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Abstract In many classification problems, neighbor data labels have inherent
sequential relationships in spite of their values. Sequential learning algorithms
take benefit of these relationships in order to improve generalization.In this
paper, we revise the Multi-Scale Sequential Learning approach (MSSL) for ap-
plying it in the multi-class case (MMSSL). We introduce the Error-Correcting
Output Codes (ECOC) framework in the MSSL classifiers and propose a for-
mulation for calculating confidence maps from the margins of the base classi-
fiers. In addition, we propose a MMSSL compression approach which reduces
the number of features in the extended data set without a loss in performance.
The proposed methods are tested on several databases, showing significant
performance improvement compared to classical approaches.

1 Introduction

Standard classification tasks commonly assume that samples are indepen-
dently and identically drawn from a distribution (i.i.d) of samples X and their
labels Y . However, classification problems in real world databases can break
this i.i.d. assumption. For example, consider the case of object recognition in
image understanding. In this case, if one pixel belongs to a certain object cat-
egory, it is very likely that neighboring pixels also belong to the same object,
with the exception of the borders.

In this scope, sequential learning [3] takes benefit of these relationships
making easier the classification task. Here, the training data consists of se-
quences of pairs (x, y) where neighboring examples on a support lattice dis-
play some kind of coherence. Usually, sequential learning applications consider
one-dimensional support lattice, i.e. when data samples belong to a sequence
of text, sound or time. Some examples of applications where this kind of sup-
port lattices appears are: speech recognition, activity or gesture recognition
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form motion data, stock market prediction, etc. This kind of relationship is
also frequent in 2-D images (two-dimensional support lattice), volume images
or videos (three-dimensional support lattice), and multiple sensor data (multi-
dimensional support lattice).

In the literature, sequential learning has been addressed from different per-
spectives. From the point of view of graphical models, Hidden Markov Models
(HMM) or Conditional Random Fields (CRF) [10,7,4,15,23] are used for in-
ferring the joint or conditional probability of the sequence. Another point of
view is to use graph transformer networks. In [24], a graph is used to repre-
sent segmentation hypotheses for an image representing a sequence of digits.
Therefore, the input and output are considered as a graph. Then, it looks for
the transformation that minimizes a loss function of the training data using a
Neural Network. From the point of view of meta-learning, sequential learning
has been addressed by means of sliding window techniques, recurrent sliding
windows [3], or stacked sequential learning (SSL) [6]. In the case of SSL, the
meta-learning scheme is as follows: first a base classifier is used over the sam-
ples to produce predictions. Then, a window among the predictions is applied
and it is concatenated with the original data, building an extended dataset.
Finally, a second base classifier predicts the final output from the extended
dataset. In [16], it is identified that the main step of the relationship modeling
is how this extended dataset is created. In consequence, a general framework
for the SSL called Multi-scale Stacked Sequential Learning (MSSL) is formal-
ized, where a multi-scale decomposition is used in the relationship modeling
step, showing large improvement with respect to base SSL.

Usually, applications considered need classifiers that are able to deal with
multiple classes. However, in the case of sequential learning, few of the previous
approaches are able to deal with the multi-class case. One case of multi-class
extension is the CRF using graph-cut with alpha-expansion [13]. Another ap-
proach is to decompose the multi-class problem into a set of binary-class prob-
lems and combine them in some way. In this sense, the Error-Correct Output
Codes (ECOC) [2] framework is a well-studied methodology that is used to
transform multi-class problems to an ensemble of binary classifiers. The fun-
damental issues here are: how this decomposition can be done in an efficient
way, and how a final classification can be obtained from the different binary
predictions. In the ECOC framework, these two issues are defined as coding
and decoding phases in a communication problem. During the coding phase a
codeword is assigned to each label in the multi-class problem. Each bit in the
codeword identifies the membership of such class for a given binary classifier.
The most used coding strategies are the one-versus-all [5], where each class is
discriminated against the rest and one-versus-one [1], which splits each pos-
sible pairs of classes. The decoding phase of the ECOC framework is based
on error-correcting principles, where distances measurements between the out-
put code and the target codeword are the strategies most frequently applied.
Among these, Hamming and Euclidean measures are the most used [14].

In this paper, we propose an efficient extension of MSSL to the multi-class
case (MMSSL) based on the ECOC framework. We revise the general stacked
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sequential learning scheme adapting it to both binary-class and multi-class
problems. The main drawback of MMSSL is that the number of features in the
extended set linearly increases with the number of classes. As a consequence,
a novel feature compression approach for mitigating this problem is presented.
Experiments on several databases are performed, including images, text, and
sensor data, showing high classification accuracies and better performance
than classical approaches. The terminology used during the rest of the paper
is summarized in Table 1.

The paper is organized as follows: In section 2, we review the original
MSSL for the binary-class case and the ECOC framework. In section 3, we
adapt the MSSL steps to the multi-class case (MMSSL) and face the problem
of feature cardinality in the extended set by means of a compression approach.
Experiments and results of our methodology are shown in Section 4. Finally,
Section 5 concludes the paper.

2 Background

This work holds on two frameworks, one for capturing the sequential relation-
ship among samples and the other for facing multi-class classification prob-
lems. The former is the Multi-scale Stacked Sequential Learning [16] which is
a generalization of the Stacked Sequential Learning [6]. The later is the ECOC
framework, which is a general approach to reduce multi-class problems to an
ensemble of binary classifiers. Each of these methodologies are explained in
detail below.

