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Towards a Real-Time Pedestrian Detection
based on a deformable template model

Marco Pedersoli, Jordi Gonzalez, Xu Hu and Xavier Roca

Abstract—Most advanced driving assistance systems already include pedestrian detection systems. Unfortunately, there is still a
trade-off between precision and real-time: for a reliable detection an excellent precision-recall, such a trade-off is needed to detect as
many pedestrians as possible while, at the same time, avoiding too many false alarms; also a very fast computation is needed for fast
reactions to dangerous situations. Recently, novel approaches based on deformable templates have been proposed, since these show
a reasonable detection performance, although computationally too expensive for real-time performance.

In this work we present a system for pedestrian detection based on a hierarchical multi resolution part-based model. The proposed
system is able to achieve state-of-the-art detection accuracy, due to the local deformations of the parts, while exhibiting a speed-up of
more than one order of magnitude thanks to a fast coarse-to-fine inference technique. Moreover, our system explicitly infers the level
of resolution available so that the detection of small examples is feasible with a very reduced computational cost.

We conclude this contribution by presenting how a GPU optimized implementation of our proposed system is suitable for real-time

pedestrian detection in terms of both accuracy and speed.

Index Terms—Driving Assistance, Object Detection, Pattern Recognition.

1 INTRODUCTION

RIVING assistance is a growing area of research
D that involves many different disciplines, from me-
chanics to computer science. The fields of application
span not only very specific and rule based systems,
like the Antilock Brake System and air-bags present
nowadays in almost every commercial vehicle, but also
very challenging and complex tasks, like following the
correct path while avoiding obstacles and accidents in
uncontrolled scenarios.

In this paper we deal with a very specific, but funda-
mental task, which is pedestrian detection using a single
camera mounted on the vehicle. Being able to detect
pedestrian as well as other objects using only a normal
camera sensor would be a great technological advance.
In fact cameras, compared with other sensors like laser
scanner, are very economic and this would allow this
technology to be deployed also in low class vehicles.

From a profane point of view the task of detecting
and localizing pedestrians from single images looks sim-
ple. We can find in every last-generation photographic
camera a face detection system that works pretty real-
time. So, theoretically, the task is just about learning
pedestrians instead of faces. Unfortunately the task is
not so easy because: (i) pedestrians have a much broader
appearance variability than faces or other objects [1] thus
traditional methods like [2], [3] do not really work for
pedestrians (ii) even if we are able to achieve the same
performance than for faces, the real application is much
more error critical in the sense that a false detection
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in a pedestrian avoidance system would produce an
abnormal vehicle behavior (e.g. automatically braking
when not necessary) as well as missing a detection can
lead to a dangerous situation (e.g. risk of run over).

The computer vision community in the last years has
developed better methods that achieve higher accuracy
and can deal with more challenging and complex objects
categories [4], [5]. However this level of accuracy has
been reached at the cost of relaxing the real-time per-
formance requirement, due to the higher computational
cost of complex features [4] and complex object models
[5].

Restricting detection to the specific task of pedestrian
localization for driving assistance, some speed-ups can
be achieved. For instance, in normal conditions, the
upper part of the image always contains sky and the
search for pedestrians is usually avoided, thus producing
a save in time as well as in number of false positives.
Also, more sophisticated techniques to reduce the num-
ber of location to scan using specific knowledge of the
problem can be used [6]. Furthermore, as we deal with
video sequences it is possible to add temporal coherence
among frames, that can contribute to further reduce
false positives and localize the search to specific image
regions.

Still, considering that the time for computing an image
in a high-level PC is in the order of one minute for
[4] and around 10 seconds for [5], they are too far
for reaching real-time performance. Furthermore, these
techniques work properly when the object to detect has a
relatively high resolution. This condition is not satisfied
in pedestrian detection for driving assistance, where it is
very important to detect far, low resolution, pedestrians.

In this paper we present a framework for pedestrian
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detection that merges recent advances on deformable
object detection with strategies specialized for the task
of pedestrian detection from a moving vehicle. The
contributions of this work are the following: i) we use
a multiresolution representation and the coarse-to-fine
strategy proposed in [7] to speed up the search for
pedestrians in an image ii) we introduce an additional
reasoning about small objects that normal detectors can
not detect: scores of small objects where high resolution
features are not available, are made comparable to full-
resolution detections, adding an additional bias iii) we
speed up the feature computation, which is the bottle-
neck of our method, by computing them on a GPU. Alto-
gether, we show that our final system is suitable in terms
of both accuracy and speed, for real-time applications.

