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Abstract

In this paper, we propose an On-line Appearance-Based Tracker (OABT)
for simultaneous tracking of 3D head pose, lips, eyebrows, eyelids and irises
in monocular video sequences. In contrast to previously proposed tracking
approaches, which deal with face and gaze tracking separately, our OABT
can also be used for eyelid and iris tracking, as well as 3D head pose, lips and
eyebrows facial actions tracking. Furthermore, our approach applies an on-
line learning of changes in the appearance of the tracked target. Hence, the
prior training of appearance models, which usually requires a large amount
of labelled facial images, is avoided. Moreover, the proposed method is built
upon a hierarchical combination of three OABTs, which are optimized using
a Levenberg-Marquardt Algorithm (LMA) enhanced with line-search pro-
cedures. This, in turn, makes the proposed method robust to changes in
lighting conditions, occlusions and translucent textures, as evidenced by our
experiments. Finally, the proposed method achieves head and facial actions
tracking in real-time.
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1. Introduction

For the last two decades vision-based investigations of non-verbal commu-
nication, in particular head and facial actions have caused a surge of interest
by CVPR community [1]. Tracking human faces in video sequences is useful
for a number of applications such as security and human-machine interaction.
Faces have a key role in human-computer interaction systems, because they
represent a rich source of information; They are the main gateway to express
our feelings and emotional states. The interpretation of user’s intentions may
be possible if we are able to describe 3D face pose and facial feature location
in real-time.

An approach to tackling this this problem is to develop a vision-based
tracking system since such a solution would be non-invasive. However, build-
ing robust and real-time marker-less trackers for head and facial features is
a difficult task due to the high variability of the face and the facial features
in videos. One of the most challenging tasks is the simultaneous tracking
of head and facial features, which is a combination of rigid and non-rigid
movements. This requires accurate estimation of subtle facial movements,
robustness to occlusions and illumination changes.

The tracking of head and facial features has been accurately solved by
adopting Feature-Based Trackers (FBT) [2, 3]. In [2] a two-stage approach
was developed for 3D tracking of head pose and facial deformations in monoc-
ular image sequences. A stable facial tracking is obtained by learning possible
deformations of 3D faces from stereo data and using optical flow representa-
tion associated with the tracked features. This FBT is accurate for simulta-
neous head and facial feature tracking but inherits the drawbacks of stereo
vision and optical flow computation; Namely, this system is restricted to
controlled illumination, it requires pre-calibration and it is sensitive to large
variations in head pose and facial feature position. Instead, [3] proposes
a statistical method based on a set of linear predictors modelling intensity
information for accurate and real-time tracking of facial features.

Active Shape Models (ASM) [4] are an alternative to FBT. ASMs use a
point distribution model to capture the shape variations while local appear-
ances are modelled for a set of landmarks by using pixel intensity gradient
distributions. The shape parameters are iteratively updated by locally find-
ing the best nearby match for each landmark point. ASMs may be improved
by using state-of-the-art texture-based features on expense of additional com-
putational loads. Also, ASMs are sensitive to occlusions and illumination
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changes due to their reduced texture information. However, in contrast to
the proposed OABT, the main limitation of ASMs is that they require a large
amount of annotated training data in order to learn the shape models.

Appearance changes have been tackled by adopting statistical facial texture-
based models. Active Appearance Models (AAM) have been proposed as a
powerful contribution to the state-of-the-art for analysing facial images [5].
Deterministic and stochastic Appearance-Based Tracking (ABT) methods
have been proposed [6, 7, 8]. These methods can successfully address the
image variability and drifting problems by using deterministic or statistical
models for the global appearance of a rigid object class: the face. Few ap-
proaches attempt to track both the head and the facial features in real time,
e.g., [6, 8]. These works have addressed the combined head and facial fea-
ture tracking using the AAM principles. However, [6, 8] require exhaustive
learning stages of orthogonal Eigen-spaces assumed to span all forthcoming
images otherwise re-training is required.

To overcome the problems of ill-trained AAMs and drifting problems due
to challenging upcoming faces, some authors have proposed adaptive and on-
line trained AAMs [9, 10, 11]. Empirical evidences showed that person spe-
cific AAMs have better performance modelling facial movements than generic
AAMs, see [12]. In [9], authors achieved significant reduction on the conver-
gence residuals by applying incremental PCA to build On-line Appearance
Models (OAM). A similar method is to update the AAM template to avoid
drifting problems while correcting for illumination variations [13]. In [11],
authors proposed an automatic construction of AAMs by using an off-line
trained shape model. In [10], a linear combination of texture models learned
on-line and off-line is applied. The on-line model fits a logistic regression
function to be later combined with the typical off-line trained AAMs. The
problem of this approach also relates to time-consuming training of AAMs.

Many applications such as drowsiness detection and interfaces for handi-
capped individuals require tracking of the eyelids and the irises. For applica-
tions such as driver awareness systems, one needs to do more than tracking
the locations of the person’s eyes in order to obtain their detailed descrip-
tion needed to reason about staring patterns and micro sleeps. Head, face
and gaze tracking with AAM has been already treated in [14]. The authors
use the AAM method presented in [12] to track head and face. And the
gaze position is inferred from fitting a generic AAM. Accurate eyelid and iris
tracking are challenging issues in the AAM framework that have not been
addressed properly so far. We aim to address this issue in this work.
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Detecting and tracking the eye and its features (eye corners, irises, and
eyelids) have been addressed by many researchers [15, 16, 17, 18, 19, 20].
However, most of the proposed approaches rely on intensity edges and are
time consuming. In [19], detecting the state of the eye is based on the iris
detection in the sense that the iris detection results will directly decide the
state of the eye. This work constructed detailed texture templates and the
head pose is estimated by using a cylindrical face model combined with image
stabilization to compensate for appearance changes. This gaze estimation
system has been recently improved in [20]; A saliency framework is used to
adjust the resulting gaze estimations based on information about the scene.
In [16], the eyelid state is inferred from the relative distance between the
eyelid apex and the iris centre. The authors reported that when the eyes
were fully or partially open, the eyelids were successfully located and tracked
90% of the time. On the other hand, feature-based approaches [18, 17] have
been applied to iris and eyelids detection too. These methods depend heavily
on the accuracy of the extracted intensity edges. Moreover, they require
high-resolution images depicting an essentially frontal face. However, real
environments offer challenging conditions and large variations in head pose
and facial expressions are often observed. In our study, we do not use any
edges and there is no assumption made regarding the head pose. In our
work, the eyelid and iris motion are inferred at the same time with the 3D
head pose and other facial actions, that is, the gaze tracking does not rely
on the detection results obtained for other features such as the eye corners
and irises.

We have previously proposed an On-line Appearance-Based Tracker (OABT)
for 3D head pose and facial action tracking [21]. This OABT uses the AAM
representation as baseline. Namely, a deformable shape model was used to
drive an image warping process that produces the appearance texture. In
contrast to FBTs and ASMs, the OABT and AAMs benefit from the mod-
elling of the entire face texture while including global and local texture varia-
tions. However, unlike the AAMs, the OABT does not require prior learning
of either facial texture or shape models. The OABT incrementally learns
the texture model on-line from the previously tracked frames. The OABT
estimates the shape model deformation parameters using a State Transition
Process and the minimization by the LMA.

In [21], we adopted a single non-occluded shape-free appearance texture
excluding the inner eye region. Excluding the eye region proved to be benefi-
cial for estimation of a more stable 3D head pose. New tracks were estimated
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by applying a Vanilla Gradient Descent Method [22].
In contrast to feature-based gaze trackers, in [23], we proposed an im-

proved gaze tracker method capable of inferring the position of eyelids and
irises in real-time based on on-line learned appearance models. The method
implemented two non-occluded OABTs using two independent deformable
models. Accurate estimates were obtained by combining a generic Gauss-
Newton Iterative (GNI) algorithm with backtracking procedures.

Simultaneous tracking of 3D head pose and facial actions is not a straight-
forward task. The challenges are as follows: First, 3D head pose variations
highly affect facial feature positions and the facial appearance: Second, the
upper eyelid is a highly deformable facial feature since it has a great freedom
of motion: Third, the eyelid can completely occlude the iris and sclera, that
is, a facial texture model will have two different appearances at the same
locations: Finally, eyelid and iris movements are very fast, especially eye-
lid blinks and iris saccades, which are involuntary movements. A holistic
tracking of 3D head pose and facial actions must provide estimates of facial
actions, shape and textures varying at different rates.

