis. If β = 0, it pro-

Figure 3. Rotation of ψ angle between y-axis 
(vertical arrow) and the union of the couple of 
unit vectors (dashed), i.e. the shape, in the sphere 
surface
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duces a rotation by δ α γ1 = + angle, only on 
Z-axis. In this case, the system loses a degree of 
freedom and it is “locked” rotating in a degener-
ate two-dimensional space. Of course, the same 
situation occurs when β π= ,with a final rotation 
of δ α γ2 = − angle around Z-axis.

It is a clear example of singularity on Euler 
angles, where different rotations in SO(3) are 
mapped onto a single rotation in the Euler repre-
sentation. In the previous example, the final rota-
tion described by β = 0 and δ α γ1 = + could 
be achieved by any different combination of α
and γ, as well as infinity. Other simple example 
to visualize singularities is the Mercator projection 
of the globe. In this case, lines representing North 
and South poles are mapped as single points in 
the globe. Singularities usually lead to represen-
tation problems around its influence area, because 
small changes in one representation may lead to 
large changes in other representation.

Hence, points uniformly distributed near the 
pole lines in the Mercator projection, representing 
large distances in this representation, will be 
overrepresented near the North pole or South pole 
points of the globe. Returning to the Euler angles 
example, rotations with β ≈ 0 or β π≈ will be 
overrepresented, resulting in a non-uniform dis-
tribution of 3D orientations.

Perhaps other Euler angles standards, like X-
Y-Z convention, make more difficult to guess the 
final orientations. However, for the X-Y-Z con-
vention example (shown in Figure 4(left)) the 
distribution of orientations are not uniform, focus-
ing rotations in the poles of the unit sphere. Angle 
ranges chosen to perform the experiment in Fig-
ure 4(left) are the domains for Euler angles:

α γ π π, ( , ]= −  and β π π
= −














2 2

, , where 

means that angles can take values uniformly 
distributed on the interval.

It was previously stated that a couple of vectors 
is the minimum expression of a shape where 3D 
rotations can be appreciated. Hence, the perfor-

mance of different approaches when sampling 
rotations over SO(3) will be checked by observ-
ing their application over a couple of unit vectors 
(i.e. the shape). Our goal is to obtain uniform 
distribution of shapes into the unit 2-sphere.

Shoemake (1992) stated that coordinates 
{x,y,z} of a vector uniformly distributed on a 
sphere are also uniformly distributed between 
their limits ( , , [ , ]x y z ∈ − +1 1 in the case of the 
unit sphere). Therefore, 2D shape rotations over 
the unit sphere surface are uniformly distributed 
while one of the vectors that compose the shape 
has its components uniformly distributed between 
the limits of the unit sphere.

The third rotation of the shape is referred to 
the relative change of orientation between the pair 
of vectors that compose the shape. 3D shape rota-
tions are uniformly distributed while the ψ angle 
between the Y-axis and the line painted by the 
couple of vectors in the sphere surface (illus-
trated in Figure 3) follows as well a uniform 
distribution.

It is shown in Figure 5 (lower row) that angle 
follows a uniform distribution. However, Euler 
angles do not perform a uniform distribution of 
rotations because {x,y,z} components of rotated 
vectors have a non-uniform distribution (Figure 
5, upper row). Qualitative results (Figure 4(left)) 
also indicated a non-uniform distribution of the 
vectors, since the number of rotations over the 
poles is visually higher than for the rest of the 
unit sphere. However, it is possible to compensate 
non-uniformity depending on the Euler angles 
convention. Uniformly randomized orientations 
using X-Y-Z convention (Figure 6 (left)) could 
b e  a c h i e v e d  w i t h  α γ π π, ( , ],= −
z = − +( )1 1 and β = −sin ( );1 z when the Z-Y-
Z convention is used (Figure 7 (right)), uni-
formly distributed orientations could be achieved 
w i t h  α γ π π, ( , ],= − z = − +( )1 1 a n d 
β = −cos ( ).1 z

Following the criteria established in the previ-
ous example, Figure 7 indicates a uniform distri-
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bution over the sphere because each coordinate 
of the rotated vectors is uniformly distributed 
(Figure 7, upper row); moreover, angle (Figure 
7, lower row) shows that relative rotations between 
two vectors painted in the sphere are uniform as 
well.

