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Abstract. We describe a method for hand-drawn symbol recognition
based on deformable template matching able to handle uncertainty and
imprecision inherent to hand-drawing. Symbols are represented as a set
of straight lines and their deformations as geometric transformations of
these lines. Matching, however, is done over the original binary image to
avoid loss of information during line detection. It is defined as an energy
minimization problem, using a Bayesian framework which allows to com-
bine fidelity to ideal shape of the symbol and flexibility to modify the
symbol in order to get the best fit to the binary input image. Prior to
matching, we find the best global transformation of the symbol to start
the recognition process, based on the distance between symbol lines and
image lines. We have applied this method to the recognition of dimen-
sions and symbols in architectural floor plans and we show its flexibility
to recognize distorted symbols.

1 Introduction

Bayesian inference and deformable templates have been widely used in many
fields of computer vision to reason with uncertainty when prior information
about possible values of parameters to be estimated is available. Their applica-
tion ranges a wide number of computer vision tasks such as object recognition,
segmentation, tracking, restoration, etc. [4]. In document analysis, however, and
to our knowledge, their use has been restricted to a few applications to hand-
written numeral and character recognition [1,5,12].

We argue that a Bayesian framework is also a well-suited method to recognize
hand-drawn graphic symbols, such as those found in many kinds of diagrams,
maps and line drawings. Hand-drawn symbols are imprecise, with very distorted
shapes from their ideal patterns, as it is shown in Fig. 1. Therefore, their recog-
nition must face a high degree of uncertainty. Traditional methods for symbol
recognition are generally based on vectorization, feature extraction and struc-
tural matching [3,6,8,9,11]. They decrease their efficiency and robustness as long
as noise and distortion of hand-drawn symbols increase [2,13] because struc-
tural matching cannot recover from feature misdetections and errors introduced
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in feature extraction. Bayesian inference can help to overcome the drawbacks
of these methods modelling uncertainty though the combination of prior in-
formation and likelihood. Prior information can be easily encoded in symbol
recognition through the representation of the symbol with a pattern of its ideal
shape and the generation of all its possible deformations from this pattern. Then,
prior information provides the degree of fidelity of each deformation to the ideal
shape of the symbol. On the other hand, likelihood can be seen as a measure
of similarity between a given deformation of the symbol and the image. Com-
bining both concepts we can look for the less deformed shape of the symbol
that yields the best fit to the image. Therefore, deformable template matching
and Bayesian inference arise as an alternative approach to symbol recognition
in front of traditional methods. In a previous work [14] we have proposed to use
them to recognize hand-drawn symbols in graphic documents. In this work, we
extend and further develop our initial proposal and we face the important issue
of matching initialization. We also show more extended results that reinforce the
feasibility of the application of this approach to the recognition of hand-drawn
symbols.

Fig. 1. Some examples of images of symbol Sofa. Original image in the top and
vectorization in the bottom

In section 2 we explain the general framework of Bayesian inference applied
to symbol recognition. In section 3 we describe the application of this general
framework to the recognition of hand-drawn lineal symbols. In section 4 we
discuss the problem of finding a good initialization of the symbol to get an
accurate convergence of the matching algorithm. Section 5 shows some of the
experiments carried out and, finally, in section 6, we state the conclusions from
our work.
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2 Bayesian Formulation of Symbol Recognition

The general problem of symbol recognition can be stated in this way: given an
input image I and a set of predefined symbols, {S1, . . . , Sn}, represented by
their ideal shapes, symbol recognition provides the symbol Si that can be best
identified in image I.

In a probabilistic framework the correspondence between an image and a
symbol can be expressed as P (Si|I), i.e., the probability that given image I,
we can identify symbol Si in it. Then, symbol recognition consists in finding
the symbol Si which maximises the conditional probability P (Si|I). Applying
Bayes’ rule, we can express P (Si|I) in the following way:

P (Si|I) =
P (I|Si)P (Si)

P (I)
. (1)

Assuming that all symbols have the same prior probability, P (Si) and veri-
fying that P (I) is constant for all symbols, we can deduce that finding Si which
maximizes P (Si|I) is equivalent to finding Si which maximizes P (I|Si).