2.1 Multi-scale Stacked Sequential Learning

Sequential learning assumes that samples are not independently drawn from a
joint distribution of the data samples X and their labels Y . Thus, the training
data is considered as a sequence of pairs example and its label (x, y), such that
neighboring examples exhibit some kind of relationship [3]. In [6], an approach
of sequential learning that uses a meta-learning framework [9] is presented.
Basically, the Stacked Sequential Learning (SSL) scheme is as follows: first, a
base classifier is trained and tested with the original data. Then, an extended
data set is created which joins the original training data features with the
predicted labels produced by the base classifier considering a window around
the example. Finally, another classifier is trained with this new feature set.
Here the relationship between pairs (x, y) is expressed by this new feature set.
The main drawback of this approach is that the width of the window around
the sample determines the maximum length of interaction among samples.
Therefore, the longer the window, the further the interaction considered, but
also the extended data set is increased in terms of features. This makes this ap-
proach not suitable for problems that have more than one dimension sequential
relationships. In [3], the main problems of sequential learning are highlighted:
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List of Symbols

X set of samples
Y set of labels
x a sample
y a label
h(x) a classifier
y′ a prediction from a classifier
y′′ a final prediction from a chain of classifiers
xext extended set
J neighborhood relationship function
z neighborhood model features
ρ neighborhood
θ neighborhood parameterization
w number of elements in the neighborhood window
s number of scales
c set of different classes in a multi-class problem

F̂ (x, c) a prediction confidence map
N number of classes in a multi-class problem
n number of dichotomizers
σ parameter of a Gaussian filter
Σ set of scales defined by σ parameters
b a dichotomizer
M ECOC coding matrix
Y a class codeword in ECOC framework
X a sample prediction codeword in ECOC framework
mx margin for a prediction of sample x

β constant which governs transition in a sigmoidean function
t number of iterations in an ADAboost classifier
δ a soft distance
α normalization parameter for soft distance δ

gσ a multidimensional isotropic gaussian filter with zero mean and σ stan-
dard deviation

P a set of partitions of classes
P a partition of groups of classes
γ a symbol in a partition codeword
Γ a partition codeword
R the mean ranking for each system configurations
E the total number of experiments
k the total number of system configuration

χ2

F
Friedman statistic value

Table 1 Terminology used in this contribution.

(a) How to capture and exploit sequential correlations; (b) how to represent
and incorporate complex loss functions; (c) how to identify long-distance inter-
actions; and (d) how to make sequential learning computationally efficient. In
[16], all these points are specifically analyzed and it is proposed a generaliza-
tion of the SSL [6] by emphasizing the key role of neighborhood relationship
modeling. For this aim, a block J is included in the pipeline of the basic
Sequential Stacked Learning as shown in Figure 1. Therefore, the Generalized
Stacked Sequential Learning process is as follows: A classifier h1(x) is trained
with the input data set (x, y) and the set of predicted labels y′ is obtained.
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Next block defines the policy for creating the neighborhood model of the pre-
dicted labels. It is represented by z = J(y′, ρ, θ) : R → Rw, where J is a
function that captures the data interaction with a model parameterized by θ

in a neighborhood ρ. Then, the output of J(y′, ρ, θ) is joined with the original
training data creating the extended training set (xext, y) = ((x, z), y). This
new set is used to train a second classifier h2(x

ext) with the aim of producing
the final prediction y′′.

  
J(y′, ρ, θ)h1(x)

Fig. 1 Generalized Stacked Sequential Learning.
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Fig. 2 Example of J(y′, ρ, θ) function. Multi-scale decomposition and sampling producing
the output z for a particular sample of the predicted labels image.

In [16], Multi-scale stacked sequential learning (MSSL) is presented where
function J(y′, ρ, θ) uses a multi-scale decomposition [11]. This function is
proved to be effective in several domains (1D and 2D sequential relation-
ships). It consists of two steps: first the multi-scale decomposition answers
how to model the relationship among neighboring locations, and second, the
sampling that answers how to define the support lattice to produce the final
set z. Figure 2 shows an example of multi-scale decomposition of an image
of predicted labels. In this case a gaussian filter is used for the multi-scale
decomposition, increasing the σ parameter of the gaussian in each scale. Also,
it shows the pattern sampling around an example. This pattern can be repre-
sented by a set of displacement vectors that defines the neighborhood. Each
vector is also increased proportionally to the σ parameter in each scale. The
vector z resulting of this function is a w × s-dimensional value, where w is
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the number of elements in the support lattice of the neighborhood ρ and s

express the number of scales used in the multi-scale decomposition. In the
case of defining the neighborhood by means of a window, w is the number of
elements in the window. This approach is able to capture sequential relation-
ships among data, as well as to capture long-range interactions in the label
field.

2.2 Error-Correcting Output Codes

Error-Correcting Output Codes (ECOC) are a general framework to combine
binary problems to address the mutli-class problem [2,14]. ECOC framework
consists of two phases: a coding phase, where a codeword is assigned to each
class of a multi-class problem, and a decoding phase, where, given a test sam-
ple, it looks for the most similar class codeword. Originaly [2], a codeword was
a sequence of bits represented by {−1, +1}, where each bit identifies the mem-
bership of the class for a given binary classifier (dichotomizer). Afterwards [1],
a third symbol (the zero symbol) was introduced, which means that a par-
ticular class is not considered by a given classifier. Given a set of N classes
to be learned in an ECOC design, n different bipartitions (groups of classes)
are formed, and n dichotomizers over the partitions are trained. As a result, a
codeword Yc, c ∈ [1, . . . , N ] of length n is obtained for each class c. Arranging
the codewords as rows, a coding matrix M ∈ {−1, 0, +1}N×n is defined. The
most used coding strategy is the one-versus-all [5], where each class is discrim-
inated against the rest, obtaining a codeword of length equal to the number
of classes. Figure 3 shows an example of one-versus-one coding matrix, which

considers all possible pairs of classes, with a codeword length of N(N−1)
2 . The

matrix is coded using ten dichotomizers {b1, . . . , b10} for a 5-class problem.
The white regions are coded by 1 (considered as one class by the respective
dichotomizer bj, the dark regions by -1 (considered as the other class), and the
gray regions correspond to the zero symbol (classes that are not considered by
the respective dichotomizer bj).