Quaternions

Quaternions were conceived by Hamilton (1853) 
as extended complex numbers q a b c d= [ ], , , .i j k
Each unit quaternion can be interpreted as a point 
in the unit 3-sphere S 3 4∈  ,which represents a 
rotation on SO(3). For any unit quaternion 
q q= + = +q u0 2 2cos( / ) ˆ sin( / )θ θ and for 
any vector υ ∈ 3, the action of the triple prod-
uct q qq q′

∗=υ υ may be interpreted geometrically 
as a rotation of the vector υ through an angle θ
around û as the axis of rotation (Kuipers, 1999), 
where a unit quaternion is defined as 
q q q q q= = =∗ ∗ ∗1, is the quaternion conju-
gate, and qυ υ= [ ]0, is the vector υ expressed as 
a pure quaternion, i.e. a quaternion whose scalar 
part is 0.

Following quaternion algebra (Lerios, 1995), 
an equivalent rotation can be represented in ma-
trix formulation as q qq q R qq′

∗= =υ υ υ,with:

R
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Figure 4. Sampling of 5000 rotations of a couple of unit vectors: (left) uniform sampling of Euler angles 
following the x-y-z convention; (right) uniform sampling of quaternion parameters using the method 
presented in (Shoemake, 1992)
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Since q a b c d= [ , , , ] is a unit quaternion such 
that q q q a b c d Rq= = + + + =∗ 2 2 2 2 1, can be 
simplified to:

R
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which satisfies the properties of rotation matrices 
(Lerios, 1995). An equivalent matrix is presented 
in (Shoemake, 1991) using a different order of 
t h e  q u a t e r n i o n  c o m p o n e n t s 

Figure 5. Non-uniform distribution of the rotated vector parameters (up) with the mean of all distribu-
tions (horizontal line) and distribution of spherical coordinates (down) with the mean of ψ distribution 
(horizontal line), using Euler angles following the x-y-z convention.
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q x y z w b c d a= [ ] = [ ], , , , , , . Moreover, to avoid 
unnecessary calculus and vector-quaternion con-
versions, vector rotations using quaternions could 
be calculated by the product ′ =υ υQ ,where 
Q ∈ ×



3 3 and ′ ∈ ×υ 

3 1 is the rotated vector.
The axis-angle interpretation shows that qua-

ternions are composed by only one rotation and, 
therefore, they do not suffer from the gimbal lock 
problem, though opposite quaternions q q= −
represent the same rotation. However, not all 
parameterizations perform uniform rotations 
despite of the use of quaternions. In the following 
paragraphs three different parameterizations are 
considered.

Euler Angles Conversion

Given the difficulty linked to quaternions, the first 
naïve attempt to present intuitive rotations lies on 
using a unit quaternion expressed in Euler angles. 
Nevertheless, a uniform sampling of Euler angles 
does not perform uniform rotations despite of 
quaternion conversion, and gimbal lock problem 
persists.

Given the three Euler angles ( , , ),α β γ three 
independent quaternions can be formed:
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Similarly to rotation matrices, the joint rotation 
is represented by the final quaternion

q q q q a b c dxyz z y x xyz xyz xyz xyz= = 

, , , ,
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Figure 6. Sampling of 5000 rotations of a couple of unit vectors by non-uniform sampling of Euler angles: 
(left) following x-y-z convention to achieve uniform rotations; and (right) following the z-y-z convention
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bxyz =
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If qxyz is not a unit vector due to numerical 
drift, it should be normalized such that 
ˆ / .q q qxyz xyz xyz= Given a uniform sampling of 
the three parameters, such that α γ π π, ( , ]= −

and β
π π

= −













2 2

, , rotations obtained follow the 

same distribution as orientations performed using 
rotation matrices in the previous section. Qualita-
tive results comparing both approaches are pre-
sented in Figure 8, where rotations are concen-
trated onto the poles of the 2-sphere.