In this paper, we combine and extend our previous works, presented in
[21] and [23], in order to address the above-mentioned challenges and ob-
tain robust, accurate, simultaneous 3D head pose, face, and facial action
tracking. Specifically, an accurate OABT excluding the eye region is used
to estimate 3D head pose, lips and eyebrows movements. Two non-occluded
OABTs for eyelids and irises robustly estimate gaze movements. Thus, we
extend our previous works in two directions. First, we perform a holistic and
simultaneous tracking of 3D head pose, lips, eyebrows, eyelids and irises in
monocular video sequences. A hierarchy of three non-occluded OABTs allow
both tracking of the movements that vary at different rates and tracking of
gaze movements in non-frontal faces. Second, we optimize the appearance
estimation by applying a Levenberg-Marquardt Algorithm (LMA) enhanced
with line-search procedures [24, 25]. The previously used GNI algorithm re-
quires more iterations to converge. Thereby, GNI is not very suitable for
simultaneous head and facial action tracking in real-time. LMA provides
faster convergence, accuracy and robustness while reducing the number iter-
ations per frame.

Our OABT requires manual initialization at the first frame to ensure
the best tracking performance. This is attained by manually fitting the 3D
face Candide model [26] to the first frame in the test sequence. Namely,
animation and deformation parameters of the Candide model are manually
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chosen. However, if automatic initialization is required, an approach to semi-
automatic initialization can be adopted. Given a set of images, forty facial
landmarks can be obtained for each image by applying a face alignment al-
gorithm from [27]. Next, the Candide model can be manually fitted to each
image to obtain the tracking initialization parameters. Then, two regres-
sors could be trained with the initialized facial landmarks, the animation,
and deformation parameters calculated for each image. These regressors can
be used subsequently to estimate the animation and deformation tracking
parameters of a test image given the estimated positions of the facial land-
marks. The work proposed in [27] cannot be applied as is since is inaccurate
in case of non-neutral and non-frontal faces. The same is the case for almost
all state-of-the-art facial point detectors (e.g. [28, 29, 30]); They are accu-
rate for frontal faces and less accurate for non-frontal and expressive faces.
Consequently, manual tuning is required after applying face alignment.

The paper is organized as follows. Section 2 describes the 3D deformable
models and their composition to build appearance-based trackers. A facial
model excluding the eye-region is used to compose a generic tracker for 3D
head pose, eyebrows and lips facial actions. Two non-occluded deformable
models are defined to track eyelids and iris separately. Section 3 presents
a generic OABT for real-time 3D head pose and facial action tracking. An
observation process defines the on-line learning of appearance textures while
a transition process estimates the facial actions based on an optimized LMA.
Section 4 explains how to assemble three OABTs to solve the problem of
simultaneous tracking of 3D head pose, eyebrows, lips, eyelids and irises.
We introduce backtracking procedures to explore the entire domain of facial
actions seeking for global convergence while avoiding local minima. Section
5 compares the accuracy of this method with partial estimates of using our
previous approaches [21, 23]. In addition, we present a variety of results
showing the stability, accuracy and robustness of the hierarchical OABT for
simultaneous tracking of 3D head pose, lips, eyebrows, eyelids and irises. The
method is tested with several challenges such as illumination changes, occlu-
sions, translucent surfaces and real-time performance. Finally, in Section 6,
we present conclusions and discuss future research related to optimization
methods, face tracking, and facial image understanding.
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Figure 1: 3D Face Model. The geometric vector ~g = [~ρ,~γ] ∈ R6+9 contains the face model
parameters. Three Euler angles, translation and scale encode the head pose parameters,
~ρ = [θx, θy, θz, tx, ty, s], while the facial actions, γi = [−1.0, 1.0], are encoded according
MPEG-4 FAP parameters. A face tracker aims to estimate both ~ρ and ~γ vectors.

2. Face Modelling

2.1. Face Representation

A human face can be represented as a 3D elastic surface with non-linear
deformations caused by head rotations and facial movements, which make
face modelling a significant challenge. In the context of face and facial track-
ing, two issues are crucial: image registration and motion extraction. We
address them by the means of a 3D deformable model. To this end, we use
the 3D face Candide Model [26], which is a wire-frame specifically developed
for model-based face coding. We use it as a template for image registration
and as a model for facial actions tracking. In what follows, the shape model
is denoted by S, and it is composed of 113 vertices and 183 triangles, as
shown in Fig.1.

The above-mentioned facial deformations are directly related to face bio-
metry and facial expressions. Therefore, a shape model is defined as a linear
combination of deformations due to the biometry and facial expressions as
follows:

S = S0 + D~β + A~γ, (1)

where S0 contains the position of the vertices of the initial shape. The
matrix D denotes the biometric parameters and the vector ~β controls the

7



biometric facial deformation1. The matrix A encodes the non-rigid facial
actions related to facial expressions that are controlled by the parameters
stored in the vector ~γ. Both the biometric deformations, ~β, and the facial
actions, ~γ, are encoded according to the Facial Animation Parameters (FAPs)
for MPEG-4, which are continuous variables in the range [-1.0,1.0]2.

To capture 3D head motions of the face, we adopt a weak perspective
projection given the small depth of the face [31]. Furthermore, the 3D mesh
is projected onto the image plane by applying an affine transform to obtain
the appearance shape template in 2D. Specifically, let R = [~r1, ~r2, ~r3] and
T = [tx, ty, tz] represent the rotation and translation between the coordi-
nate systems of the 3D face model and the camera. Consequently, the 3D
shape (described by Eq.(1)) is projected onto the image plane to obtain the
corresponding 2D shape:

S′(u, v) =

[

s~rT
1 tx + uc

s~rT
2 ty + vc

] [

S(x, y, z)
1,

]

(2)

where S’ is the projected 2D shape, s is a scaling factor, and ~r1 and ~r2 are
the first two rows of the rotation matrix R. Finally, (uc, vc) is the centre of
the camera coordinate system.

Fitting the shape model to a face requires computing first the position of
the vertices that combine the initial shape model, the biometric deformations
and facial actions (see Eq.(1)). Next, the 2D shape is obtained by applying
the affine transformation in Eq.(2).

Note that the biometric deformations, ~β in Eq.(1), are person dependent.

Therefore, ~β remains constant during the tracking process. On the other
hand, the facial actions, ~γ, are generic animation factors related to facial
muscular contractions, and are person independent. Hence, the goal of the
tracking process is to estimate the deformation of the 3D wire-frame due to
the changes in head pose and facial actions, encoded by the vector ~g = [~ρ,~γ]
that contains the head pose and facial actions parameters, respectively. The
vector ~ρ = [θx, θy, θz, tx, ty, s] contains the global parameters describing the

1The vector ~β contains 21 FAPs that encode biometric deformations, while the matrix
D encodes the possible deformations of the shape model, stored in a matrix of dimension
113x3x21.

2The vector ~γ encodes 9 FAPs related to AUs. The matrix A encodes the possible
deformations of the shape model due to the facial expressions. Thus, A is arranged as a
matrix of dimension 113x3x9.
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(a) (b) (c)

Figure 2: (c) A shape-free appearance texture is obtained by applying the Ψ(I, ~g)
piecewise-affine warping function. (a) The input image I is mapped onto the template
texture pixels (b) based on the correspondence of both shape models in (a) and (b).

head rotation, translation and scale. The vector ~γ = [γ0, ..., γ8] contains the
parameters describing the facial actions for eyebrows, lips, eyelids and irises.

2.2. Appearance Texture

AAMs are statistical models combining information from facial texture
and shape [5]. he shape model plays the role of template to register facial
images and construct the appearance texture, Ψ(I, ~g), which is obtained by
applying a piecewise-affine warping function to an input image, Fig.2.(a).
This function maps the pixels of each triangle of the 3D shape, Fig.2.(a), onto
the corresponding triangle of the 2D mask template, Fig.2.(b), as follows:

△ S(x, y, z)
Ψ(I,~g)
=⇒ △S′(u, v)

Ψ(I, ~g) = ~χ, (3)

where △S(x, y, z) corresponds to the triangles of the 3D mesh and △S(u, v)
corresponds to the triangles of the 2D reference appearance shape. Further-
more, the function Ψ(I, ~g) is a linear combination of barycentres used to
map the corresponding pixels between two poses of the shape model [32] (see
Fig.2). Moreover, the reference shape-free texture (see Fig.2,(c)) is pose- and
expression- normalized since the reference shape model is always neutral and
with the frontal pose.
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(a) (b) (c)

Figure 3: (a) An input image with correct adaptation. (b) The corresponding appearance
texture using a full shape model. (c) The appearance texture using a shape model without
eye regions. Both appearance textures are shown at top-left of input image.