The structure of the paper is the following. In section
2 we consider the related work, whereas in 3 we present
an overview of our detector system. More in detail, we
formulate the coarse-to-fine search (sect. 3.1), we extend
it to deformable templates (sect. 3.2), we introduce the
resolution features to detect small pedestrian (sect. 3.3),
and finally we formulate the latent SVM problem (sect.
3.4). In section 4.1 we adapt the system for real-time
computation by computing the image features on a GPU
and by considering a specific region of interest. Finally,
in section 5 we evaluate the performance of the system
on a pedestrian specific database, and in section 6 we
give the final conclusions.

2 RELATED WORK

In driving assistance, reliable pedestrian detection is an
essential but very difficult to achieve. Considering the
additional constraint that the system should be real-time,
building such a system is very challenging. In past years,
the common way to obtain a good compromise of speed
and detection accuracy, was to make use of multiple
sensors, in particular stereo cameras [8].

An early example of a real-time system for pedestrian
detection was presented in [9], where the authors cou-
pled stereo measurements computed from a couple of
cameras mounted on the vehicle together with a detec-
tion system based on neural network classification. From
disparity images the algorithm selects only a reduced set
of candidates regions that will be subsequently classified
using disparity and appearance cues.

In [10] a pipeline of different cues based on stereo
vision is used to obtain a fast an accurate pedestrian
detection. A survey of different algorithms for real-time
dense stereo for pedestrian detection is presented in [11].
A system that integrates detection from stereo images
and tracking using particle filters is presented in [12].
Finally, in [13] using stereo images, the ground plane of
the road is estimated to search for the pedestrian in a
limited region of the image.

In more recent years, object detection has shown great
improvements and open the way to the possibility to

detect pedestrians using single images (monocular cam-
eras). Current object detection has two main families of
methods to tackle the problem: bag of words (BOW) and
template matching (TM) models. The first one comes
from document classification techniques and claims that
a powerful way to distinguish different document cat-
egories is to learn statistics about the distribution of
relevant words in the text. Now for the task of image
classification words have been substituted by quantized
visual features (i.e SIFT [14]), but the main idea remains
the same. Examples of this method for image classifica-
tion can be found in [15], [16], [17], [18] while examples
of detectors in [4], [19]. The second approach for object
detection is based on an even simpler representation:
an object is represented by a learned template, i.e the
average of gradients of a collection of objects of the
same category. Recent examples of detectors based on
this technique can be found in [20], [21], [22], [5].

In both representations, in order to localize an object
in an image, it is necessary to scan the learned object
model at all possible scales, positions, (and depending
on the problem also rotations) and evaluate how similar
is the model to the local image location. Considering that
in a standard image we can find millions of possible
locations, it is easy to see that for object detection a
fundamental feature is to use a fast way to evaluate the
similarity between object model and image region.

Although a lot of work have been done for speeding-
up BOW techniques [23], [24], [25], these are intrinsically
slower than TM techniques. In particular, while in TM
techniques the image features are directly evaluated for
computing a similarity measure, in BOW based tech-
niques a further step of quantization is applied after
the feature extraction, with a computational time of the
order of O(WF) where F' is the number of features
extracted and W is the number of words used. Generally
for good performance both factors F' and W are on
the order of thousands, therefore this implies a very
high computational cost. In contrast TM techniques do
not compute any feature quantization and in the case
of linear classifiers, their computational cost is O(F)
proportional to the feature size.

Although BOW models are possibly a more powerful
representation, so far only TM are suitable for real-time
performance. In this sense, in [26], [27] two similar meth-
ods for real-time object detection are presented. They use
integral-image for fast computation of gradient-based
features and boosting for learning. Although quite fast,
these methods do not consider part deformation, which
is important for getting state-of-the-art accuracy. Re-
cently, Benenson et al. [28] have improved [27] introduc-
ing scale specific detectors and a GPU implementation
to get real-time performance.