As a hand-drawn symbol can take many different shapes, we must search over
all its possible and valid shape variations when looking for the correspondence
between an image and the symbol. We let Di be any possible deformation of
the ideal shape of symbol Si. Then, P (I|Si) can be expressed as the marginal
probability summing up for all deformations Di the joint probability of the image
and each of the deformations, P (I, Di|Si):

P (I|Si) =
∫

P (I, Di|Si)dDi =
∫

P (I|Di, Si)P (Di|Si)dDi . (2)

Then, the probability to be maximized, P (I|Si), is expressed as the combi-
nation of the prior probability of the deformations, P (Di|Si), and the likelihood
between the image and each of the deformations, P (I|Di, Si). Prior probability is
the probability that deformation Di is still a valid representation of symbol Si. It
penalizes excessive distortions by giving them lower probability. Likelihood is the
probability that image I corresponds to deformation Di. It is usually measured
by computing the distance between the image and the deformation.

Expression (2) is solved using Laplacian approximation yielding the following
expression:

P (I|Si) = k · P (I|D̂i, Si) · P (D̂i|Si) . (3)

where k is a constant and D̂i is the deformation of the symbol that maximizes
P (I|Di, Si) · P (Di|Si). Usually D̂i is found searching for the minimum of the
negative log of this expression:

D̂i = arg max
Di

P (I|Di, Si)P (Di|Si)

= arg min
Di

(− log P (I|Di, Si) − log P (Di|Si)) . (4)



196 Ernest Valveny and Enric Mart́ı

Making the following equivalences:

Eext = − log P (I|Di, Si) . (5)
Eint = − log P (Di|Si) . (6)

E = Eext + Eint = − logP (I|Si) . (7)

the problem of symbol recognition is reduced to the problem of minimizing an
energy function, E, composed of two terms: external energy, Eext, which is re-
lated to likelihood and internal energy, Eint, which is related to prior probability.
External energy plays the role of a force which tries to deform the shape of the
symbol as much as possible to get the best match to the input image. On the
other hand, internal energy acts like a force that prevents high deformations
keeping the shape of the symbol as close as possible to the ideal shape. The min-
imum of the energy function is the equilibrium point between these two opposite
forces. It corresponds to the shape of the symbol that best fits the image with
the minimum amount of deformation. The final value of the energy function at
this point is related by Eq.(7) to the maximum of P (I|Si) and by Eq.(1) to
the maximum of P (Si|I). Thus, it is a measure of the degree of correspondence
between the input image and the symbol. Then, image can be identified with
the symbol with the lowest final energy value.

3 Deformable Template Matching for Lineal Symbols

In this section we describe the application of the general framework introduced in
the previous section to the recognition of lineal symbols. Using that framework,
there are three main components involved in a deformable template matching
approach which need to be defined: first, prior information, i.e., the representa-
tion for the symbol and deformations and the definition of the prior probability;
secondly, the likelihood between the image and deformations and finally, the
matching procedure used to find the minimum of the global energy function.

3.1 Prior Information

As symbols that can be found in drawings are basically composed of lines, we
define each symbol as a set of straight lines, not necessarily connected. Each
line is represented by the position of its midpoint, its orientation and its length.
Deformations of the symbol are generated by translating, rotating and scaling
each of the lines. This is an intuitive and natural way to represent symbols and
their variations and it yields a set of shapes very close to those produced by
handwriting.

We define two kinds of deformations that can be applied to a symbol: global
and local deformations. Global deformations apply the same transformation to
all the lines of the symbol. Therefore, they do not change the global shape of
the symbol. On the other hand, local deformations apply different changes in
position, orientation and length to each of the lines. Thus, they can be used
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to change the global shape of the symbol. Prior probability has only to penal-
ize local deformations while global deformations are assumed to have the same
probability.

Prior probability and internal energy are defined assuming that each possi-
ble transformation (translation, rotation or scaling) of a line follows a gaussian
distribution of zero mean and that all transformations applied to each line are
independent. These assumptions allow to express prior probability and internal
energy in this way:

P (Di|Si) =
n

∏

i=1
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Eint =
n

∑
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+ K . (9)

Internal energy is derived, as it is shown in expression (6), from the negative
log of prior probability, which is defined as a product of gaussian distributions.
There is one distinct gaussian for each kind of transformation applied to a specific
line. Each line has its own distribution for translation, rotation and scaling. n
is the number of symbol lines; txi , tyi are the translations in x and y directions
applied to the midpoint of line i; θi is the change in orientation applied to the
line; and si the scaling applied to the length of the line. ; σtxi

, σtyi
, σθi and σsi

are the standard deviations for each of the gaussian distributions.

3.2 Likelihood

Likelihood must be a measure of similarity between a given deformation of the
symbol and the input image. We have defined it from the distance between the
deformation and the pixels of the binary input image. Working over the binary
image allows to avoid errors and loss of information induced by skeletonization
and vectorization and illustrated in Fig. 1.