As it was performed in previous sections, the 
uniform distribution of couples of unit vectors 
onto the unit 2-sphere is checked for the unifor-
mity of {x,y,z} coordinates of unit vectors and, in 
addition, for the uniform distribution of the angle 
(shown in Figure 2) between the Y-axis and the 
union joining both vectors.

Figure 7. Uniform distribution of the rotated vector parameters (up) with the mean of all distributions 
(horizontal line) and distribution of spherical coordinates (down) with the mean of ψ distribution 
(horizontal line), using a uniform sampling distribution of Euler angles following the x-y-z convention
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Similarly to Figure 5, rotations performed with 
quaternions parameterized by Euler angles result 
in non-uniform rotations. Figure 9 (lower row) 
shows a uniform distribution over ψ angle, though 
the vector distribution is not uniform around the 
sphere S 2 because vector coordinates are not 
uniformly distributed (Figure 9, upper row). In 
addition, a parameterization based on Euler angles 
conversion does not solve the gimbal lock prob-
lem.

Axis-Angle Parameterization

In order to avoid previous problems, it is neces-
sary to work with other parameters closely re-
lated to quaternion rotations. As it was explained 
in the beginning of this section, a unit quaternion 
q q= + = +q u0 2 2cos( / ) ˆ sin( / )θ θ can be 
expressed as a rotation by θ angle around û −
axis. Since the uniform sampling of becomes in 
uniform rotations over û − axis, the intuitive 
attempt is to perform these 2D rotations over a 
set of uniformly distributed û on the unit sphere 
S 2.The process considered to obtain a uniform 
distribution of unit vectors ˆ , ,u = 


u u ux y z in the 

unit 2-sphere (Shoemake, 1992) is illustrated in 
Figure10.

Given three random variables θ ρ, , ,uz rotations 
are performed by the unit quaternion q, where 
θ π= ( , )0 2 and û are defined as:

uz = − +( ) 1 1 ,

ρ π= ( , ),0 2

z r r z2 2 21 1+ = → = − ,

u rx = cos ,ρ

u u r r

r r r r

x y
2 2 2 2 2 2

2 2 2 2

+ = → + =

→ + =

((sin ) (cos ) )

( sin ) ( cos ) ,

ρ ρ

ρ ρ

u r ry = = ±( sin ) sin .ρ ρ2

Therefore, two quaternions are created with 
opposite û axis for each three random values. 
Qualitative results in Figure 11 show that the 
composition of uniform rotation axis û and uni-
form angle θ does not perform a uniform distribu-
tion of unit quaternions.

Figure 8. Sampling of 5000 rotations of a couple of unit vectors by uniform sampling of Euler angles 
following x-y-z convention, (left) using rotation matrices and (right) using quaternions, based on Euler 
angles parameterization
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The distribution of vector components (Figure 
12, upper row) when rotated using the previ-
ously created random quaternions are non-uni-
form, which means that neither rotations are 
uniform onto the unit 2-sphere, nor orientations 
over the sphere surface measured by angle (Fig-
ure 12, lower row).

Parameters Defined in (Shoemake, 
1992)

Finally, taking inspiration as well from a compo-
sition of rotations, a direct method is presented 
in (Shoemake, 1992), where the four quaternion 
parameters are calculated through the use of three 
random variables. Figure 4 (right) shows the cor-
rectness of this method, obtaining uniform three-
dimensional orientations. Similarly to the method 
proposed in (Yershova et al., 2010), Shoemake’s 
approach computes unit random quaternions ad-
dressing the problem from the subgroup algorithm.