In [29] a cascade of parts to speed-up deformable
object detection is proposed. The method achieves a
similar speed-up to the coarse-to-fine procedure and
it can be used in conjunction with the coarse-to-fine
procedure [7] to further speed-up the detection phase.
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Fig. 1. Overview of our detection system: From the image
a pyramid of HOG features is computed and given as
input for the CtF procedure, which finds the best detec-
tions. These detection are subsequently filtered using a
non maximum suppression procedure.

Finally, in [30], the authors propose to use GPU com-
putation and ground-plane constraints to also obtain a
real-time system for pedestrian detection. Also in this
case, the lack of deformations in the model reduces the
detector accuracy and, as it will be shown in section 5,
make it too weak for real-world applications.

For a complete survey on pedestrian detection and
datasets see [31], [32] and [33].

3 OUR SYSTEM

The architecture of our system for pedestrian localiza-
tion is illustrated in Fig. 1. Given an image, we pre-
compute the HOG features of the image at different
resolutions, obtaining a pyramid of HOGs. Then, given
an object template or model, the pyramid is scanned
at all resolutions in a Coarse-to-Fine way, finding the
locations that are the most similar to the template.
These locations are further processed by applying a
non-maximum suppression (NMS) to the overlapping
ones. The remaining locations, represent the detected
pedestrians. In the following subsections we will explain
the most relevant parts of our system. For the HOG
computation we use the implementation of [5] which is
an improvement over the standard HOG features [20].

For NMS we rank the detection scores and we select the
1000 best detections for a greedy clustering based on the
PASCAL overlapping criteria [34].

3.1 Coarse-to-Fine search

The standard procedure to find an object in the image
consists of evaluating the similarity between the object
model and the image features at every location and scale
in the image. Considering that we use a model learned
with linear SVM, the similarity measure is the scalar
product of the object model M and the corresponding
pyramid feature H at location x = (z,y,s), where z,y
are the coordinate of the window center and s is its scale.
Therefore, the standard search is the correlation between
M and each level of the HOG pyramid:

D(x) = (M, H(x)) - )

In general, fine feature resolutions are required to learn
more discriminative detectors, which also produces a
more complex object model. This implies that the vectors
of the scalar product in Eq. (1) can be of the order of
thousand dimensions, therefore, the complete scan over
positions and scales is very expensive and often it is the
computational bottle-neck of the entire system. Facing
this problem, authors in [35] proposed a Corase-to-Fine
(CtF) search to save computation but still obtain results
very similar to the complete search.

The key idea is to decompose the search over multiple
resolutions: from coarse and then fine. The coarse resolu-
tion has less locations where to scan and the scalar prod-
uct is faster to compute because the vectors have less
features. However, few coarse features are not enough
for good discrimination of the model. For this reason
adding finer resolutions improves performance but in-
creases the computational cost. In practice we can think
the CtF procedure like a progressive refinement search:
the coarse object representation is used to roughly and
quickly find the object locations and then successive local
refinement are applied with the next model resolutions.
Fig. 2 illustrates the CtF procedure.

The score of the multiple resolution detector is com-
puted as sum over resolutions r of the object model M,
with the corresponding features H:

> (M H(x,)) 2)

r=1:R

D(x) =

Considering a model resolutions with scale ratio equal
to 2 (i.e. each model M, doubles the previous model
resolution M,.), we set :

Xy = Xpp1 = 2%, (3)

to impose that the locations x, for all resolutions r
represent the same image position. An example of a 3-
resolutions object model for pedestrians is shown in Fig.
3(a).

In the coarse-to-fine procedure, the search starts com-
puting the score of the coarse model everywhere in fea-
ture space x;. After that, the score locations are clustered
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Fig. 2. Comparison of a standard sliding windows scan
versus the CtF procedure. (a) Sliding Windows has to
evaluate all locations at high resolution. (b) CtF local-
ization evaluates the image everywhere only at coarse
resolution, then the best hypotheses are propagated and
evaluated only locally producing an high computational
saving.