Given the resolution of the shape and appearance texture templates, the
complete image warping is implemented as follows: (i) Adapt the shape
model S to the image I, see Fig.2,(a). (ii) Construct the appearance texture ~χ
using the warping function, Ψ(I, ~g), Eq.(3). (iii) Perform the normalization,
~χ ∼ N(0, 1), of the obtained appearance texture to partially compensate
for the contrast variations caused by photometric transformations. For the
sake of clarity, from now on, all the texture appearances are assumed to be
normalized images with fixed resolution (see Fig.2,(b)). Note, however, that
the tracking accuracy increases with the image resolution.

2.2.1. Head, Eyebrows and Lips Texture

We showed in our previous work in [23] that the estimations of the 3D
head pose, eyebrows and lips are more accurate when the eye region is ex-
cluded from the corresponding appearance texture. Here, we adopt a similar
approach, i.e., we use the OAM without the eye regions, which is further used
as the basis for the proposed hierarchical tracking system. Fig.3 illustrates
two appearance textures for a given input image Fig.3.(a). By adopting the
appearance texture as shown in Fig.3,(c), we can obtain more stable esti-
mates of the 3D head pose, eyebrows and lips.

2.2.2. Eyelids Texture

To independently track eyelid and iris movements from the rest of the
face, we adopt a particular shape model for the eyelids, which excludes the

10



(a) (b)

Figure 4: (a) The eyelid texture is obtained based on shape model excluding inner eye
region. (b) The iris texture is obtained with a shape model including both eyelid and iris
regions. These OAMs consider each other’s pixels as outliers.

iris and sclera region. Thus, only pixels from the eyelid area on the face
are warped onto the corresponding appearance texture (see Fig.4,(a)). The
advantage of such an OAM is that the pixels from the iris area are considered
as outliers. Consequently, when the eyes are open in the input image, the
eyelid appearance texture must not contain iris region pixels.

2.2.3. Irises Texture

The original Candide model [33] contains both eyelid and iris regions,
which are self-occluded. Due to the difference in speed of the iris movements
and the rest of the face, the former require different learning coefficients, gra-
dient computations and backtracking procedures. Therefore, the irises must
be modelled with an independent OAM. Fig.4,(b) depicts the corresponding
shape model and appearance texture of the iris region. This OAM consid-
ers eyelid pixels as outliers, so the iris appearance texture must not contain
eyelid region pixels.

3. On-line Appearance-Based Tracking (OABT)

In this section, we describe the problem of simultaneous tracking of the
head and the facial actions by using the proposed On-line Appearance-Based
Trackers (OABT). Formally, given a sequence of facial images, our goal is
to estimate the 3D head pose, face location and the facial movements of
lips, eyebrows, eyelids and irises. To this end, we employ a particle-filter-
like approach consisting of an observation and a transition process. First,
all images are projected onto an appearance texture space where they are
modelled using Multivariate Gaussian Distribution (MGD). The observation

process builds a likelihood function based on the MGD, which is updated
on-line using a recursive filtering technique. At the same time, the state
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transition process estimates the geometric parameters of the shape model,
used to warp incoming images as appearance textures.

3.1. Observation Process

Given an image sequence, where each image I has n pixels, a sequence of
appearance textures, Xl,t, is obtained by applying the piecewise-affine warp-
ing function Ψ(I, ~g) : Rn → Rl. The columns of X are l-pixels appearance
vectors representing faces at each time frame t:

Xl,t =







χ0,0 · · · χ0,t
...

. . .
...

χl,0 · · · χl,t






= [~χT

0 , ..., ~χT
t ] (4)

Next, let us assume that a set of pixels at the same position (χi,0, ..., χi,t)
(rows in X) are random variables (r.v.) following a Gaussian Distribution
over time, χi ∼ N(µi, σi). Similarly, each appearance vector ~χ follows a
Gaussian Distribution independent of the time3. Furthermore, we normalize
appearances to partially compensate for contrast variations while obtaining
~χt ∼ N(0, 1). The resulting appearances are jointly modelled using the
MGD, where ~χ ∼ Nl(~µ, Σ) is an r.v. with ~µ being an l-dimensional vector
containing the means of each r.v. χi and Σ is the corresponding covariance
matrix.

Because the pixel variations are independent, the covariance matrix is di-
agonal, i.e., σij=σji=0 iff i 6= j, and Σ = σ2 ∗ I, where ~σ2 is an l-dimensional
vector containing the individual variances of each r.v. χi. Then, an appear-
ance ~χ is an r.v. following MGD, ~χ ∼ Nl(~µ, ~σ2):

~µ = [µ0, ..., µl]
T

~σ = [σ0, ..., σl]
T . (5)

This results in the observation likelihood given by:

p(~χt|~gt) =
l

∏

i=0

e−(χi−µi)
2/2σ2

i

σi

√
2π

. (6)

3In [34], Matthews and Baker showed that an appearance regularization lessens the
presence of outliers. They applied an L2-Euclidean regularization.
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Assuming an initialized frame4, the observation model starts collecting
appearance vectors until the appearance sequence X is long enough (approx.
50 to 100 frames) to be approximated by the MGD. Hence, the likelihood
function can be used to obtain expected values of the model parameters.
Rather than using the Bayesian approach to obtain the a posteriori Gaussian
parameters, a time-efficient linear recursive approach is adopted, where ~µt

summarizes past observations under an exponential envelope with a degra-
dation factor α. Consequently, given the previous appearance estimation, ~̂χt,
the expected appearance is computed and used as the observation model [35]
to obtain an appearance estimate for the next frame as follows:

~µt+1 = α~µt + (1 − α)~̂χt

~σ2
t+1 = α~σ2

t + (1 − α)(~̂χt − ~µt)
2, (7)

where ~µ and ~σ (µi and σi for each pixel in the Eq.(5)) are initialized with
the first appearance ~χ0 and a const. value for ~σ. We empirically found
that the aforementioned approximation works well as soon as 50 frames are
collected. Similarly, to lessen the presence of outliers and error propagation,
the degradation rate α is set to 1/t until the 50th frame and a fixed value
for the forthcoming frames.

3.2. State Transition Process

To estimate appearance variations between consecutive frames, i.e., t and
t+1, we adopt an adaptive velocity model, which is defined as follows:

~gt+1 = ~gt + ∆~̂gt, (8)

where ∆~̂gt is an estimated increment vector based on the previous frame. The
quality of the transition estimation depends on the increment vector, which
is used to minimize the distance between the expected ~µ and the estimated
~̂χ appearances.

Let us now consider the minimization problem of the error function ξ(~g) :
Rl → R, which is convex and twice continuously differentiable:

4There are two ways to initialize the tracker: Manual and Semi-Automatic. In the
latter case, the manually labelled training data have to be provided. Note, however, that
the tracker is still person independent.
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ξ(~g) =
1

2

l
∑

j=0

(χ̂j − µj)
2

σ2
j

=
1

2
||~r(~g)||2, (9)

where ~r(~g) = [r0, ..., rl]
T is the residual vector between the expected ~µ and

estimated appearances, ~̂χ. The vector ~r(~g) depends on the shape parameters,

~g, as ~µ and ~̂χ are obtained from Eqs. (7) and (3), respectively. Notice that
this is the Mahalanobis normalization rather than the common L2-Euclidean
normalization proposed in [8].

The condition for a vector ~g∗ to be an optimal solution for Eq.(9) is
∇ξ(~g∗) = 0. This problem is usually solved by an iterative algorithm that
generates a sequence of solutions (~g0, ..., ~gk) ∈ dom ξ, for which ξ(~gk) → ξ∗

as k → ∞. There are many proposed solutions to this minimization problem
based on the iterative first-order linear approximation, which is equivalent
to the Gauss-Newton method [24, 36, 25, 22]. Notice that minimizing the
above criterion is equivalent to maximizing the likelihood function in Eq.(6).