The distance function is defined by summing up for all the lines of the de-
formation, the distance between the line and the closest pixels of the image. For
each line of the deformation, we take a regular sample of points along it and
we find, for each point, the closest image pixel. Each pair composed of a line
point and an image pixel contributes to the distance with two values: the first
one is based on the distance between them and the second one on the differ-
ence between the orientation of the line and the orientation of the pixel. This
orientation is computed through the analysis of a window centered on the pixel.
The proportion of points along the line overlapping with inked image pixels is
also taken into account. In this way, we promote deformations of the symbol
having lines close to the image, with the same orientation of image pixels and
overlapping with them.
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Then, external energy is made equivalent to this distance function. Likelihood
is defined from external energy using a Gibbs distribution:

P (I|Di, Si) =
1
Z

e−Eext(I,D) . (10)

Eext =
1
n

n
∑

i=1





1
ni

ni
∑

j=1

(

1 − e−λ·d(pj ,qj) · e−µ| sin(θi−αj)|
)

+ γ
ni − n̂i

ni



 . (11)

where Z is a normalizing constant; n is the number of lines in the symbol; ni

is the number of points sampled along line i; pj are each of the points sampled
along the line; qj is the image pixel closest to point pj ; θi is the orientation
of line i; αj is the orientation of pixel qj ; n̂i is the number of points of line i
overlapping with image pixels; and λ, µ and γ are weighting factors. The use of
exponential functions in the factors related to the distance and the difference of
orientation allows to control (changing the value of weighting factors λ and µ)
how the distance increases when the lines in the deformation moves away from
the image pixels, both in distance and in orientation.

3.3 Matching

Matching is defined as a procedure for finding the minimum of the global energy
function. It corresponds to the deformation of the symbol that keeps the best
compromise between minimum deformation from ideal shape and maximum fit
to the input image. The value of the energy function for this deformation gives
a measure of the correspondence between the symbol and the image. Therefore,
symbol recognition is performed applying matching between the image and all
the symbols and selecting the symbol yielding the lowest energy value.

Combination of internal and external energy is a complex, non-linear energy
function, with many local minima. Complex algorithms must be used to find a
solution close to the global minimum. We have employed a simulated annealing
algorithm [7]. This is a well-known general optimization algorithm that allows
to avoid local minima searching randomly over the space of parameters. As the
algorithm runs, this random search is directed towards low energy areas. In this
way, and if good parameter initialization is achieved, convergence to a point close
to the global minimum can be reached. The main drawbacks are the unstability
of the solution and the computational cost. Due to the random nature of the
algorithm, we cannot guarantee that two distinct runs of the algorithm yield
exactly the same solution. It depends very much on a good initialization and on
a good setting of all the parameters involved in algorithm performance. On the
other hand, many iterations are needed to guarantee an stable and robust con-
vergence. Then, computational cost tends to be high. Currently, our attention is
not focussed on computational issues but in showing the feasibility of bayesian
deformable template matching to recognize symbols with high distortions. Fur-
ther considerations can be found in sections 5 and 6 where alternative solutions
to these problems are discussed.
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The matching algorithm starts from an initial representation of the symbol
and, at each step, it randomly generates a new deformation by applying local
transformations to every line. This new deformation is accepted or rejected de-
pending on its energy value. If energy is lower than energy of previous deforma-
tion, it is always accepted because we are moving towards the global minimum.
If energy increases, it can also be accepted in order to jump over areas of local
minima. Its acceptance depends on the change in energy and on the value of a
temperature parameter. First, the following expression is evaluated:

e−
Ek+1−Ek

Tk . (12)

where Ek+1 is the value of energy for the deformation at step k + 1, Ek is
the energy for the deformation at step k, and Tk is the temperature at step k.
Then, a random number u between 0 and 1 is generated. The new deformation
is accepted only if the computed value in (12) is lower than u. In this way, at
the beginning of the algorithm, with high temperatures almost every new state
is accepted and we can randomly move over all the space of deformations. As
the algorithm runs and we get focussed to areas close to the global minimum,
the temperature decreases and the probability of accepting deformations moving
towards higher energy values is lower.

Accurate convergence of the algorithm depends very much on two factors:
first, the initial value of temperature and its decreasing rate; and secondly, the
election of a good starting representation of the symbol. In the next section, we
explain how this latter issue is achieved by finding the best global transformation
of the symbol that best fits to the image.

4 Initialization of Matching

The goal of this step is to find the global deformation of the symbol closest to
the image. This is the optimal point to start the matching between the symbol
and the image. Using only global transformations we can get the best possible fit
to the image with no change in the global shape of the symbol. Then, matching
starts from a shape closer to the image. As a result of that, convergence is easier
and smaller changes have to be applied to symbol lines.