(b)

Fig. 3. (a) Example of a multiple resolution deformable
part model: each part is a collection of HOG filter at
different resolution. (b) The HOG filters form a father-
child hierarchy where connections control the relative
displacement of parts.

into local neighborhoods, and like in NMS only the high-
est score for each neighborhood is selected. The selected
hypotheses are propagated to the following resolution
model M, using Eq. (3). Now again, a local neighbor-
hood is built around every hypothesis. Notice, that after
the first resolution level, the local neighborhoods do not
cover anymore all the possible locations of the image,
but only a small fraction around the hypotheses. This
produces a high computational saving because the scalar
product has a computational cost that increases 4 times
when doubling resolution, but with the CtF procedure
only a small fraction of locations is actually computed:
those that are close to the hypotheses. The procedure is
then recursively repeated for all model resolutions.

3.2 Coarse-to-Fine search with deformations

In this section we extend the Coarse-to-fine search to de-
formable parts models. Adding moving parts allows the

(a) (b)

Fig. 4. Detail of a pedestrian head and torso model.
(a) Model learned without local deformation (b) Model
learned with local deformation. The second model has
clearer edges due to the local deformations.

detector to better adapt to local object deformations that
are produced by view point changes or articulated move-
ments, like limbs movements in the case of pedestrians.
Unfortunately adding deformation to the object model
supposes a huge increment of computation because for
each location the best object parts configuration should
be found. Previous methods reduce the computational
cost of finding the best object parts configuration using
distance transform, assuming squared deformation cost
[5]. This procedure reduces the cost of matching parts,
but still, all locations should be evaluated by comput-
ing the costly dot product between features and object
model.

To reduce this cost, we use the CtF procedure extended
to deformable models presented in [7]. Now, in the object
model, each resolution level is further divided into parts
as shown in Fig. 3(a) (green boxes). Specifically, the
coarse representation of the model has only one part.
The middle resolution is divided into P local parts, and
moving to the finer resolution, each of these parts is
again decomposed into P sub-parts in a recursive way,
creating a tree-like structure as shown in Fig. 3(b). The
object score at a certain location x is now computed as:

D)= Y Y (M, [H(xvp),d2d2]) (4

r=1L:Rp=1:Pr—1

where the feature vector is now extended with the de-
formation features d,, d, that represent the displacement
of a part p with respect to its father. In the CtF proce-
dure with the new object model, the initial hypothesis
produced by the model M, ; is propagated to the next
resolution level generating P new hypotheses for the
sub-parts:

Xrp = Xr41,1, Xr41,25 -0 Xp41,P—1 5)

The procedure is recursively repeated until covering all
parts of the model. Each new hypothesis x,; ; is found
at double resolution and with a certain offset o; due to
the relative sub-part location:

Xr41,i = 04 + 2Xr,p~ (6)



JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEM, VOL., NO.,

As before from each hypotheses a local neighborhood
is used to find the maximum local score which is the
hypothesis for the next resolution level. However, while
in the rigid CtF algorithm, the local search was used to
align the entire object model with the image features,
now this procedure is done locally for each part, simu-
lating local deformations.

In Fig. 4 a comparison of an object model learned with
and without local deformations is shown. The model
learned without local deformations is quite fuzzy, while
the model learned with local deformations has stronger
edges that make the model more discriminative.

3.3 Small Pedestrians

An important requirement in pedestrian detection for
driving assistance is to detect low resolution pedestrian
instances. Due to perspective distortion, low resolution
pedestrians correspond to pedestrians far from the ve-
hicle. Detecting far pedestrian gives enough time for a
proper action to avoid collision, which is the first aim of
a driving assistance system. However, when the number
of pixels representing an object is low, the ability to
recognize the object is highly reduced.

Concretely, for HOG computation, the number of
pixels needed to build the features should always be
the same to avoid under-sampling effects. This means
that, when an object instance in an image has very low
resolution, the corresponding HOG features can not be
properly extracted and the object would be missed.

When using multiple resolutions, like in our case, a
small instance object do not have fine resolution features,
but it still has the coarse representation. So, in the CtF
procedure, the search for the object can be extended to
those scales that contains very small objects. In this case
the missing high resolution features are set to zero. This
allows the method to detect small objects. In this way,
due to the missing contribution of the high resolution
features, detections of small objects would have a score
that is unbalanced (lower) with respect to full resolution
detections because a part of the descriptor is artificially
set to zero.