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

Y1

Y2

Y3

Y4

Y5

Fig. 3 ECOC one-versus-one coding matrix.

During the decoding process, applying the n binary classifiers, a code X
is obtained for each data sample in the test set. This code is compared to the
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base codewords (Yc, c ∈ [1, . . . , N ]) of each class defined in the matrix M . The
data sample is then assigned to the class with the closest codeword. In order
to find the closest codeword, the decoding strategies most frequently used are
Hamming and Euclidean measures [21].

3 MMSSL: Multi-class Multi-scale Stacked Sequential Learning

In order to extend the Generalized Stacked Sequential Learning scheme to
the multi-class case, it is necessary that base classifiers h1(x) and h2(x

ext)
can deal with data belonging to N classes instead of just two. This can be
achieved using the ECOC framework explained before. Apart from the exten-
sion of the base classifiers, the neighborhood function J(y′, ρ, θ) has also to
be modified. Figure 4 shows the Multi-class Multi-scale Stacked Sequential
Learning (MMSSL) scheme presented in this work. Given an input sample x,
the first classifier produces not only a prediction, but a measure of confidence
F̂ (x, c) for belonging to each class defined in c ∈ [1, . . . , N ]. These confidence
maps are the input of the neighborhood function J(F̂ (x, c), ρ, Σ). This func-
tion performs a multi-class decomposition over the confidence maps into s

scales defined by Σ. Over this decomposition, a sampling ρ around each input
example is returned, producing the z vector. The extended data set is built up
using the original samples as well as the set of features in z. Finally, having
the extended data set xext as input, the second classifier will predict to which
class the input sample x belongs to. In the next two subsections we explain in
detail this process. In the last subsection, we propose a compression approach
for encoding the resulting confidence maps in order to reduce them to log2 N

without degrading the performance of the second classifier. Figure 4 shows
the detail of function J once added the compression step between multi-scale
decomposition and sampling.

ECOC   ECOCJ(F̂ (x, c), ρ,Σ). . .

zF̂ (x, c)

. . .

SAMPLING 
PATTERN. . .

F̂ (x, c) z

. . .

log c

. . . . . .MULTI-SCALE 
DECOMPOSITION

Com
pres
sion

J(F̂ (x, c), ρ,Σ)

h1(x) h2(x
ext)

Fig. 4 Multi-class multi-scale stacked sequential learning and detail of function
J(F̂ (x, c), ρ, Σ) with the compression step between multi-scale decomposition and sampling.
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3.1 Extending the base classifiers

For training the first base classifier h1(x), where x is a sample of N possible
classes, an ECOC coding strategy is defined. Based on this strategy, we obtain
a codeword Yc, c ∈ [1, 2, . . . , N ] of length n for each class. The symbols in the
codeword {−1, 1, 0} indicate whether this class belongs to one partition or an-
other or if it should not be considered at all. The length of the codeword deter-
mines the number of dichotomizers (binary classifiers) that has to be trained.
The matrix M defines for each dichotomizer which binary partition has to be
performed on the training set. Given a test sample x, each dichotomizer pro-
duces a prediction [1,−1], forming a new codeword X of length n. The final
predicted class is the closest codeword Yc to codeword X . A distance measure
between codewords can be used for determining the closest class.

If the dichotomizers only produce binary predictions, all the predictions
within X have the same importance. Instead, if the dichotomizers can pro-
duce a measure of confidence on its predictions, a more fine-grained distance
between codewords can be obtained. Unfortunately, not all kind of classifiers
can give a confidence for its predictions. However, classifiers that work with
margins such as Adaboost or SVM can be used [8]. In these cases, it is necessary
to convert the margins used by these classifiers to a measure of confidence with
values between the codeword interval [−1, 1]. For example, in the Adaboost
case, we apply a sigmoid function that normalizes Adaboost margins from the
interval [−∞,∞] to [−1, 1], by means of the following equation,

f(bi(x)) =
1 − e−βmx

1 + e−βmx

,

where mx is the margin of the predicted label given by one of the dichotomizers

for the example x, and a constant that governs the transition β = − ln(0.5ǫ)
0.25t ,

which depends on the number of iterations t that Adaboost performs, and
an arbitrary small constant ǫ. We apply this equation for each dichotomizer
forming a new codeword X of length n, where all the symbols ∈ R.

Once we have a normalized codeword, we use a soft distance δ for decod-
ing, i.e. we compare the codeword X with each codeword Yc, c ∈ [1, . . . , N ]
defined in the matrix M . These distance measures can be seen as a predic-
tion confidence measure for each class, once we normalize them to the range
[0, 1]. Therefore, given a set of possible labels ci, i ∈ [1, . . . , N ], we define the
membership confidences as follows:

F̂ (y = ci|x) = e−αδ(Y1,X ), ∀i ∈ [1, .., N ],

where δ is a soft distance such the Euclidean one, and α depends on δ. By
applying this to the all data samples in X we define the confidence map for
each class as expressed in Equation 1:

F̂ (x, c) = {F̂ (y = c1|x), . . . , F̂ (y = cN |x)}, ∀x ∈ X. (1)
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3.2 Extending the neighborhood function J

We define the neighborhood function J in two stages: 1) a multi-scale decom-
position over the confidence maps F̂ (x, c) and 2) a sampling performed over
the multi-scale representation. This function is extended in order to deal with
multiple classes. Now it is formulated as follows:

z = J(F̂ (x, c), ρ, Σ).