This initialization step is performed on the lineal representation of both the
image and the symbol in order to speed up the process. We have defined a metric
to measure the distance between two lines and the distance between two lineal
symbols. Then, initialization consists in finding the global deformation of the
symbol yielding the lowest distance to the lineal representation of the image.

First, we will introduce the distance between two lineal symbols and then,
we will describe the procedure for finding the best global deformation.

4.1 Distance between Lineal Symbols

A line is defined by the position of its midpoint, its orientation and its length.
These three features allow to specify any line in a very natural and intuitive
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Fig. 2. Initialization of matching for 25 images of symbol sofa. Original image
in gray and best global deformation in black

fashion. Then, the distance between two lines is based on the difference in mid-
point position, orientation and length between them. A line is represented by a
vector L = (P,α, l) where P is the position of the midpoint, α is the orientation,
and l is the length. Given any two lines L1 = (P1,α1, l1) and L2 = (P2,α2, l2),
the distance between them is expressed by:

d2(L1, L2) = ω1 · ‖P1 − P2‖2 + ω2 · sin2(α1 − α2) + ω3 ·
(l1 − l2)2

(l1 + l2)2
. (13)

This measure satisfies the properties of a metric. Moreover, it yields results
very close to our visual idea of similarity between lines. The distance increases as
lines become more separate and more distinct in orientation and length, factors
which contribute to produce more visually distinct lines. Finally, it is an easily
computable function, which makes it suitable to derive other measures from it.
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The distance between two lineal symbols is then deduced from this definition
of distance between two lines. It is defined as the weighted sum of distances
between each pair of lines in both symbols. The weighting factor for each pair
of lines must be an estimation of the correspondence between the two lines. A
priori, we cannot know which line of one symbol is the corresponding line of every
line of the other symbol. We estimate this correspondence with a probability
distribution based on the distance between the two lines. Closer lines will have
higher probability of correspondence. These criteria can be expressed in the
following way: given two lineal symbols S1 and S2, each of them composed of a
set of lines, S1 = {L1, . . . , Ln1} and S2 = {L1, . . . , Ln2}, the distance between
the two symbols is defined by:

d(S1, S2) =
1
n1

∑

Li∈S1

d(Li, S2) =
1
n1

∑

Li∈S1

∑

Lj∈S2

Pij · d(Li, Lj) . (14)

Pij =
e−

d2
ij

2σ2

∑n2
k=1 e−

d2
ik

2σ2

. (15)

dij is the distance between line Li in S1 and line Lj in S2. Pij is the weighting
factor for the distance between Li and Lj and it corresponds to the probabil-
ity of correspondence between both lines assuming a normal distribution based
on the distance between them. It is normalized so that global probability of
correspondence of a line in S1 sums up to 1 for all lines in S2.

4.2 Finding the Best Global Deformation of Symbol

First, the input image must be vectorized to get its representation as a set of
lines. Then, initialization will find the global deformation of the symbol closest
to this set of lines. This is achieved looking for the minimum of the distance func-
tion between the image and each of possible global deformations. This optimal
deformation is identified by the parameters of a global translation, rotation and
scaling applied to all the lines of the symbol. Finding these parameters is not a
straightforward task as modifying the lines of the symbol also implies modifying
the probability of correspondence among symbol lines and image lines.

We have employed an implementation of the EM algorithm [10] to get the
optimal deformation. With the EM algorithm we can fix the probability of corre-
spondence in the expectation step and then, in the maximization step we can find
the optimal global transformation with that estimation of the correspondence.
These two steps are iterated until convergence is reached.

The algorithm starts from the ideal representation of the symbol and the
lineal representation of the input image and it iteratively finds successive defor-
mations of the symbol until the optimal global deformation is reached. At each
iteration two steps are applied. The expectation step estimates the probability
of correspondence, Pij between each line of the image and each of the lines of
the current deformation. The maximization step finds a new global deformation
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using these estimated probabilities. The parameters of this new deformation are
found analytically deriving the expression for the distance between two lineal
symbols (14) in two steps: first, the best rotation is found and secondly, best
translation and scaling. The variance used in computing Pij is decreased at each
iteration. In this way, as the algorithm runs and the deformation is getting closer
to the image, correspondence among similar lines is favoured.

Results of the application of this procedure to a set of test images can be seen
in Fig. 2. In it we can see 25 images of a symbol, and superimposed in black, the
starting initialization of it for every image. It can be seen that this initialization
reflects orientation and scaling of the image. In this way, it will be easier to find
the best fit when introducing local deformations of the symbol and applying the
matching procedure described in section 3.3.