To overcome this problem, we extend [36] to our
object model. We add to the feature descriptor a further
binary feature for each resolution level, which represents
whether, in the considered example, the corresponding
resolution is available. Now the score is computed as:

D= Y Y (i [l Ry O)

r=1:Rp=1:Pr—1

where h, is a binary variable that is enabled, when
the corresponding HOG features H(z,,) are missing
and therefore set to 0. In this way, %, acts as a bias
term that makes scores of detections generated without
high resolution features comparable to full resolution
detections. We evaluate the advantage of this solution in
the experimental results section. For easy understanding

in the rest of the paper we will refer to these additional
features as “resolution” features.

From the computational point of view the increment
of computation due to the use of the resolution feature is
limited to the scan of the coarser resolutions of the model
at the finer resolutions of the feature pyramid, which is
actually much smaller than applying the detector to the
whole image.

3.4 Learning

The learning procedure of our system is based on latent
SVM [37], [21], [5]. Given a set of input data {z1,...,2,}
and the associated labels {y1,...,y,}, we find a pa-
rameter vector w of a function y that minimizes the
regularized empirical risk:

n

Sl + O3 max(01 - yalzw). ©
In our problem the input data z; is the set of features
extracted from the HOG pyramid H defined in the pre-
vious section and associated to an image region, while
the output data y; is a binary label indicating whether
the object is present in the region. We introduce a latent
variable k that represents the relative position of each
child part with respect to its father. Considering the local
position of each part allows the detector to learn a more
discriminative model during learning and also to obtain
a better alignment of the object model with the image
data. The estimated output y is computed as:

y(z,w) = max D, (x+k)

N Z k ax <M7"p’ [ (XT»P + kT'ﬁ”)? div d?;v h,-] >
r=L:Rp=1:Pr—1 P
)

From Eq. (9) we see that w corresponds to the flattened
and concatenated version of all the parts M, , of our
object model.

In contrast to normal SVM optimization, y is no longer
linear in w due to the maximization on k, therefore
the empirical risk is no longer convex, and standard
optimization techniques can not be used. Instead, we use
the iterative procedure proposed in [5], where learning
is divided into two iterative steps: the optimization of w
with k fixed for the positive examples and the estimation
of the best k using the computed w.

The optimization of w given k is convex and is com-
puted using parallelized stochastic gradient descent [38].
The estimation of k with the current object model w is
computed from Eq. (9). Instead of computing the exact
maximization of Eq. (9), we apply the CtF procedure.
Although there is not guarantee of the final performance
of the approximate learning, we empirically see that it
produces optimal results with a reduced computation.

While for the positive examples the object bounding
box is given, for the negative examples a set of images
not containing pedestrian is given (negative images).
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Thus, the negative examples at the beginning are se-
lected as random bounding boxes from the negative
images. Then, after a new model is built, the model
itself is applied to the negative images in order to collect
those regions of the image that are incorrectly classified
as pedestrian and use them as extra negative examples.

4 ADAPTING THE SYSTEM FOR REAL-TIME
COMPUTATION

So far we have described a general detection system
with a fast image scan, due to the Coarse-to-Fine pro-
cedure, which is able to detect small pedestrians thanks
to the introduction of additional features that explicitly
consider feature resolutions. However, as we will show
in the experiments, although the system reaches a very
high performance, still it is not fast enough for real-
time application. In this sense, adapting the general
framework to our specific task of pedestrian detection
from a moving vehicle we can get some additional speed
that can lead to real-time performance. In contrast to
normal sliding window methods, where the main cost
of a detection is produced by the image scan, in the
coarse-to-fine procedure, the image scan is reduced by
more than 10 times and therefore the dominant cost is the
feature computation. In this regard, we propose to take
advantage of the Graphics Processing Unit for the feature
computation. Also, as we want to detect pedestrian in
moving vehicles, although there is no stable background,
we still know that the camera on the vehicle has a
fixed inclination with the street. Assuming this fact, we
avoid the evaluation of those image regions in which
pedestrians are not likely to be.

4.1

Graphic Processing Units (GPU) beside their general
use in computer graphics, they can be also used for
improving the speed of general algorithms using their
high capability of parallel computing. By using CUDA,
our algorithm designed in parallel manner can take
advantages of the SIMT (Single-Instruction, Multiple-
Threads) architecture, in which a block of threads can be

Accelerating HOG computation by GPU

executed concurrently on a streaming multiprocessor. In-
spired by similar implementations [39], [30], we propose
a fast HOG feature computation. Our implementation
follows the design of [5]: in contrast to the standard HOG
as defined in [20], [30], our implementation use both
contrast insensitive and sensitive orientation channels,
but substitutes the multiple normalizations of the HOG
cells with additional normalization features. In this way,
the final descriptor is smaller than the original HOG (31
dimensions instead of 36), but more discriminative.