Figure 9. Non-uniform distribution of the rotated vector parameters (up) with the mean of all distribu-
tions (horizontal line) and distribution of spherical coordinates (down) with the mean of ψ distribution 
(horizontal line), using Euler angles-to-quaternion conversion

Figure 10. To achieve uniformly distributed unit 
vectors û in the unit 2-sphere, uz takes values 
along the diameter following a uniform distribu-
tion, uz = − +( ) 1 1 ; and u ux y, are distributed 
on the circle (green) of radius r (red), which cuts 
the sphere by uz (blue)
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If all 3D rotations in the space compose a 
group, a subgroup q c s= ( , , , )0 0 of this group is 
constituted by planar rotations around the Z-axis, 
and cosets q w x y= ( , , , )0 of this subgroup are 
rotations pointing Z-axis in different directions. 
Following the subgroup algorithm (Diaconis & 
Shahshahani, 1987), a uniformly distributed ele-
ment of the complete group can be achieved by 
the multiplication of a uniformly distributed ele-
ment from the subgroup with a uniformly distrib-
uted coset:

 



( , , , ) ( , , , )

, , , .

c s w x y

cw cx sy sx cy sw

0 0 0[ ] [ ] =
+ − +[ ]





Given three independent random variables 
X X X0 1 2 0 1, , ( , ),∈  random unit quaternions 
q r r r r= [ ]cos , sin , cos , sinθ θ θ θ2 2 1 1 1 1 2 2 are com-
puted, where:

θ π1 12= X ,

θ π2 22= X ,

r X1 01= − ,

r X2 0= .

Results exposed in Figure 13 indicate a uniform 
distribution over the sphere because each coordi-
nate {x,y,z} of the rotated vector is uniformly 
distributed (Figure 13, upper row). Moreover, ψ
angle distribution (Figure 13, lower row) shows 
that relative rotations between the Y-axis and the 
union of the couple of vectors in the sphere follow 
a uniform distribution as well.

Continuous Procrustes Analysis

In the particular field of learning 2D shape mod-
els, an alternative to discrete model building is 
proposed in (Igual & De la Torre, 2010), where 
2D discrete techniques are extended to be applied 
over 3D models in a continuous form. Continu-
ous Procrustes Analysis (CPA) is presented as a 
competitive alternative to Generalized Procrustes 
Analysis (GPA) when 3D models are available.

Shape models learned using GPA (Figure 14, 
left) could be biased by a non-uniform sampling 
of the 2D views of the 3D examples. This issue, 
the computational cost, and large amount of 
data associated to the uniform sampling of 3D 
transformations are solved by CPA (Figure 14, 
right). CPA gives a closed form solution for the 
learning of 2D models directly from a 3D training 
set, incorporating the information of all 3D rigid 
transformations.

CPA minimizes the least-squared error between 
the 2D projections of 3D landmarks of each train-
ing shape and a 2D mean shape, while this mean 
s h a p e  i s  a l s o  e s t i m a t e d .  L e t 
Ω = ={ } ∈ω φ θ ψ( , , ) 

3 be the set of 3D rota-
tions, where ω are the Euler angles and the Haar 
measure is d d d dω θ φ θ ψ= sin .CPA minimizes 
the following energy functional:

Figure 11. Sampling of 5000 rotations of a couple 
of unit vectors using random quaternions created 
from a uniform sampling of θ and uniformly 
distributed û − axis
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CPA computes the two-dimensional mean 
shape M ∈ ×



2 1 of the training set and the n 
rigid transformations Ai( )ω ∈ ×



2 2 between the 
mean shape and the orthographic projection 
P ∈ ×



2 3 of each training sample Di ∈
×



3 1,
which is rotated over all possible Euler angles of 
the domain Ω,by the rotation matrix R ∈ ×



3 3

As in the previous section, n is the number of 
training shapes and l is the number of landmarks 
that form each shape. The matrix P describes the 
orthographic projection onto the plane Z=0, de-
fined as:

P =










1 0 0

0 1 0

             

             
.

The CPA functional E M A An2 1( , , ..., ) is 
similar to the energy function E M A An1 1( , , ..., )
from GPA; however, there are three main differ-
ences: first, E2 is a continuous formulation where 
discrete sums are extended to integrals; the second 
difference relies on the 2D views used in E2,
which depend directly on the 3D structure of the 
training examples Di and the 3D transformation 
parameters R( );ω and the third difference is that, 
Ai in E1 are variables, whereas in E2 are functions 
depending on Euler angles ω.