Starting from the confidence maps, we apply a multi-scale decomposition
upon them, resulting in as many decomposition sequences as labels. For the
decomposition we use a multi-resolution Gaussian approach. Each level of the
decomposition (scale) is generated by the convolution of the confidence map
by a Gaussian mask with standard deviation σ. In this way, the bigger σ is, the
longer interactions are considered. Therefore, at each level of decomposition all
the points have information from the rest accordingly to the sigma parameter.
Given a set of Σ = {σ1, . . . , σs} ∈ R

+ and all the predicted confidence maps
F̂ (x, c), each level of the decomposition si, i ∈ [1, . . . , s] is computed as follows:

F̂ si(x, c) = gσi(x) ∗ F̂ (x, c), ∀i ∈ [1, .., s],

where gσi(x) is defined as a multidimensional isotropic gaussian filter with
zero mean:

gσi(x) =
1

(2π)d/2σ
1/2
i

e−
1

2
x

T σ−1

i
x.

Once the multi-scale decomposition is performed, we define the support lat-
tice z. This is, the sampling over the multi-scale representation which forms the
extended data. Our choice is to use a scale-space sliding window over each label
multi-scale decomposition. The selected window has a fixed radius with length
defined by ρ in each dimension d and with origin in the current prediction ex-
ample. Thus, the elements covered by the window is w = (2ρ + 1)d around
the origin. Then, for each scale si considered in the previous decomposition
the window is stretched in each direction using a displacement proportional
to the scale we are analyzing. This displacement at each scale forces that each
point considered around the current prediction has very small influence from
previous neighbor points. In this way, the number of features of z appended to
the input data set is equal to (2ρ+1)d ·s · c. According to this, we can see that
the extended data set increases with the number of classes. This can produce
a scalability problem, since the second classifier has to deal with large feature
sets.

3.3 Extended data set grouping: a compression approach

The goal of grouping the extended data set is to compress its number of
features without losing significant performance. Using our MMSSL approach,
we can see that the size of the extended set depends on the number of classes,
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the number of scales, and the number of samples around each example. We can
choose the number of samples and scales, but the number of classes is problem
dependent. Therefore, for reducing the number of confidence maps, we add a
compression process between the multi-scale decomposition and the sampling
process as shown in Figure 4. This compression is done following information
theory by means of partitions.

Let P be a set {{P 1
1 , P 2

1 }, . . . , {P
1
κ , P 2

κ}} of partitions groups of classes
and c = {c1, . . . , cN} the set of all the classes, so that for any j, P 1

j ⊆ c,

P 2
j ⊆ c | P 1

j ∪ P 2
j = c, and P 1

j ∩ P 2
j = ∅. The confidence maps are grouped

using the elements on P . We have defined two different ways of combining the
partitions: using binary compression or using ternary compression. Let the
confidence map F̂ sk of a certain scale sk, k ∈ [1, . . . , s] be expressed as follows,

F̂ sk(x, Pj) =

N
∑

i

γij F̂
sk(x, ci), (2)

where

γij =

{

a if ci ∈ P 1
j

b if ci ∈ P 2
j

for all the sets of partitions Pj , j ∈ [1, . . . , κ] in P , being a = 0 and b = 1 in
the case of binary compression and a = −1 and b = 1 in the case of ternary
compression (we choose only {−1, 1} values from the ternary set {−1, 0, 1}).

We use a partition strategy for P which produces a minimum set of par-
titions P = {{P 1

1 , P 2
1 } . . . , {P 1

κ , P 2
κ}}, where κ = ⌈log2 |c|⌉, being ⌈x⌉ =

min {n ∈ Z | n ≥ x}. Our strategy builds the partitions assigning an unique
binary code of length equals to number of partitions in P for each class. For
example in Figure 5 a 5-class problem c = {c1, c2, c3, c4, c5} is illustrated. We
can reduce the problem to a set of three partitions P = {{P 1

1 = {c2, c3}, P 2
1 =

{c1, c4, c5}}, {{P 1
2 = {c1, c4}, P 2

2 = {c2, c3, c5}}, {{P 1
3 = {c2, c4}, P 2

3 = {c1, c3, c5}}.
Therefore, in the binary case, the assigned codes for each partition are Γ1 =
{1, 0, 0, 1, 1}, Γ2 = {0, 1, 1, 0, 1}, and Γ3 = {1, 0, 1, 0, 1}, and in the ternary
case, the assigned codes are Γ1 = {1,−1,−1, 1, 1}, Γ2 = {−1, 1, 1,−1, 1}, and
Γ3 = {1,−1, 1,−1, 1}. Thus, applying Equation 2, we obtain the likelihood
maps for each partition, P1, P2, P3. As it is shown in Figure 5, in the case of
binary compression, the classes in P 1

i for any partition i are not considered,
while in the case of ternary compression, the classes in P 1

i and P 2
i for any

partition i are combined.
Following this compression approach, now the support lattice z is defined

over F̂Σ(x,P). This is, applying Equation 2 over all the scales defined by
Σ = {σ1, . . . , σs}. Therefore, the number of features in z is reduced from
(2ρ + 1)d · s · c to (2ρ + 1)d · s · ⌈log2 c⌉.
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c1 c2 c3 c4 c5

c1 c2 c3 c4 c5

Γ1 1 0 0 1 1

Γ2 0 1 1 0 1

Γ3 1 0 1 0 1

c1 c2 c3 c4 c5

Γ1 1 -1 -1 1 1

Γ2 -1 1 1 -1 1

Γ3 1 -1 1 -1 1

Table 1.