The pipeline of HOG computation is divided into five
steps (figure 5): image rescaling, gradient computation
with spatial aggregation, energy summation in each cell,
normalization with feature assembling and data trans-
ferring. After an image is transferred from host (CPU
side) to device (GPU side), the other four steps will be
executed in device iteratively until all scales are com-
puted and results will be sent back to host. Generally,
modern GPU can use hundreds of threads for each step
on device, which produces an incredible acceleration, but
many factors can delay the whole processing time.

In our case, the bottleneck is data transferring. It takes
more than 50% of the time needed for the whole pipeline.
It is easy to see that exchanging data with the host
memory frequently might lose the time saved by parallel
computing. Thus, an efficient way is to keep all steps
executed in the GPU. In our implementation, we transfer
an image from the global memory (off-chip memory) to
GPU and keep it until the complete pyramid of HOGs is
computed. For each scale, we resize the image, compute
the gradient map and aggregate the gradient into the
local histograms.

Since the final result of the HOG pyramid on GPU is
exactly the same as in CPU, we can compare the two
version just in the term of speed because the overall
detection accuracy of the system will be the same. In
figure 6 we show a comparison of HOG computation
of a 40-level feature pyramid (an image downscale from
640 x 480 to 43 x 32, that is, 4 octaves and 10 intervals
between 2 octaves) between GPU and CPU. We can see
that GPU is in average 9.7 times faster than the CPU
over all 40 scales.

4.2 Region of interest

In contrast to general object detection, pedestrian detec-
tion from a moving vehicle has some prior knowledge
about the camera location and this can be used to further
speed-up the final detector. In [13] for instance, the 3D
location of the road (assuming it a plane) is estimated to
reduce the pedestrian search only on this plane, therefore
reducing the search cost. In contrast, we do not make any
assumption about the road structure and do not estimate
its 3D location. We take a simpler and conservative
approach. Considering that the camera orientation in
the vehicle is fixed and the maximum level of steep
variation a road can present is limited, we explicitly
avoid searching for pedestrians in the upper part of the
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Fig. 7. Detection Rate versus False Positive Per Image
on the CVCO02 database. Our method corresponds to the
CtF detector with deformations and “resolution” features
activated (corresponding to the 7t row of Table 1). The
other curves are obtained from [40].

image: in our experiments, once the superior one third
of the image is discarded, there is no loss in recall and
a 30% saving of the total amount of computation.

5 EXPERIMENTS

We evaluate our method on the CVC02 dataset [40],
which is a dataset specific for pedestrian detection in the
context of driving assistance. It consists of pedestrians
taken in the range from 0 to 50 m, which correspond
approximatively to 70 x 140 to 12 x 24 pixels bounding
boxes. The training set consists of 1016 cropped humans
with corresponding vertical mirror, for a total of 2032
images. The testing set consists of 250 urban images
containing pedestrians. Examples of detections on test
images of the CVC-02 dataset are shown in Fig. 8.

In Fig. 7 we compare our detector in terms
of detection-rate (DR) versus false-positive-per-image
(FPPI) with different configuration of the simplified

HOG based on SVM learning detector (SHOG+SVM)
proposed in [40]. For this experiment we use our CtF
configuration with deformations and “resolution” fea-
tures activated. Our detector has a quite relevant higher
DR than the other when the working point is set to high
precision (< 1 FPPI). The fastest configuration from [40]
takes more than 10 s for detecting pedestrian in an image
of the database (size 640 x 480 pixels). This is in line with
our results using a complete image scan (see Table 1 rows
1 and 2). In contrast, our method on our machine (Intel
Pentium Xeon 2.67 GHz using only one core) takes less
than 1 s to compute the HOG pyramid on CPU and less
than 0.1 s on GPU, whereas the image scan takes less
than 0.5 s depending on the specific configuration.