Note that uniform rotations are achieved by 
R( ).ω Since using Haar measure dω, an invariant 
integral for functions on the rotation group SO(3) 

Figure 12. Non-uniform distribution of the rotated vector parameters (up) with the mean of all distribu-
tions (horizontal line) and distribution of spherical coordinates (down) with the mean of ψ distribution 
(horizontal line), using random quaternions composed by random uniform rotation axis û and uniform 
angle θ
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is obtained (Naimark, 1964), despite of the use 
of Euler angles. Therefore, the problem of discrete 
non-uniform distribution discussed above is 
avoided in the integral definition.

SOLUTIONS AND 
RECOMMENDATIONS

The final goal to achieve uniform rotations is 
obtaining a set of 2D object views uniformly 
distributed along all possible rigid transformations 
of a 3D object. To test the presented methodolo-
gies, a couple of unit vectors is rotated into the 
unit 2-sphere. Distribution of rotations is consid-
ered uniform when each rotated vector follows a 
uniform distribution over the sphere surface and, 
moreover, a uniform distribution of the angle 
between the vertical axis and the union of the 

couple of vectors in the sphere surface. Since 
Shoemake (1992) stated that {x,y,z} coordinates 
of a vector uniformly distributed on a sphere are 
also uniformly distributed between their limits 
(into the unit sphere: x y z, , , ),∈ − +[ ]1 1 the cor-
rect distribution of vectors over the sphere surface 
is checked by the distribution of its components. 
In addition, distribution function of the angle 
between both vectors onto the sphere surface is 
tested by the uniformity of ψ angle, as illustrated 
in Figure 2.

Results presented in the previous section show, 
first of all, that uniform sampling of Euler angles 
does not result in uniform rotations when three 
Euler angles take values between the common 

limits: α γ π π, ( , ]= − andβ π π
= −














2 2

, .  A 

uniform distribution of the rotations can be ob-
tained with Euler angles, when a non-uniform 

Figure 13. Uniform distribution of the rotated vector parameters (top) with the mean of all distributions 
(horizontal line) and distribution of spherical coordinates (down) with the mean of ψ distribution 
(horizontal line), using the methodology proposed in (Shoemake 1992)
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sampling of one of the three angles is used. How-
ever, angle and distribution depend on the Euler 
angles convention chosen, and there exist, at least, 
24 conventions. In addition, despite of the uniform 
distribution, the gimbal lock problem persists 
while Euler angles are used.

Euler angles are also presented as an alterna-
tive to perform uniform rotations over continuous 
domains. Using the Haar measure into the integral 
definition the problem of discrete non-uniform 
distribution is avoided.

The use of quaternions can solve the previous 
problems while an appropriate parameteriza-
tion is chosen. Presented results illustrate that 
Euler-to-quaternion conversion neither perform 
uniform distribution nor solves gimbal lock 
problem, despite of the use of quaternions. Axis-
angle parameterization is also used to create unit 
quaternions, from uniformly distributed rotation 
axis and uniform rotation angle. However, this ap-
proach does not perform uniform rotations either.

Finally, it is checked that the method proposed 
in (Shoemake, 1992) results in uniform rotations. 
In this method, uniform unit quaternions are com-
puted from three random variables. Therefore, this 
solution solves uniformity as well singularities.

FUTURE RESEARCH DIRECTIONS

2D shape models were introduced in the Chapter 
as state-of-the-art methods for object detection, 
image segmentation, and face tracking. The future 
research of non-biased 2D shape models is closely 
related with their possible applications in research 
fields such as improving Active Shape Models in 
the case of face detection.

Procrustes Analysis (PA) technique was also 
discussed. It is a state-of-the-art research area 
because of recent works about global optimization 
of PA. Hence, interesting research would be on 
the direction of global optimization of the, as well 
described, Continuous Procrustes Analysis (CPA). 
Other promising extensions of CPA would be a 
continuous formulation of PA using quaternions 
instead of Euler angles, and, independently of 
the parameterization of rotations, incorporating 
a subspace into the CPA formulation.