The Vanilla gradient descent method is the simplest technique to find
the optimal solution of the problems given by Eq.(8) and Eq.(9) [36], but it
suffers from the convergence problems around local minima. Moreover, find-
ing the optimal λ according to the slope is time-consuming. A commonly
used approximation is the Newton’s Method (NM)[22], which provides signif-
icantly faster convergence to an optimal solution by combining curvature and
gradient information. Yet, it is sensitive to the parameter initialization. To
address this, Levenberg [24] provided an algorithm based on the Newton’s
quadratic assumption, where H(~g) ≈ J(~g)TJ(~g) with H and J being the
Hessian and Jacobian matrices, respectively, to improve the NM. The Leven-
berg Algorithm (LA) is more robust than NM, and it converges faster even
when the current appearance and the corresponding vector ~g are far from
the next estimation. However, LA does not use the Hessian if the steepest
descend value, λ, is large.

As an extension of LA, Marquardt [25] proposed to scale each component
of the gradient according to the curvature. The resulting Levenberg Mar-
quardt Algorithm (LMA) makes larger movements along directions where
the gradient is smaller, such as the classical error valley. Consequently, the
Eq. (8) is modified according to the LMA as follows:

~gt+1 = ~gt − [H(~gt) + λdiagH(~gt)]
−1∇ξ(~gt), (10)
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where H(~gt) = J(~gt)
TJ(~gt) and ∇ξ(~gt) = J(~gt)

T~r(~g). For facial actions such
as eyelids and irises, linearity has low probability. Nevertheless, we avoid
local minima using backtracking procedures [totally out of context. make a
connection with the previous paragraph].

The Jacobian matrix, J(~gt), is computed using the approximate differ-
ences as follows:

J =
∂Ψ(It, ~gt)

∂~gt

=
∂~χt

∂~gt

. (11)

The jth column of J, for j = {1, ..., ||~g||}, is estimated using the differ-
ences:

Jj ≈
Ψ(It, ~gt) − Ψ(It, ~gt + δ~gj)

δ
, (12)

where δ is the step size, which depends on the domain scale for each compo-
nent of the vector ~g and the vector ~gj is a vector with all elements zero except
the jth element, which is one. The jth column of J is estimated using several
steps around the current value gj, and then by averaging over all these steps.
Finally, Jj is obtained by Eq.(13) as:

Jj =
1

k

k/2
∑

−k/2,k 6=0

Ψ(It, ~gt) − Ψ(It, ~gt + kδj~gj)

kδj

, (13)

where δ is the smallest perturbation associated with the gj and k is the
number of the steps.

3.3. Stability to Outliers

In uncontrolled environments (e.g. CCTV systems), a tracking process
can be affected by the illumination changes, occlusions, perturbing objects
and fast movements. Drifting problems arise when outlier pixels are projected
as bias error into the MGD and the LMA, Eqs. (6) and (10), respectively.
To deal with outlier pixels, we constrain both the observation and transition
processes with a Huber’s function [37, 38]. By this means, the appearance
variations can be learnt on-line in unconstrained environments by combining
both processes with the outlier filtering function:

η(χi) =

{

χ2
i

2
if |χi| ≤ c

c|χi| − c2

2
if |χi| > c,

(14)
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where χi is the normalized pixel value in the appearance ~χ and c is a con-
stant outlier threshold, which is set to 3~σ. Thus, the pixel χi is considered an
outlier when |χi| > c. The function η(~χ) constrains both the texture learning
and the gradient descent computation, whilst improving the appearance ex-
pectations and estimations, ~µ and ~̂χ, respectively. The observation process
is made more robust to the influence of outlier pixels by combining Eqs. (6)
and (14) as follows:

P(~χt|~gt) =
l

∏

i=0

e−η(χi)(χi−µi)
2/2σ2

i

σi

√
2π

(15)

Likewise, the state transition process is improved to down-weight the
influence of outlier pixels by restricting the LMA to use the diagonal matrix
Θ(~χ), whose terms are:

Θ(χi) =
1

χi

∂η(χi)

∂χi

=

{

1 if |χi| ≤ c
c

|χi|
if |χi| > c

(16)

Consequently, we combine Eqs. (10) and (16) to re-write the LMA as:

~gt+1 = ~gt − [H(~gt) + λdiagH(~gt)]
−1Θ(~χt)∇ξ(~gt) (17)

4. Hierarchical Tracking

In this section, we perform tracking of 3D head movements and facial
actions simultaneously. As in our previous work [21], the parameters associ-
ated with the 3D head pose, and facial actions related to the eyebrow and
lip movements are estimated together by means of the OAM introduced in
Sec. 2.2.1. Facial actions are local movements of non-rigid surfaces caused
by muscular contractions such as eyebrows and lips, which involve more mus-
cles than eyelid and irises [39]. On the other hand, eyelid and iris movements
involve lighter muscle activations, resulting in more spontaneous and faster
movements. We showed in [23] that eyelids and irises can be tracked simul-
taneously by adopting sequential tracking approach to avoid self-occluded
facial actions.

The tracking of the 3D head pose, eyebrows, lips, eyelids and irises is
performed by simultaneously using three different OABTs. The first OABT
tracks the 3D head pose, eyebrows and lips, while ignoring eye region motion.
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Algorithm 1 Head, Eyebrows and Lips OABT
1. Construct the appearance Ψ(It, ~qt) = ~̂χt, Eqs. (1),(2) and (3).

2. Normalize the appearance, ~̂χt ∼ N(0, 1).

3. Obtain Gaussian parameters ~µt+1 and ~σ2
t+1, Eq.(7).

4. Compute the Jacobian ~J(~qt) = ∂~r
∂~qt

5. Compute the Hessian ~H(~qt) = ∂2~r

∂~q2

t

= J(~qt)T J(~qt)

6. Compute the diagonal matrix Θ(~χt), Eq.(16).

For (n-Iterations)

7. Compute the steepest descent factor, ∇ξ(~qt) = J(~qt)T ~r(~qt)

8. Compute the search direction, δt+1 = [H(~qt) + λdiagH(~qt)]−1Θ(~χt)∇ξ(~qt)

9. Update the geometrical vector, ~qt+1 = ~qt − [H(~qt) + λdiagH(~qt)]−1Θ(~χt)∇ξ(~qt), Eq.(17).

10. Update the estimated appearance ~̂χt+1 = Ψ(It+1, ~̂qt+1), Eqs. (1), (2), (3) and (8).

11. Compute the residual image, ξ(~̂qt+1) = 1
2

P (χ̂j−µj)2

σ2

j

, Eq.(9).

EndFor

The second OABT tracks the eyelids, with iris region considered to be an
outlier. Finally, the third OABT tracks irises by estimating yaw and pitch
iris motion. These three OABTS are hierarchically combined, ensuring a
global minimum error for all estimations.

4.1. Head, Eyebrows and Lips Tracker

The OABT for the 3D head pose, eyebrows and lips uses the OAM without
the eye region, as described in Sec. 2.2.1. Formally, let us consider the
geometric vector ~q = [~ρ, γ0, ..., γ5] that models the OAM of this tracker. This
vector includes six head pose parameters, ~ρ and the FAPs controlling the
eyebrows and the lips. This vector controls the deformation of the shape
model corresponding to the tracker ~T~q.

The tracking process starts by setting ~q = ~qt. Then, the error vector
Ψ(It+1, ~qt) − ~µt and the corresponding Mahalanobis distance, ξ(~q), is com-
puted. The solution is obtained by the LMA Eq.(10), using the same number
of differentials to compute the Jacobian and Hessian matrices for head, eye-
brows and lips. Thus, we find the shift ∆~̂q to update the estimated geometric
vector ~̂qt+1 using Eq.(8). This process is repeated iteratively until conver-
gence, and it is summarized in Alg.1.

4.2. Eyelid Tracker

Both eyelids and irises have smooth and spontaneous movements that are
difficult to track using standard statistical deformable models for two reasons
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[21]. Firstly, the images depicting the eye region usually have low resolution
if recorded using monocular cameras, which is often the case. This results
in poor appearance models that are unable to recover subtle facial motions.
Secondly, the eyelid and iris facial movements are non-linearly coupled since
the iris motion deforms the eyelid surface, and vice versa. As a consequence,
the OABTs will require additional computations to accurately estimate the
eyelid position. By the same token, the eyelid blinking occludes the iris region
and the iris normally moves during the blinking. Since the iris movements
may be large or short and involuntary, this increases the challenge to recover
the correct iris position after occlusions.

