Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer

Ortiz RM, Gil D, Minchole E, Diez-Ferrer M, Cubero N, Lopez-Lisbona RM, Sanchez C, Esteban A, Dorca J, Rosell A.

Background

New endoscopic techniques are being introduced to reduce uncertainty in peripheral pulmonary lesions (PPL) diagnosis and management. Probe-based confocal laser endomicroscopy (pCLE) is a technique that can microscopically image the lung tissue in vivo during flexible bronchoscopy, though it can be difficult for pulmonologists to distinguish cellular patterns in a monochrome vision under respiratory and cardiac movements. The goal of this work is to explore if Computed-Aided Diagnoses (CAD) tools can obtain a reliable diagnoses with pCLE in lung cancer.

<u>Objective</u>

To detect whether pCLE images contain enough texture and visual pattern information to discriminate between benign and malignant lesions and whether it could increase diagnostic accuracy versus visual assessment.

Methods

A pilot study using 2 different methods for pCLE pattern analysis was performed: one based on visual analysis by 3 experts and the other one based on computerized analysis of visual patterns called Graphcom. Twelve pCLE videos obtained using methylene blue dye (1%) and Alveloflex-Cellvizio 660nm miniprobe were selected from patients with endobronchial lesions (6 with lung cancer and 6 with inflammatory disease) during rigid bronchoscopy under general anesthesia. Afterwards, video sequences from pCLE were visually explored by one of the authors to select 10 frames that presented a clear cellular pattern, without artifacts. These images were shown to 3 observers who were familiar with confocal images but ignored the final histopathological diagnosis for a blind visual labeling. Images were also computationally analyzed using methods from social networks community analysis in a graph representation of pCLE images based on visual features to potentially overlapping groups of images that share common visual properties.

<u>Results</u>

Our preliminary results indicate that on average visual analysis with 3 independent experts can only achieve a 60.2% of accuracy and has large variability amongst observers, while the accuracy of the proposed unsupervised image pattern classification (GraphCom) rises to 83.4%.

Conclusions

Computation methods and graph structural analysis can increase diagnostic accuracy of pCLE images against visual analysis (83.4% vs 60.2%). Future studies are needed to apply this method in a real time scenario during bronchoscopy for PPL diagnoses.