Finally, an additional research focus in the 
field of uniform sampling of SO(3) would be 
the uniform sampling of rotations in a limited 
part of the two-sphere using quaternions, since 
vectors rotated in the sphere are used to illustrate 
the orientations of a rotated object. The research 
on this subject would be useful to limit the rota-
tions according to the problem at hands, avoiding 
memory resources and computational time.

Figure 14. Illustration of 2D shape model building using (left) Procrustes analysis (PA) and (right) 
Continuous Procrustes analysis (CPA)
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CONCLUSION

The main goal of this chapter has been the study 
of the uniform sampling of rotations of 3D ob-
jects to be used on building unbiased 2D shape 
models. Along this work, standard non uniform 
rotations techniques over rotation group SO(3) 
were discussed, as well as uniform methods 
using both, Euler angles and quaternions, were 
presented. Moreover, the problem was addressed 
from discrete and continuous points of view. For 
the problem at hands, uniformity was checked 
trough the distribution of rotated couples of unit 
vectors into the unit 2-sphere S2.

The concise review of the non-uniform sam-
pling approaches discussed in this Chapter is that, 
on the one hand, Euler angles do not perform 
uniform rotations from a uniform sampling of the 
three angles and, in addition it is a parameteriza-
tion that suffers singularities, i.e. the gimbal lock 
problem. On the other hand, these problems can 
be solved applying quaternions when correct 
parameterization is used; intuitive creation of 
unit quaternions as Euler angles conversion or 
angle-axis approach do not perform uniformly 
distributed rotations.

Three methodologies were presented to per-
form uniform rotations. The first solution to the 
problem was to use Euler angles. Uniformity is 
obtained for a certain distribution of one of the 
three angles, which depends on the convention 
that is being used; however, despite of uniform 
rotations, singularities are not solved with this 
method. The second approach consisted on us-
ing quaternions, following a methodology which 
generates uniform random unit quaternions from 
three random variables. In this case, uniform rota-
tions are achieved, as well as problems related to 
singularities are solved. Finally, instead of general 
rotation methodologies, the third approach relied 

on the use of Continuous Procrustes Analysis 
(CPA), a particular method that builds unbiased 
2D shape models from 3D objects. A continuous 
formulation of Euler angles was used in order to 
avoid non uniformity of rotations. This method 
does not solve problems related with Euler angles 
singularities. However, uniform rotations are 
performed and, in addition, CPA allows the pos-
sibility of limiting the rotations into a specific 
domain of the problem.

Each one of the three previous approaches 
performs uniform rotations. However, it is rec-
ommended to use each one of them according 
to the case to be applied. Uniform Euler angles 
are useful while intuitive rotations are needed, 
according to the axis of a basis. Otherwise, it is 
recommended to use other alternatives in order 
to avoid problems related with singularities and 
the rotation order, which varies depending on 
the convention of Euler angles. For the purpose 
of building unbiased 2D shape models from 3D 
objects, CPA presents similar performance that 
discrete Procrustes Analysis (PA), using a 2D 
dataset obtained by the use of uniform unit qua-
ternions. The main differences are that CPA allows 
the use of limits over the sampling domain and 
unit quaternions solve not only uniform sampling, 
but also singularities.
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KEY TERMS AND DEFINITIONS

Euler Angles: Representation of orientations 
in SO(3) through the composition of three rota-
tions, each one around a single axis of a basis.

Landmark: Consistently labeled keypoint 
which represents an anatomical location of the 
model at hands.

Procrustes Analysis: Typical method to 
remove rigid transformations between shapes, 
composed by labeled landmarks, which minimizes 
the least-squared error between landmarks from 
training shapes.

Rigid Transformation: Transformation that 
preserves isometry, i.e. distances between every 
pair of points are preserved. Typical rigid transfor-
mations are rotation, translation, and isomorphic 
scaling.

Shape: Finite set of landmarks whose geo-
metrical information remains unchanged when 
the shape suffers rigid transformations.

Statistical Shape Models: Models which are 
able to modify their shape according to the dif-
ferent transformations present in a training set.

Unit Quaternion: Point in the unit 3-sphere 
S 3 4∈  ,which represents a rotation in SO(3).