In this paper, we perform tracking of the eyelids and irises using two in-
dependent trackers. Firstly, the appearance model ~χ(~w) for eyelid tracking is
built by excluding the iris FAPs from the shape model (see Fig.4,(a)), which
is controlled by the vector ~w = [~q, γ6]. Thus, iris pixels are excluded from the
warping process of the OAM. Secondly, the appearance model ~χ(~g) for iris
tracking includes eyelid and iris pixels, ~g = [~w, γ7, γ8] (see Fig.4,(b)). How-
ever, the fitting process of this tracker mainly consists of the iris FAP estima-
tion, since the eyelid facial action has been previous estimated. Therefore,
once the eyelid tracker has converged, the iris tracker continues estimating
the iris movements whilst refining the previous eyelid position.

There are two main steps in the estimation of the eyelids movements:
firstly, the eyelid parameter is differentiated along the whole domain of FAPs
to include possible blinking. Secondly, a damping factor, δ, is computed by
using backtracking procedures. This reduces the optimization time. The
result is an efficient eyelid tracker, ~T~w (see Alg.2).

The OAM of the eyelid tracker ~T~w is learnt using Eq.(7), such that ~µt+1 =
~µt+1(~w) and ~σt+1 = ~σt+1(~w) correspond to the parameters of the MGD of
~T~w. To be able to estimate the eyelids correctly, steps (4) and (5) from Alg.2.
consider the whole FAP range in the gradients computation. Steps (8)-(10)
calculate the damping factor, λ, by using backtracking line-search procedures.
Therefore, the eyelid tracker provides a space of solutions including both
opened and closed eyelids for faster convergence.

4.3. Iris Tracker

Although iris movements are not as fast as eyelid blink, their tracking is
challenging due to the movements during eyelid occlusions. Specifically, the
eyelid blinks can be as short as 0.2 seconds [40], while similar involuntary
iris movements, saccade or saccadic movements, change the gaze direction
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Algorithm 2 Eyelid Tracker
7. This and above steps up to 1. are the same as in Alg.1.

For (k-Iterations)

8. Compute the search direction, δk(λ) = −[H(~wt) + λdiagH(~wt)]−1Θ(~χt(~wt))∇ξ(~wt), Eq.(17).

Choose the damping factor λ via backtracking line-search procedure:

i. Consider the search direction and the starting vector ~wk = ~wt ∈ dom ξ.

Set λk =
Pk

0
(−1)k

k
ii. While ξ(~wk + δk(λk)) > ξ(~wk) + δk(λk).

Armijo Condition [22].
iii. Set λ = λk.

9. Update variables, ~wk+1 = ~wk + δk(λ), Eq.(8)

10. Test convergence for stopping iterations, otherwise, consider k = k + 1.

11. This and further steps as in Alg.1.
EndFor

in 210 degrees per second [41]. Therefore, assuming that a video sequence
is recorded at 20 frames per second (fps), the eyelid appears closed from
neutral position in 2 frames whereas the iris saccade movement can change
the gaze direction in 21 degrees in the same 2 frames. Saccade movements
are particular involuntary movements that change the direction of the eyeball
spontaneously aiming to correct the image perception against blurring by re-
locating it after eye closure.

Tracking eyelids and irises with a single OABT requires registering both
eyelid and iris onto the same template appearance texture and consequently
estimating their state transition with a single MGD. The transition process
combined with an error function for outliers make the registration of eyelid
and iris textures mutually exclusive due to self-occlusions. Consequently, the
eyelid appearance changes will not be learnt.

Instead, it is possible to learn the appearance variation of both eyelids
and irises by modelling the motion of these facial features with two differ-
ent OABTs. Thus, eyelid and iris texture remain mutually exclusive but
registered and learnt separately.

The iris movements cover a smaller region than those of the eyelids.
Therefore, the Step (8.i.) from Alg. 3 models the damping factor, λm, by a
monotonically decreasing function in a small range.

The iris tracker, T~g, considers the inner eye region in the AAM by using
the geometric vector ~g = [~w, γ7, γ8] to deform the shape model and perform
image warping, Ψ(I, ~g) = ~χ(~g) (see Fig.4,(b)). Subtle iris movements are
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Algorithm 3 Iris Tracker
7. This and the above steps up to 1. are the same as in Alg.1.

For (m-Iterations)

8. Compute the search direction, δm(λ) = −[H(~gt) + λdiagH(~gt)]−1Θ(~χt(~gt))∇ξ(~gt), Eq.(17).

Choose the damping factor λ via backtracking line-search procedure:

i. Consider the search direction and the starting vector ~gm = ~gt ∈ dom ξ.

Set λm =
λm−1

υ
, for υ > 1

ii. While ξ(~gm + δm(λm)) > ξ(~gm) + δm(λm)
Armijo Condition [22].

iii. Set λ = λm.

9. Update variables, ~gm+1 = ~gm + δm(λ), Eq.(8)

10. Test convergence for stopping iterations, otherwise, consider m = m + 1.

11. This and further steps as in Alg.1.
EndFor

modelled by smaller differentials on the iris FAP, ± 0.5. Thus, the iris gra-
dients can be estimated by differentiating the error function with respect to
γ7 and γ8 within the range [γi − 0.5, γi + 0.5]. Alg.3 gives the details about
the iris tracking. Note that the backtracking procedure can handle smooth
transitions of the iris facial actions by decreasing the damping factor λ.

4.4. Head, Eyebrows, Lips, Eyelids and Iris Tracking

In the previous sections, the three trackers have been described: Sec.4.1
described the OABT, ~T~q, that estimates the head pose and facial actions
corresponding to the eyebrows and lips (see Alg.1). Sec. 4.2 described the

OABT, ~T~w, for tracking of the eyelid movements and blinks by applying a
backtracking procedure (see Alg.2). Finally, Sec.4.3 described the OABT,
~T~g, used to track the iris movements and spontaneous saccades (see Alg.3).

In order to achieve robust and accurate simultaneous tracking of the head
and facial actions, the three trackers mentioned above are combined in a
hierarchical fashion. Namely, the tracker for 3D head pose, eyebrows and
lips, ~T~q, is used as the basis, as shown in Figure 5,(a). The goal of this

tracker ~T~q is to estimate the shape vector ~q that provides the best 3D head
pose, eyebrows and lips adaptations upon convergence minarg||ξ(~q)|| = ~q∗.
Next, both head and smooth facial actions are assembled with eyelids by
the tracker ~T~w to provide the best shape according to the vector ~w = [~q, γ6].
Once the eyelid tracker has converged, minarg||ξ(~w)|| = ~w∗, all three trackers

are combined, ~T~q, ~T~w and ~T~g, to estimate the vector ~g = [~w, γ7, γ8], which
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(a) (b)

Figure 5: (a) Three shape models are combined to simultaneously estimate 3D head
pose, eyebrows, lips, eyelids and irises. (b) The corresponding appearance textures are
combined into full face AAMs for eyelid and iris tracking, respectively.

includes the iris FAPs (see Fig.5,(b)).
Thus, the trackers are combined hierarchically in such a way that the es-

timations from one tracker are propagated to another. Specifically, the eyelid
tracker uses the vector ~q as the initial guess for both gradient computation
and LMA iterative process towards the optimal solution, ~w. Likewise, the
eyelid tracker ~T~w, is used as starting point for the iris tracker, which esti-
mates the iris position from near correct estimations of the eyelids, eyebrows,
lips and head pose. Both eyelid and iris trackers are conditioned to improve
precedent trackers, which is quantified by the average residual error at the
convergence, i.e. ||ξ̄(q∗)|| ≥ ||ξ̄(w∗)|| ≥ ||ξ̄(g∗)||.

Consequently, the three trackers are efficiently connected by applying
three times the LMA iterative minimization. Note that we take into account
the whole face in both eyelid and iris trackers to make estimations according
to the 3D head pose. The eyelid tracker is independent from iris estimation
but forced to improve the face tracker. The iris tracker is led to the correct
eyelid position and required to improve the eyelid convergence error.