Table 2.

P1

P1

P2

P3

P3

P2

Binary compression

Ternary compression

Fig. 5 5-class likelihood maps compressed to three, using partitions. Binary approach is
represented by Table 1. The symbols used are 0 and 1. Ternary approach is represented by
Table 2. The symbols used are -1 and 1. Applying Equation. 2 we obtain the aggregated
likelihood maps P1, P2, P3 ∈ P. In the case of binary compression, any class marked with
zero in a codeword Γ is not considered, while in the case of ternary compression, all classes
are aggregated according to each of the codewords Γ .

4 Experiments and Results

Before presenting the results, data, methods and validation protocol for each
experiment are discussed. The results are presented in two aspects, a) sta-
tistical results, where different measures are computed and significance tests
are performed on different datasets, and b) qualitative results, where concrete
results are particularly analyzed for a more intuitive understanding of the
behavior of each method.

4.1 Experimental Settings

– Data: we test our multi-class methodology performing 9 different experi-
ments out from four databases:

1. Sensor Motion data database: The sensor motion database [20] is a
data set of accelerometer sensor runs from 15 different people perform-
ing certain activities. Each accelerometer sample is labeled as one of 5
different activities, namely walking, climbing stairs, standing idle, inter-
acting and working. The spatial relationship in label space is 1D. There
are two different scenarios. Sequential scenario is where all the people
is doing the activities in the same order (motion sequential scenario).
Random scenario is where all the people is performing the activities in
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random order (motion random scenario)). We also performed a third
experiment for benchmark purposes in which there are only activities
from one person (motion one person).

2. FAQ database [6,4]: The FAQ database is a set of frequented asked
questions pages from Usenet. There are 48 annotated pages from several
topics. Each line in a page is labeled as (0) header, (1) question, (2)
answer, or (3) tailing. There are 24 boolean features characterizing each
line. The spatial relationship in label space is 1D.

3. IVUS image database [17]: It contains images from Intravascular Ultrasound
(IVUS). They are a set of IVUS frames manually labelled. 8 classes are
considered: (1) blood, (2) plaque, (3) media, (4) media adventitia, (5)
guide-wire, (6) shadowing, (7) external tissue, and (8) calcium. The
spatial relationship in label space is 2D. There are 29 textural features
in total extracted from IVUS data.

4. e-trims database [12]: The e-trims database is comprised of two image
datasets, e-trims 4-class with four annotated object classes and e-trims

8-class with eight annotated object classes. There are 60 annotated im-
ages in each of the dataset. The object classes considered in 4-class
dataset are: (1) building, (2) pavement/road, (3) sky, and (4) vegeta-
tion. In 8-class dataset the object classes considered are: (1) building,
(2) car, (3) door, (4) pavement, (5) road, (6) sky, (7) vegetation, and (8)
window. Additionally, for each database we have a background class (0)
for any other object. All images are resized proportionally to 150 pixels
height. Train images are stratified sampled, taking 3000 pixels. We have
performed experiments with two different set of features: RGB repre-
sentation of each pixel, and RGB plus HOG (Histogram of oriented
gradient [18]) with 9 bins, ending up with 12 features for sample. The
spatial relationship in label space is 2D.

– Methods: We test all the databases with four different configurations of
our MMSSL methodology. Also, we test with Real Adaboost [22] and CRF
Multi-label optimization through Graph Cut α-expansion [13] as baseline
experiments. The settings for all the MMSSL configurations are the same,
the only difference is the way the extended data set is generated. We
have used as base classifier a Real Adaboost ensemble of 100 decision
stumps. The coding strategy for the ECOC framework in each classifier
is one-versus-one and the decoding measure is Euclidean distance. The
neighborhood function performs a Gaussian multi-resolution decomposi-
tion in 4 scales, using Σ = {1, 2, 4, 8}, except in IVUS database where we
used 6 scales Σ = {1, 2, 4, 8, 16, 32} due to the images dimensions. In 1D
databases, we used w = 7 elements in both directions of the neighborhood,
while in 2D databases we used just the surrounding points, i.e. w = 1.
Summarizing, the different experiments we have performed are:

1. MMSSL using labels. It uses the MMSSL framework using only the
predicted labels from the first classifier as input for neighborhood func-
tion.
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2. MMSSL using confidences. It uses the MMSSL framework using the
confidence maps for all the classes as input for neighborhood function.

3. MMSSL using compression approach with binary matrix: It uses the
MMSSL framework using a compression over the confidence map. The
compression matrix uses binary values {0, 1}.

4. MMSSL using compression approach with ternary matrix. It uses the
MMSSL framework using a compression over the confidence map. The
compression matrix uses ternary values {−1, 1}.

5. Adaboost. Uses only one Adaboost classifier, without taking into ac-
count the neighborhood relationship. Used as baseline experiment.

6. Multi-label optimization. It uses multi-label optimization via α-expansion.
We have applied the α-expansion optimization, using the confidence
maps for each class obtained from the first classifier. For the neighbor-
hood term, we use the intensity between the point and its neighbors for
each direction defined in the database.