5.1 Rigid versus Deformable models

In Table 1 we evaluate the quality of a detector configu-
ration in terms of average precision (AP) and Time. AP
is the averaged values of the precision obtained by the
detector in a precision-recall curve drawn applying the
detector the complete test set. Time is the average time
needed for: (i) the image scan, i.e. searching the object in
the image, (ii) the feature pre-compuation in both CPU
and GPU and, (iii) the overall computation of a frame.

The first two rows of Table 1 compare a model using
a rigid template (as explained in sect. 3.1) and a model
using deformable parts (as explained in sect. 3.2). In both
cases we use a complete search to avoid any possible
problem due to the CtF scan. Learning local deforma-
tions through the object parts is useful to better align
the object model with the image. This translate into an
improved detector recall because also misaligned object
can be correctly detected. In practice, the overall detector
performance using the deformable model is increased of
almost 5 points with respect to the rigid model with a
relatively small increment of computational cost (from
8.48 to 10.73 seconds).

5.2 CtF versus Complete search

We next evaluate the performance of the CtF search
compared with the complete search (i.e sliding window),
both in terms of speed and accuracy. The first two rows
of Table 1 have exactly the same configuration as row 3
and 4. The only difference is in the scan procedure. The
first rows use complete search whereas the second CtF.

While the Average Precision (AP) of the two methods
is comparable, CtF procedure scans an image in much
less than 1 s while standard sliding windows takes up
to 10 s. Note that for the rigid model (row 1 and 3) both
complete and CtF searches give exactly the same AP. In
case of deformable model, using the CtF approximation
produces a loss in AP of 1 point. Still, the improvement
compared to the rigid model is quite high, as well as the
gain in time.
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Image scan Small windows | Image size Model Average Time(s)

Complete CtF | Small Feat x1 x2 | Rigid Def | Precision(%) | Scan | Feat-CPU Total-CPU | feat-GPU Total-GPU
X X X 29.8 7.67 0.81 8.48 0.08 7.75
X X X 34.8 9.92 0.81 10.73 0.08 10.0

X X X 29.8 0.14 0.81 0.95 0.08 0.22
X X X 33.7 0.25 0.81 1.06 0.08 0.33
X X X X 59.4 0.24 0.81 1.05 0.08 0.32
X X X X 63.1 0.40 0.81 1.21 0.08 0.48
X X X X X 65.0 0.40 0.81 1.21 0.08 0.48
X X X X 66.2 0.91 3.87 4.78 0.20 1.11
X X X X 73.1 1.36 3.87 5.23 0.20 1.56
X X X X X 73.4 1.36 3.87 5.23 0.20 1.56
TABLE 1

Average precision (AP) and detection time with different configurations of our system. Image scan can be Complete if
searching at all possible locations and correspond to standard sliding windows in case of using a rigid template, or
CtF if using the faster procedure explained in section 3.1 for rigid templates and in section 3.2 for deformable
templates. small windows correspond to evaluating also the windows where the high resolution model is not present
without adding the corresponding feature Small or adding the corresponding “resolution” feature Feat. image size is
the size of the image used for detection that can be the original x1 of 640 x 480 or the double x2. Finally the object
model can be rigid or deformable.

5.3 Detection of Small Pedestrians

For pedestrian detection from a moving vehicle, the
detection of small examples (far from the vehicle and
therefore at low resolution) is fundamental. This is
proved in the last part of Table 1. Here it is possible
to notice the high AP improvement when adding the
searching for objects at smaller size and the correspond-
ing “resolution” features as explained in section 3.3. The
AP for rigid model rise from 29.8 to 59.4. For deformable
models the gap is almost similar: from 33.7 to 63.1
adding only the search of small objects and 65.0 adding
also the “resolution” feature. In term of time, the search
at a smaller resolution of the object adds some overhead
in the image scan (from 0.14 to 0.24 for the rigid model
and from 0.25 to 0.4 for the deformable). However,
this is minor than the one introduced by doubling the
image resolution. Doubling the image resolution would
generates a slow-down of around 4x in the image scan
as well as in the feature computation. In contrast, the
search of the object at smaller sizes is done only at low
resolution, which is not very expensive but good enough
to find many additional detections as confirmed by the
improved AP.