The hierarchical tracking combines the strengths of the three OABTs.
Specific shape models contribute to avoid the uncertainty in the eye region
to track the 3D head pose, eyebrows and lips as proven in [21]. The high
contrast between eyelids, sclera and irises is avoided by using two different
OAMs. The space of solutions of eyelid and iris trackers is expanded to
the sparse Jacobian and Hessian matrices. Furthermore, the eyelid and iris
trackers estimate gradient damping factors based on specific backtracking
procedures. Consequently, all AAM fitting processes have been improved
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with a modified LMA and backtracking procedures. Therefore, the conver-
gence to an optimal solution is ensured by simultaneous estimation of the
gradient direction, curvature and particular damping factors.

5. Experimental Results

In this section, we compare the results of simultaneous head and facial
tracking using different testing video sequences. To measure the tracking
performance, we compute the average error per pixel, which is computed
using Mahalanobis distance between the expected (~µ) and the estimated (~̂χ)
appearance models (see Eq.(9)). This error measure is used to quantify the
precision of the tracking system. We also compute Root-Mean-Square-Error
(RMSE) between the estimated position of shape model vertices and the
ground truth (i.e., manually annotated locations of the vertices). This error
measure is used to quantify the accuracy of the shape model, being a part of
the tracking system.

5.1. Efficiency of LMA

We test here if there is any gain in using the LMA-based optimization in
the proposed hierarchical OABT (as explained in Alg.1), over the GNI-based
optimization, as we previously proposed in [21]. In [21], the differential of
the geometric vector ~g was computed as follows:

∆~g = −(GT
t Gt)

−1GT
t (Ψ(~χt, ~̂gt−1) − ~µt). (18)

Instead, in this paper we propose the Eq.(17) to obtain the differential
of the vector ~g (see the details of the generic implementation of the LMA in
Alg.1).

A comparison between LMA and GNI is performed using a sequence
from the FGnet database [42]. This database contains five sequences of 1000
frames of a talking person. Each image is of size 720 x 576 and manually
annotated with 68 facial landmarks. Fig.6 shows the error per pixel of the
head and eyelid tracking when using GNI- and LMA-based optimization. We
notice that the OABT based on GNI is sensitive to gaze motion and large
head rotations, which is a consequence of its susceptibility to the local minima
divergence. Conversely, an OABT based on LMA converges easily to global
minima. As can be seen from Fig.6, the OABT with LMA-based optimization
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Figure 6: Comparison of our previous GNI algorithm [21] and the current minimization via
LMA Eq.(17). GNI algorithm (dash red line) is prone to divergence during gaze motion
and large head poses. LMA (solid blue line) increases the accuracy of the head and facial
feature tracking by reducing the fitting error and converging to a global minimum.

outperforms our previous tracker [21] based on the GNI optimization, by
increasing the precision and robustness while reducing the computational
load.

This is attributed to the fact that, in contrast to the GNI-based optimiza-
tion, the LMA-based optimization considers information about the curvature
of the gradient which helps to avoid singularities of the pseudo-inverse of
the gradient matrix. Also, the backtracking procedures of the LMA-based
method help to avoid local minima. Finally, the improved tracking results
are also due to the complete estimation of head and facial actions including
eyelids and irises.

From Fig.6, it can be seen that around frame numbers 122 and 842, the
error per pixel increases from 1.0 to 3.5. The provided Ground Truth [42]
contains some inaccurate annotations (outliers) for eyelids and irises. For
example, during blinking, the upper and lower eyelids are not annotated at
the same vertical position. After blinking, the iris position is annotated at
the centre of the eye. This causes a higher estimation error attained by the
OABT, and it will be detailed in the following section.
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5.2. Ground Truth Comparison

We tested the accuracy of the hierarchical OABTs against the ground
truth of the FGnet database for face tracking [42]. The 68 annotated facial
landmarks include the features tracked by the OABTs; eyebrows, lips, upper
and lower eyelids, and iris centre. The eyelid tracking accuracy is measured
based on the vertical positions of upper and lower eyelids. It is worth men-
tioning that these positions may vary depending on the horizontal position
of both the ground truth and the tracking result. Iris tracking accuracy is
assessed using the errors of four vertices of the 3D shape model and the cor-
responding points from the ground truth. Eyebrows and lip vertices are also
measured against similar points on the ground truth.

The head-pose is more difficult to compare since the annotations are fol-
lowing the edges of the face without considering the 3D perspective. However,
the average error for eyelids is 3.2 pixels per frame (see Fig.7,(b)). Similar
results were obtained for the iris tracking where the average error is 2.2 pix-
els per frame and even better for the complete hierarchical tracking, i.e.,
1.5 pixels per frame. Fig.7,(a) shows that higher errors coincide with those
frames where eye blinking or fast iris movements are occurring. Nonethe-
less, the error decreases as soon as the trackers improve their convergence
in the following frames. Altogether, the accuracy and precision of the track-
ing estimations are comparable. This can also be verified with the correct
adaptations, see Fig.8. These results are also compared with those attained
by the previously proposed tracker based on the GNI optimization [21]. The
distances between estimated facial landmarks and the FGnet ground truth
are measured. Fig.7,(b) shows the GNI precision error w.r.t. the ground
truth (dashed line), which is on average 2.5 when only head, lips, eyebrows
and eyelids are estimated.
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(a)

(b)

Figure 7: The ground truth of FGnet talking face is compared to the OABT estimations.
(a) The OABT using the previous GNI [21], estimates head, lips, eyebrows and eyelids with
an average 2.5 error/pixel. Our hierarchical OABT achieves an average 1.5 error/pixel.
(b) Using OABTs with the LMA for eyelids and irises, the average estimation error/pixel
is 3.2 and 2.2 for irises, respectively. All tracking errors remain within constant bounds
(no-drifting problems), but the OABT using LMA outperforms the one based on GNI
algorithm.
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(a) (b) (c)

Figure 8: Comparing tracking results and ground truth before, during and after the 122th

frame, (a), (b) and (c), respectively. The ground truth corresponds to the magenta filled
circles and the tracking estimations are the contour lines blue, green and red. The ground
truth has some wrong eyelid and iris annotations, (b) and (c), respectively. This reflects
on a higher error/pixel specially during blinking.

Caveat, the ground truth contains wrong annotations that can be easily
verified using the eyelid tracker, ~T~w. Fig.8 shows three frames of the FGnet
talking face before, during and after the 122th frame. The magenta filled
circles correspond to the 68 manually annotated landmarks. Tracking esti-
mations are displayed by continuous solid lines in blue, green and red colours.
Only about 40 points coincide with the vertices of the Candide shape model.
Fig.8,(a) depicts a correct alignment of image and shape model. However,
in Fig.8,(b), it is possible to see a correct detection of the blinking since the
green solid line fits to the eyelid contour. On the other hand, the ground
truth wrongly marks upper and lower eyelids at a different vertical position.
Likewise, Fig.8,(c) shows the iris position marked with a point at the centre
of the eye whereas the red solid rectangle shows a correct fitting by the iris
OABT.

The iris tracker estimates the vector ~w = [~q, γ6], where γ6 = [−1.0, 1.0];
-1.0 when eyes are closed and 1.0 when eyes are open. The hierarchical
tracking estimates blinks at frames 124, 243 and 603, γ6 = −1.0, where the
distance between upper and lower eyelids should be zero pixels. However, the
distance between annotations of the ground truth are never zero, see Fig.9.
Similar results were obtained when applying the gaze tracking presented in
[23], which used a GNI algorithm for near frontal faces.

5.3. Eyelids Tracking

Psychological studies addressed the importance of analysing eyelid move-
ments for emotion analysis, image encoding and Human Computer Interac-

26



Figure 9: The ground truth with the mislabelled eye blinks, but the eyelid tracker detects
blinks as continuous FAP values within the range [−1.0, 1.0] with a two decimal accuracy.
The gaze tracker (dash line) presented in [23] can also estimate eyelid blinks with a lower
accuracy than using an OABT with LMA. In addition, cropped images of the eyes are
displayed at the top of the graph, which display the tracking fitting by white contour
lines.

tion (HCI). These movements are characterised by the Facial Actions Coding
System (FACS) [39].

The eyelids tracker, ~T~w, estimates the vector ~w = [~q, γ6], but the main
task of this tracker is to estimate the eyelid facial action γ6 ∈ [−1.0, 1.0], as a
continuous variable. The lower bound of the FAP range corresponds to closed
eyes whereas the upper bound corresponds to completely open eyes. The
LMA minimization process in Alg.2 generates an appearance sub-space of k

possible solutions. The backtracking procedure estimates the damping factor
and the direction of the gradient based on a harmonic series. Consequently,
the OABT can handle both the normal eye closure and the spontaneous
blinks, which take on average two frames.