– Validation: For sensor motion and FAQ databases we use one-leave-out
for final prediction, whereas for IVUS and E-trims databases we use 5-
fold cross-validation. For each fold, the base classifier h1(x) uses ten-fold
cross-validation for predicting the labels of the training set, which pro-
duces the confidence maps used later for the second classifier h2(x). We
measure the results in terms of the accuracy, and the mean of overlap-
ping, recall, and precision from a N × N confusion matrix , computed

as follow: accuracy =
P

N

i
TPi

P

N

i
(TP+FP+FN)i

, overlappingi = TPi

(TP+FN+FP )i

,

recalli = TPi

(TP+FN)i

, and precisioni = TPi

(FP+TP )i

, where TPi means the

predictions correctly classified in the class i, FPi means the predictions
misclassified as class i and FNi means the actual class i predictions mis-
classified as any other class. For comparing the results obtained from the
different experiments we have used statistic tests: the Friedman test for
checking the non-randomness of the results and the Nemenyi test for check-
ing if one of the configurations can be statistically singled out [19].

4.2 Numerical Results

Tables 2 to 8 show accuracy, overlapping, recall, and precision averaged for
each experiment. Best results are marked in bold. The tables show similar ten-
dency of the different classifiers results for different databases. Non sequential
methods such Adaboost give the poorest accuracies. Multi-label optimization
using Graph cut achieves better results, specially in 2D databases. Finally, all
methods based in MMSSL give the best results. Usually, using just predictions
it leads to worse results than using confidence maps. It is also remarkable that
by using compression techniques (binary and ternary coding) the global ac-
curacy is not significantly degraded. In order to compare the performances
provided for each of theses strategies, Table 9 shown in the mean rank of each
strategy considering the accuracy terms of the 9 different experiments. The
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rankings are obtained estimating each particular ranking r
j
i for each data se-

quence i and each system configuration j, and computing the mean ranking
R for each configuration as Rj = 1

E

∑

i r
j
i , where E is the total number of

experiments.

Accuracy Overlapping Recall Precision
ADABoost 0.5771 0.3142 0.4419 0.4504
GraphCut 0.5766 0.3129 0.4404 0.4489
Labels 0.6403 0.4766 0.6079 0.6516
Standard 0.7069 0.5905 0.7048 0.8098

SublinealBinary 0.7361 0.6021 0.7427 0.7914
SublinealTernary 0.7026 0.5648 0.6843 0.7638

Table 2 Result figures for database motion sequential scenario.

Accuracy Overlapping Recall Precision
ADABoost 0.5771 0.3142 0.4419 0.4504
GraphCut 0.5766 0.3129 0.4404 0.4489
Labels 0.5951 0.3833 0.5292 0.5375
Standard 0.7109 0.4365 0.552 0.5867
SublinealBinay 0.7305 0.4677 0.5912 0.6266

SublinealTernary 0.6937 0.4392 0.5748 0.6159

Table 3 Result figures for database motion random scenario.

Accuracy Overlapping Recall Precision
ADABoost 0.7607 0.553 0.6805 0.715
GraphCut 0.7888 0.5865 0.7043 0.7654
Labels 0.879 0.7489 0.8372 0.8736
Standard 0.902 0.793 0.8792 0.8824

SublinealBinary 0.8571 0.7133 0.8125 0.8458
SublinealTernary 0.8796 0.7477 0.8395 0.8652

Table 4 Result figures for database motion one person.

In order to reject the null hypothesis that the measured ranks differ from
the mean rank, and that the ranks are affected by randomness in the results,
we use the Friedman test. The Friedman statistic value is computed as follows:

χ2
F =

12E

k(k + 1)





∑

j

R2
j −

k(k + 1)2

4



 .

In our case, with k = 6 system configurations to compare, χ2
F = 35.79. Since

this value is undesirable conservative, Iman and Davenport [19] proposed a
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Accuracy Overlapping Recall Precision
ADABoost 0.8552 0.2392 0.2781 0.3906
GraphCut 0.858 0.2355 0.2718 0.4427
Labels 0.8906 0.4346 0.4961 0.6675
Standard 0.8866 0.5125 0.5627 0.8122

SublinealBinary 0.8786 0.4809 0.5275 0.7649
SublinealTernary 0.8998 0.5628 0.6277 0.8067

Table 5 Result figures for database FAQ.

Accuracy Overlapping Recall Precision
ADABoost 0.6605 0.3127 0.422 0.4978
GraphCuts 0.6748 0.3102 0.4175 0.4654
Labels 0.6789 0.3359 0.4435 0.5098
Standard 0.7199 0.3764 0.4842 0.5555

SublinealBinary 0.684 0.3379 0.4457 0.5205
SublinealTernary 0.7006 0.3544 0.4618 0.5345

Table 6 Result figures for database IVUS, using 6 scales.

Accuracy Overlapping Recall Precision

RGB

ADABoost 0.7274 0.3612 0.4351 0.5334
GraphCuts 0.7283 0.3435 0.4113 0.4688
Labels 0.7612 0.4232 0.5004 0.6716
Standard 0.8074 0.5189 0.6137 0.6922
SublinealBinary 0.7987 0.4957 0.5806 0.6924
SublinealTernary 0.8078 0.5172 0.6085 0.7028

HOG

ADABoost 0.8067 0.5115 0.608 0.6648
GraphCuts 0.8317 0.53 0.6108 0.6962
Labels 0.8305 0.5447 0.6385 0.6878
Standard 0.8686 0.599 0.6912 0.7373

SublinealBinary 0.8514 0.5767 0.678 0.7151
SublinealTernary 0.8599 0.5852 0.6752 0.7333

Table 7 Result figures for database ETRIMS 4 classes RGB and HOG.

corrected statistic:

FF =
(N − 1)χ2

F

E(k − 1) − χ2
F

.