Even though the average precision of the method
is highly increased by using “resolution” features, the
overall performance is still affected by small objects that
in certain cases are missed. We evaluate this testing the
method on resized images at double resolution. This
configuration obtain the best AP gaining around 10%
over the normal image size AP. However, the detection
time per frame also highly increased, up to 5 s.

5.4 GPU for feature computation

From Table 1 and Fig. 6 we can see that the use of
GPU has a stable speed-up in the feature computation

of around 10 times. Compared with other implementa-
tions like [39], [30] this is not very high. However, we
should remind that in contrast to other methods, in our
current implementation, only the feature computation is
computed on GPU, while the image scan is still done
in CPU. This is mainly due to a design choice drawn
from different reasons. First, implementing everything
on GPU, and especially the recursive part of the CtF
algorithm would be quite complex, long and prone to
errors. Second, leaving the scan of the image in the
CPU can be useful in case of further developments
where multiple classes (i.e. cars, bicycles, etc...) should
be detected at the same time. In this case, the algorithm
can be easily extended to use multiple cores (nowadays
quite common in standard PCs), each one for each class.
Thus, the final detection speed would remain the same.
This can not be exploited computing everything on GPU.
Uue to the CtF procedure the time spent in the feature
computation is much more relevant than in the complete
scan. For instance, using the complete search with a rigid
model, the CPU and GPU overall time for detection are
respectively 8.48 and 7.45 s. The relative difference is
not very relevant. In contrast, the total time in CPU for
computing an image using CtF search is almost 1 second
while for GPU is just 0.22 seconds, i.e. an overall speed-
up of more than 4 times.

Also, as introduced in section 4.1, we can add a further
improvement in speed by computing only the region
of the image where pedestrians should appear. In the
CVCO02 dataset, using a selected region of the lower
two thirds of the image produces a 33% speed-up while
maintaining the same degree of accuracy. Note that all
the reported times are computed using a single CPU.
Taking advantage of multiple CPUs nowadays available
in almost every PC could give a further boost.

Finally, using a 4 cores PC, the GPU computation of
the features, and an additional reduction of the sampling
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Method Recall(at 10~ FPPS)
Viola & Jones [1] 37%
Dalal & Triggs [20] 50%
fastHOGJ[39] 50%
groundHOGI30] 60%
OURS 74%
DPMI5] 75%

TABLE 2
Recall at 10~ false positive per window (FPPI) on the
INRIA pedestrian dataset.

scale in the pyramid computation leads to a complete
detection system that is able to run at around 10 frames
per second.

5.5 Comparison with other GPU-based detectors

A general comparison with other methods based on dif-
ferent implementations and different machines is quite
difficult. However, one advantage of our work compared
with previous pedestrian detectors is the use of defor-
mations in conjunction with the CtF search, that give
a high boost in performance and a small increment of
computation. In this sense, we can compare our detector
with those proposed in [39], [30], which are based on
a fast GPU implementation of the Dalal and Triggs
detector [20].

In Table 2 we compare those methods on the INRIA
dataset [20]. The original pedestrian detector from Dalal
& Triggs has a recall of 50% at 0.1 FPPI, which is the
same as for the GPU implementation of fastHOG [39]. In
contrast, probably due to a better HOG implementation,
groundHOG reaches a recall of 60%. Our detector with
deformable model at 0.1 FPPI has a recall of 74%. For
completeness we also report the recall of the well known
Viola and Jones [1] and the deformable part model [5].

6 CONCLUSIONS

In this paper we have presented a new framework
for fast pedestrian detection in the context of driving
assistance. The framework is based on the combination
of recent state-of-the-art techniques for fast and accurate
object detection in still images.

We have evaluated our system on a dataset specific for
pedestrian detection from a moving vehicle and we have
shown that it is able to outperform other fast detection
methods in both speed and accuracy. This is due (i) the
use of a CtF procedure for fast image scan, (ii) the use
of obect parts to simulate local deformations (iii) the
evaluation of detections with missing resolutions (iv) the
introduction of an additional feature that balances out
scores with missing resolutions and gives possibly high
scores also to small detections, which are very important
in the context of driving assistance.

Finally, we have proposed some techniques that ex-
ploiting domain-specific characteristics of pedestrian de-
tection from a moving vehicle can further speed up

the detection and lead to accurate and real-time perfor-
mance.
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