The eyelids tracker has been tested on an image sequence consisting of
700 frames, and recorded in the laboratory with a monocular camera and
standard illumination. Each frame depicts a head and shoulders, and perfor-
mance of extreme eyelid facial actions, which deform the eyelid surface in 3D.
Fig.10 shows the eyelid tracking estimations where the FAP values, γ6, are
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Figure 10: The eyelid tracker, ~T~w, estimates eyelid positions as continuous variables rather
than discrete states as shown by the dashed dark lines. Solid lines correspond to the OABT
estimations within the FAP range [−1.0, 1.0] with a two decimal accuracy. Similar results
are obtained using the gaze tracker in [23] for near-frontal gaze movements. These results
can also be verified by observing the eye cropped images displayed at the top of the plots.
The drawn white lines correspond to the eyelid tracking fitting at each frame.

continuous values in the range [−1.0, 1.0]. Key frames have been highlighted
by displaying cropped eye-regions at the top of the plot.

Note that even without using the edge detectors, the eyelid tracker is
capable of tracking smooth eyelid movements like slit, closed and squint
eyes. On the other hand, posed and spontaneous movements like raised
eyelid, tightening, winks and blinks, are handled with high accuracy. Recall
that eyelid position estimations are independent of the iris position because
inner eye pixels are not warped onto the appearance texture of the eyelid
tracker.

Fig.10 shows the eyelid estimations by using the approaches proposed in
[43, 16], which provide estimates as discrete states. By contrast, the eyelid
OABT provides estimates with two decimals of accuracy. Wide valleys or
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Figure 11: The iris tracker, ~T~q, estimates pitch (orange solid line) and yaw (blue solid line)
iris movements as continuous variables. Iris pitch corresponds to gaze directions up (+1.0)
and down (-1.0) while iris yaw refers to right (+1.0) and left (-1.0) directions. Square dash
lines correspond to discrete state estimations as previous related works. A gaze tracker
[23] can be applied to obtain similar iris estimations but with lower accuracy. The eye
region images (top) show the iris tracking estimations by drawing a white box.

peaks correspond to normal raising-closing motion while sharp valleys and
peaks are detected blinks. The similar results can be obtained when using
the gaze tracker presented in [23] for near-frontal faces.

5.4. Iris Tracking

The iris tracker, ~T~g, estimates the vector ~g = [~w, γ7, γ8], i.e., it refines
previous estimations of the head pose, eyebrows, lips and eyelids whilst es-
timating the iris pitch and yaw movements. Therefore, this tracker includes
the whole vector ~g = [~ρ,~γ] estimations. The iris yaw and pitch parame-
ters are evaluated as continuous variables in the same FAP range [−1.0, 1.0],
encoding movements from left to right and down to up, respectively.

The performance of this tracker has been tested on an image sequence of
500 frames of size 640x480 pixels. This video was recorded in a laboratory
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with a commercial photographic camera in VGA mode and standard illu-
mination. The actor performs iris movements in all directions and looking
askance, Fig.11. The iris tracker encodes information related to four differ-
ent FACS [39]; eyes turned up, down, left, right and extreme movements
like askance where the iris appears partially occluded or distorted by the
3D perspective. However, involuntary movements such as iris saccades are
commonly detected especially after eyelid occlusions.

Fig.11 shows the iris tracker estimates for yaw and pitch movements. The
dashed and light curves represent gaze-tracking results attained by using
the discrete scale of the related approach [16]. Iris position estimations are
displayed by drawing the fitted white box around the iris. The better the
fitting the more accurate the iris tracking. The key frames are highlighted
such as frames 101 and 151 where the iris pitch, γ8, is estimated as about
−0.5 when the subject is looking down. Likewise, at the frame 300 the iris
yaw is estimated as γ7 = −1.0 because the subject is looking askance to the
left, whereas the frame 400 shows a γ7 = 1.0 to indicate that the person is
looking askance to the right. Fig.11 shows the results for both eyes, including
frames where the eyelids are occluding the irises. The gaze tracker presented
in [23] can also be applied to obtain the continuous FAP estimations with
similar accuracy. However, the gaze tracker loses its accuracy in non-frontal
head poses.

5.5. Hierarchical Tracking

We showed in our previous works (e.g., see [21]) that appearance based
trackers should model shape and texture including only facial actions that
are accurately fitted. Otherwise, the estimation error per pixel is propagated
to the texture template. To this end, the eyelids and iris movements are esti-
mated using two independent and non-occluded models, similarly as in [23].
The pitch and yaw iris movements are differentiated within shorter range
and steepest descent than eyelid facial actions. Moreover, the backtracking
procedure is also different for both trackers.

To test the ability of the iris tracker to accurately estimate the eyelids
position, the FGnet sequence is first tracked with the iris tracker alone and
then with the eyelid and iris trackers, applied hierarchically (see Fig.12). The
experiment is performed using the FGnet dataset [42]. The Gaze Tracker
produces an average error per pixel of 3.5, whereas the iris and hierarchical
tracker produce an average error per pixel of 2.2 and 2.3, respectively. The er-
ror per pixel increases for the iris tracker when eyes blinks occur whereas the
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Figure 12: The iris tracker is tested with and without previous use of the eyelid tracker.
The top gallery shows cropped eye-region images with the tracking estimations drawn
by red lines at the contours of eyelids and irises. The bottom plot shows the tracking
performance in terms of error/pixel. The red line shows the error/pixel when using only

the iris tracker whereas the blue line shows the error/pixel of the hierarchical tracker, ~T~g,

after applying ~T~q and ~T~w. The dashed line corresponds to the gaze tracker accuracy [23].
The Gaze Tracker produces an average error/pixel of 3.5, whereas the iris and hierarchical
tracker report average error/pixel of 2.2 and 2.3, respectively.

hierarchical tracker reduces this error due to the correct eyelid estimations.
The iris reference texture considers the occluding eyelid pixels as outliers and
consequently these pixels are not warped onto the reference appearance tex-
ture. In conclusion, we confirm the results from [21] where it was shown that
the iris tracker is not capable of estimating the eyelid movements. Thereby,
all other movements such as head and facial actions are not accurately tracked
by the iris tracker alone. The gaze tracker in [23] uses a sequential eyelid and
iris OABT based on GNI, and it achieves similar accuracy to that shown in
Fig.12. Yet, it is highly sensitive to head pose variation.

The hierarchical tracking obtains first the estimates of the 3D head pose,
eyebrows and lips, ~T~q. Subsequently, it obtains the eyelid position from the
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Figure 13: The gaze tracker [23] accurately estimates eyelid and iris positions, but it is

sensitive to non-frontal faces. Instead, the hierarchical tracker ~T~g improves the eyelid
tracking estimations during the iris tracking with accurate head pose estimations. Eye-
region images are also used to show the tracking fitting by drawing green and red polygons
for eyelid and iris tracking, respectively. The Gaze Tracker produces an average error/pixel
of 3.5, whereas the eyelid and hierarchical trackers obtained average error/pixel of 3.1 and
2.8, respectively.

eyelid tracker ~T~w. Finally, the iris tracker ~T~g estimates the iris movements
while improving estimations of the previous trackers (see Fig.13). The eye-
lid estimation is more accurate because of the second iterative process that
attains the best eyelid adaptation. Consequently, the estimation error de-
creases for both global head motion and local facial actions. These results
are better than the gaze tracking results in [23], since the latter method is
sensitive to non-frontal faces. Its average gaze tracking error per pixel for
the eyelids is 3.5, while the eyelid and hierarchical trackers with LMA obtain
an average error per pixel of 3.1 and 2.8, respectively.
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(a) (b) (c)

Figure 14: Illumination changes pose a significant challenge for pre-trained AAMs. The
hierarchical OABT can handle a flashing lights due to the on-line appearance learning,
a Huber’s function and backtracking procedures. Thus, outlier pixels are rejected, and
the AAM is only updated with the highly likely pixel variations.(a) Facial actions are
correctly tracked before changing the illumination. (b) and (c) show the tracking results
after the 541th frame. The error per pixel increases at these frames due to the illumination
variation.