Applying this correction we obtain FF = 31.11. With 6 methods and 9 ex-
periments, FF is distributed according to the F distribution with 5 and 40
degrees of freedom. The critical value of F (5, 40) for 0.05 is 2.44. As the value
of FF = 31.11 is higher than 2.44 we can reject the null hypothesis. Once we
have checked for the non-randomness of the results, we can perform an a post-
hoc test to check if one of the configurations can be statistically singled out.
For this purpose we use the Nemenyi test. The Nemenyi statistic is obtained
as follows:

CD = qα

√

k(k + 1)

6E
.
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Accuracy Overlapping Recall Precision

RGB

ADABoost 0.606 0.1991 0.2591 0.3003
GraphCuts 0.6039 0.1859 0.2405 0.2719
Labels 0.6549 0.2526 0.3193 0.4297
Standard 0.703 0.3133 0.3891 0.4752

SublinealBinary 0.6616 0.267 0.3389 0.4439
SublinealTernary 0.6742 0.2768 0.346 0.4361

HOG

ADABoost 0.6723 0.2868 0.3618 0.4623
GraphCuts 0.6812 0.2618 0.3255 0.3678
Labels 0.6885 0.3031 0.3797 0.4706
Standard 0.7312 0.3479 0.4338 0.5103

SublinealBinary 0.6895 0.3038 0.3837 0.4765
SublinealTernary 0.7164 0.3348 0.4222 0.4986

Table 8 Result figures for database ETRIMS 8 classes RGB and HOG.

Method ADAboost GraphCut Labels Standard Sub.Binary Sub.Ternary
Rank 5.7 5.1 3.9 1.7 2.8 1.9

Table 9 Mean rank of each strategy considering the accuracy terms of the different exper-
iments.

In our case with k = 6 system configurations to compare and E = 9 ex-
periments (data configurations) the critical value for a 90% of confidence is
CD = 1.27. In Figure 6 we can see a graphical representation of this post-hoc
test. As the ranking of the MMSSL Standard method intersects with both sub-
lineal approaches ranks for that value of the CD, we can state that MMSSL
using confidences outperforms the rest of the methods in the presented ex-
periments. Moreover, it reveals that among compressed and non compressed
MMSSL strategies statistically significant differences do not exist. This fact
reinforce our idea of grouping features without losing performance is feasible.
The main advantage for using the compression approach is that by reduc-
ing the number of features in the extended dataset, the time of the learning
phase for the second classifier is reduced. Therefore, the MMSSL framework
scales sublinearly in feature space with the number of classes without a loss
in generalization.

6 5 4 3 2 1

CD

ADAboost
GraphCut

Labels Sub. Binary
Sub. Ternary
MMSSL Standard

Fig. 6 Comparison of all methods against each other with the Nemenyi test. Groups of
classifiers that are not significantly different are connected.
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4.3 Qualitative Results

In this section we highlight general observations comparing ADAboost, multi-
label optimization gaph cut and our MMSSL approach. Figure 7 shows results
in 1D motion database. The rest of figures shows results in 2D databases,
Figure 8 and Figure 9 show results in e-trims database 4 and 8 classes, respec-
tively, and Figure 10 shows results in IVUS database,.

The images resulting from ADAboost classification show how this method
does not capture sequential relationship among labels. For example, in 1D
database results shown in Figure 7, we can see how contiguous points inside a
long class interval are classified as belonging to another class. In 2D database
results show spurious classified pixels appearing inside big objects. For exam-
ple, in the first row of Figure 8 in the upper side of the building few pixels
appear labelled as tree. In the second row of the same image clouds in the mid-
dle of sky are marked as building and in the third row of the same figure a wire
crossing the sky is misclassified. In the last two rows shadows on the top of the
buildings are classified as road. In Figure 9 as many other classes exist, the ef-
fect of spurious artifacts on Adaboost results are more notorious, for example
in the last row, dark clouds are misclassified as belonging to the building. In
Figure 10 we can see that Adaboost fails, producing results far from the real
classification, like in the first and second row. All artifacts observed appear
due to specific pixel values which lead the classifier to a misclassification.

On the contrary, the multi-label optimization technique by means of Graph

Cut captures sequential relationships between labels, erasing such interclass
artifacts. In 1D database results shown in Figure 7, we can see how the number
of bad classified contiguous points decreases with respect to ADAboost, but
it still fails in classify correctly short intervals of contiguous points of certain
classes. In 2D databases, the drawbacks of this method are a) the tendency to
crop the contours of the objects producing sharp shapes resembling blobs, as
is reflected in the first, third and fourth rows of Figure 8 where trees lose all
its shape, even the building in the third row is rounded, and b) the elimination
of entire overlapped objects, as is shown in the three first rows of Figure 9,
where trees, windows and doors are completely removed, only prevailing the
building class. Even though, long objects are still misclassified, as the shadows
in the top part of the buildings in the last two rows in Figure 8, or worst, the
dark clouds in the last row of Figure 9 are completely joined with the building
forming a huge building. In Figure 10 we can see a fairly improvement with
respect to Adaboost, but it still fails in the classification of the three first rows.
This method fails mainly because it is not considering the relationship among
objects at different scales.