Figure 15: Under different lighting conditions, the tracking error increases until the ob-
servation model is updated accordingly to the Huber’s function. Once the error decreases
the OABT gets stable, robust and accurate. The hierarchical tracker is more stable than
using a gaze tracker as in [23].

5.6. Lighting Conditions

Most appearance trackers suffer from drifting problems due to their sen-
sitivity to illumination changes. To alleviate this, an exhaustive training of
textures and shapes of AAMs is required. To demonstrate the ability of the
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Figure 16: The tracking recovers stability if illumination changes are not extreme, other-
wise, the noise ends up filtering both observation and transition processes, hence drifting
problems arise. Here, the hierarchical OABT also outperforms OABT with GNI in [21].

proposed hierarchical tracker to successfully handle illumination changes, an
image sequence of 800 frames is tested. Images of 352x288 pixels size were
recorded with a web camera in an indoor scenario while a fluorescent lamp
was intermittently illuminating the face in several positions (see Fig.14). The
camera is at the bottom of the image plane, which is an additional challenge
for pre-calibrated vision systems.

Fig.14 shows well fitted 3D shape models of the hierarchical tracking un-
der changing illumination. The tracker has a controlled learning ability based
on the model likelihood enhanced by Huber’s function. Furthermore, each
hierarchical tracker has a different learning rate (see Eq.(7)), so that they can
cope with three sorts of kinematics: head-eyebrows-lips, eyelids and irises.
For example, at frame 525, the light is turned off and the estimation error in-
creases in 3.0 pixels, as shown in Fig.15. The FAP plot shows how both eyelid
and iris trackers need extra time to accommodate for the new environment
illumination. See also Fig.16 for details on gaze tracking estimations.

So far, the hierarchical tracking has shown higher accuracy and stability
to illuminations changes than a gaze tracker based on a GNI and two eye
region shape models [23] (see Figs.15,16). Assuming non-flashing lights, the

34



number of iterations for the LMA can be the same in all trackers. As long
as the new illumination conditions remain stable, the hierarchical tracking
improves the estimations. Therefore, expected appearances have less infor-
mation from previous illumination and the LMA algorithm becomes stable,
as shown in Fig.15, after the frame 541.

5.7. Occlusions and Real-Time

As expected, estimation error increases with occlusions and illumination
changes. However, a right combination of learning rates allows the hierarchy
of trackers to recover without propagating the error onto the observation
models.

To further test the robustness of the proposed hierarchical OABT, an
image sequence of 600 frames with severe occlusions is used. This sequence
was recorded indoors with a monocular camera. The actor performs head
movements and exaggerated facial actions while the illumination is subtly
changed. At one frame, the actor starts wearing eyeglasses, thereby, pro-
ducing occlusions and intensity variations. Other local occlusions are also
captured in this sequence, such as eyelid blinks, which occlude the iris region
for three or more frames. Consequently, saccadic movements are expected
since the iris has to recover. This re-adaptation can take one or two more
frames while increasing the estimation error, for example, at frames 17, 164,
232 in Fig.17. This shows the influence of the iris movements on the estima-
tion error of the eyelid tracker at frames 96, 330, and 483, which is evident
according to the peaks of the eyelid curve. Notice how the error per pixel is
higher when using the previous tracker based on GNI [21].

Next, we test the real-time performance of the proposed tracker. To
this end, we implemented an ABT with small appearance reference texture,
1426 pixels (i.e. 40x42 pixels). This resulted in the tracker running real-
time. Accuracy, effectiveness and robustness are tested by comparing the
convergence error, output images and the spent time to find the correct
adaptation. This is shown in Fig.18.

The hierarchical tracking with a small appearance resolution produces
results of an average 85% of correct adaptations and the performance of 32
frames per second (fps). On the other hand, when using the big appearance
resolution, the tracker produces an average of 96% correct adaptations and
performance of 1.1 fps. It is worth mentioning that iris has less pixels in the
small resolution, 2x3 pixels, than 5x6 pixels for the big resolution.
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Figure 17: This sequence exhibits both blinks and saccades. For example, we can see eyelid
blinks at frames 17, 164, 232 of the iris curve. We can also see iris saccadic movements
at frames 96, 330 and 483 of the eyelid curve. The OABT with GNI [21] performs with
higher error/pixels as it cannot track iris movements.

Figure 18: Using an appearance template ~χ 1426 the tracking achieves 32 fps whilst using
a double template resolution the frame rate drops to 1.1 fps. About 85% of frames are
correctly adapted running at real time frame rate while 96% of correct adaptations are
obtained using big appearance template.

5.8. Large Head Movements

Out-of-plane movements have a strong impact on the 3D head pose esti-
mation and more than the 50% of pixels are considered outliers, which results
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Figure 19: The hierarchical OABT handles out-of-plane movements as outliers, retrieving
the position over 50% of outlier pixels. Once the head returns nearby to previous locations
the tracking recovers, otherwise re-initialization is required. This sequence was recorded
with a monocular camera.

in noisy appearances. However, the Huber’s function provides stability to
both observation and state transition processes.

An image sequence of 650 frames is used, where the subject performs
large head movements and facial actions, to assess the effect of 3D head
pose inaccuracies on the facial action tracking (see Fig.19). The number of
iterations was increased, thus extending the ratio of the line search stage
without losing the real-time performance. Fig.19,(a) depicts extreme head
rotations where the facial actions remain almost unaffected by the introduced
noise. The 2D projection of out-of-plane rotated faces produces very small
errors in the image plane, comparable to that of the alignment error between
the shape and the regions of eyebrows, lips, eyelids and irises. However, the
tracking still accurately handles their independent movements.

6. Conclusions

We proposed an efficient method for simultaneous tracking of head, eye-
brows, lips, eyelids and irises that can run real-time. We have extended our
previous work on on-line appearance-based trackers to deal with eyelid and
iris motions. By adopting three OAMs we decoupled rigid and non-rigid
movements to avoid self-occluding facial actions. Three OABTs are built
and coupled through Levenberg-Marquardt Algorithm optimized with back-
tracking procedures. This resulted in substantial improvement in accuracy
of the gaze tracking and robustness of the simultaneous tracking of the head
and facial actions.

The proposed hierarchical OABT holistically estimates the 3D head pose
and facial actions related to lips, eyebrows, eyelids and irises. Compared with
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other gaze tracking techniques, the proposed approach avoids completely in-
tensity edge segmentation. Tracking estimations are encoded as FAP para-
meters according to the MPEG-4 format, such that all the estimations are
continuous variables of single precision in floating point.

The proposed tracking approach is based upon a robust transition process
that estimates an optimal 3D shape model by the means of a modified LMA,
which avoids local minima by differentiating each facial action within specific
FAP ranges and differential steps. Due to the additional challenge of gaze
tracking with deformable models, the LMA is combined with backtracking
and line-search procedures to estimate the steepest descent factor for each
facial action. Consequently, eyelids and iris OABTs result in efficient trackers
capable of handling eye blinks and iris saccadic movements.

Experiments on the FGnet database, video sequences from the internet
and our laboratory, showed the accuracy and robustness of our proposed
method. The FGnet database for face tracking was tested in three experi-
ments showing the accuracy with respect to a manually annotated ground
truth. The experiments also show the tracking stability in presence of il-
lumination changes, translucent surfaces on the eye region, occlusions and
out-of-plane movements.

The proposed method is suitable for studies on human behaviour analy-
sis, facial expressions and facial emotions where the latest state-of-the-art
addressed solutions are based on spatio-temporal interpretations of facial de-
formations. On the other hand, the real-time performance of this tracker
allows it to be used in Human Computer Interaction applications, since it
can work with standard monocular video cameras and image resolutions.

The proposed tracking approach can be extended in several directions.
Firstly, automatic initialization of the first frame is still an open issue. Al-
though we outlined a semi-automatic initialization of the tracker, a more so-
phisticated approach that can deal with various poses and facial expressions
is needed. Secondly, a further investigation on appearance texture registra-
tion is required to improve the on-line learning of profile faces beyond pan
rotation angles of ±45◦. Thirdly, the self-occluded deformable models affect
mainly the state transition process and, thereby, bring the necessity for using
three different OABTs. Additional research on deformable models or differ-
ent fitting methods is required to reduce the number of trackers to a single
tracker with improved accuracy and robustness. Lastly, the application of
other optimization methods [44], line-search direction and backtracking [45],
aiming at extension of this tracking system to multiple faces.
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