The last method considered is our approach, MMSSL using confidences
without compression.The results of this method are qualitatively better than
the rest. The results are a trade-off between spacial coherence and shape
preservation. This is because the relationship among classes is considered at
different scales. In 1D database results shown in Figure 7, we can see how
the MMSSL is the only method that achieves good performance as well in
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long sequences as in short sequences of points of the same class and does not
matter whether the activities are carried on in the same order as trained or
not. In 2D databases, we can see in Figure 8 how MMSSL is able to keep the
shape of buildings and trees in all the images and how it removes interclass
artifacts that previous method were not able to, for example the shadows on
the top of the building in the last two rows. In Figure 9 we can see in all the
images that windows, trees and doors are fairly kept, even the dark clouds
in the last row are practically removed, appearing only spurious pixels in the
border of the image. Moreover, in Figure 10, we can see how MMSSL is able
to close big areas of the same class like in the three firsts rows, where the rest
of methods fail. Also is remarkable in the fourth and fifth row how narrower
classes between wider classes are preserved. The points where our method fails
the most are the junctions between not clearly distinct classes, for example in
the second row in Figure 9 where cars are classified altogether as one, mixing
with the grass and the road.
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Fig. 7 Figures of final classification in motion sequential scenario and motion random
scenario for ADAboost, multi-label optimization Graph cut, and our proposal MMSSL. Y-
axe shows the labels for each class and X-axe is the time interval. Predictions values are
marked with + and real values are marked just below with dots.
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(a) (b) (c) (d) (e)

Fig. 8 Figures of final classification in ETRIMS 4 Classes HOG database. (a) Shows the
original image, (b) the groundtruth image, and (c),(d), and (e) show ADAboost, GraphCut,
and MMSSL without compression, respectively.
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(a) (b) (c) (d) (e)

Fig. 9 Figures of final classification in ETRIMS 8 Classes HOG database. (a) Shows the
original image, (b) the groundtruth image, and (c),(d), and (e) show ADAboost, GraphCut,
and MMSSL without compression, respectively.
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(a) (b) (c) (d) (e)

Fig. 10 Figures of final classification in IVUS using 6 scales. (a) Shows the original image,
(b) the groundtruth image, and (c),(d), and (e) show ADAboost, GraphCut, and MMSSL
without compression, respectively.
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4.4 Comparing among proposed techniques

Finally, Figures 11 and 12 show the difference among different four MMSSL
configurations: MMSSL using only label predictions, MMSSL using confidences
without compression, MMSSL using binary compression, and MMSSL using
ternary compression. MMSSL using labels is prone to fail in some long areas of
contiguous pixels. For example in the first three rows of Figure 11 some areas
between road and vegetation are misclassified as building. In the first two rows
of Figure 12 also appear strange misclassified areas on the top of the building.
Although, in this situations, the rest of methods that use confidences do not
fail. This is because using confidences instead of the most probable label in
the extended data set, the second classifier can learn relationships between
labels considering not only the final prediction class, but the probabilities
of being of each class. In this way, it is easier to break ties of equiprobable
predictions in favor of the most coherent class. The second row of Figure 12
shows the learning capacity of the likelihood maps. In column (d), MMSSL
using confidences without compression, we can see a boundary marked as
unknown object (class 0, black label) in front of the building. Inside this region,
it is marked as car label. In column (c), MMSSL only using labels predictions,
and in the groundtruth image, column (b), these elements are omitted, but
in the original image, column (a), it is appreciable a woman riding a bicycle
in that area. Therefore MMSSL using likelihood maps is capable of detecting
them as an element different to road or building, and assigning the inner region
to car label, given its visual appearance and position.

Differences between compressed and non compressed methods are not so
straightforward to see, but while in Figure 11 there are few differences in
Figure 12 we can see how non compressed methods lead to smoother results
than compressed methods. Compressed methods tend to fail in closing some
classes, appearing spurious pixels inside them. For example, in second and
third row in Figure 11 using binary compression some few pixels labeled as
vegetation appear in the middle of building, while this does not happen in the
non compressed approach. In Figure 12 we can see in the first and second rows
of binary approach pixels in the sky labeled as building and in the first row
of ternary approach pixels in the top of the building labeled as car. All in all,
these misclassified samples with respect to non compressed MMSSL are very
few, taking into consideration the number of features that are compressed. In
fact, in some images like the fourth row in Figure 11 and the last row in Figure
12 the results of the three MMSL methods using likelihoods are almost the
same. Even in situations like the building roof in the last row of 11 ternary
compression can reduce areas of misclassified pixels that standard method
could not resolve.
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(a) (b) (c) (d) (e) (f)

Fig. 11 Comparative between multi-class multi-scale stacked sequential learning ap-
proaches in ETRIMS 4 Classes HOG database. (a) Shows the original image, (b) the
groundtruth image, and (c), (d), (e), and (f) shows the different MMSSL schemes: (c)
MMSSL using label predictions, (d) MMSSL using confidences, (e) MMSSL using binary
compression, and (f) MMSSL using ternary compression
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(a) (b) (c) (d) (e) (f)

Fig. 12 Comparative between multi-class multi-scale stacked sequential learning ap-
proaches in ETRIMS 8 Classes HOG database. (a) Shows the original image, (b) the
groundtruth image, and (c), (d), (e), and (f) shows the different MMSSL schemes: (c)
MMSSL using label predictions, (d) MMSSL using confidences, (e) MMSSL using binary
compression, and (f) MMSSL using ternary compression.
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5 Conclusion

In this paper we adapt the multi-scale sequential learning (MSSL) to the multi-
class case (MMSSL). First, we introduce the ECOC framework in the MSSL
classifiers. Next, we show how to compute the confidence maps using the nor-
malized margins obtained from the ECOC base classifiers. Finally we define
a compression approach for reducing the number of features in the extended
data set. The results show that, on the one hand, MMSSL achieves accurate
classification performance in multi-class classification problems taking benefit
of sequential learning. On the other hand, the compression process is feasible,
since in terms of accuracy the loss of information is negligible. As future work,
we will study how to extend the compression process not only to the set of
confidence labels, but to the whole extended set. By reducing the amount of
features used in neighbor sampling, we can improve the speed of the method
and deal with databases having larger number of classes.
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