Fig. 3. Example of a hand-drawn architectural drawing

5 Results and Discussion

We have applied this method to the recognition of symbols in hand-drawn ar-
chitectural drawings. Fig. 3 shows an example of this kind of drawings with the
symbols to be recognized. In these drawings, the identification and the recogni-
tion of all the symbols play a very important role in the semantic analysis. We
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Shelf File

Sofa Window

Bed Chair

Table DeskTable

Fig. 4. Visual matching of two images of each symbol. Original image in black
and final deformation in gray
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have focused on the problem of being able to recognize isolated symbols. We
assume that symbols have been located and segmented. Thus, our method relies
on a previous segmentation step. This is an issue to be further studied and de-
veloped. We have worked with a set of symbols drawn with no constraints by ten
different people. These symbols have a wide range of variations and distortions
in their shape. Results show that most of the deformations can be handled and
that symbols are accurately recognized.

Fig. 5. Visual matching of dimension symbols.Original image in black and final
deformation in gray

In Fig. 4 we can see the visual result of the application of matching to two
images of each symbol. Original image is shown in black while final deformation
of the symbol found by the matching procedure is superimposed in gray over the
image. It can be seen how the original shape of the symbol is deformed in order
to fit the shape in the image, and how many different kinds of distortions can
be handled, such as: changes in orientation or length of the lines, variations in
relative position between the lines, spurious lines, non-touching lines at crossings,
etc. Before applying matching, we have applied the initialization step to find the
best global transformation of each symbol. Fig. 5 shows similar results for the
recognition of dimension symbols in architectural drawings. Once again, in most
cases, the ideal shape of the symbol is deformed to fit the input image. Only
in some few cases, symbol cannot be deformed to adjust it to the input image.
These errors can be due to a bad initialization of the symbol and the algorithm
or to excessive distortions in the image.
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Visual matching is an indicator of the goodness of the fit between the image
and the symbol. However, the identification of an image with a symbol is done,
as stated in section 2, by analyzing the minimum value of energy after the
matching procedure. The graphic in Fig. 6 shows the final energy value found
by the matching procedure after comparing 50 images of symbol sofa with each
of the eight symbols taken into account. The wider line corresponds to values of
matching each image with the symbol sofa, while thinner lines show the values of
matching with the other symbols. It can be seen how, in almost all cases, energy
of matching with symbol sofa corresponds to the minimum value. The graphic
also illustrates that when the energy of matching with symbol sofa is too high
(due to errors of matching), the image can be confused with some other symbol
with lower energy.

Fig. 6. Comparison of energy for matching of 50 images of a sofa with all sym-
bols. The widest line is energy for matching with symbol sofa

Table 1 shows the recognition rates achieved with the application of this cri-
terion. We have matched 50 images of each symbol with the model of each of
eight symbols, applying first the initialization step and we have identified each
image with the symbol with lower minimum energy. The table shows, for each
symbol, the percentage of images correctly classified. We have got 85.25% of av-
erage accuracy for all symbols. We can see how, in some symbols, as in symbol
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window, the recognition rate is much lower. This fact is due to the confusion of
this symbol with two other similar symbols: symbol file and symbol chair. Con-
fusions are due to errors in matching (bad initialization or excessive distortion)
and to the ability of confused symbols (file and chair) to deform yielding lower
energy values.

Finally, Table 2 illustrates the computation time of the algorithm. For each
symbol, it shows the average time (in seconds) of matching an image with the
symbol. We can see how the complexity is approximately linear with the number
of lines in the symbol.

Table 1. Recognition rates for 50 images of each symbol

Shelf File Sofa Window Bed Chair Table D.Table Average
88% 88% 92% 68% 74% 88% 92% 92% 85.25%

Table 2. Average recognition times for each symbol (in seconds)

Symbol Chair Shelf File Window Bed D.Table Sofa Table
Time 5,62 7,31 6,04 6,64 9,84 10,79 16,34 28,93
N. of lines 6 6 7 7 8 11 13 20

6 Conclusions and Future Work

We have shown how Bayesian inference and deformable template matching can
be applied to the recognition of symbols in graphic documents. This approach
is more flexible and able to handle uncertainty inherent to handwriting than
methods based on previous vectorization and feature extraction.

Symbols are represented as a set of lines, and their deformations are generated
by geometric transformations of these lines which yields very natural distortions,
close to those produced by handwriting. Bayesian formulation of matching over
the binary image allows to derive an energy function, whose minimization gives
the equilibrium point between low deformation and maximum fit. This mini-
mization is not simple. We have employed a simulated annealing algorithm with
a previous initialization step to facilitate convergence. The initialization step
finds the best global orientation and scaling of the symbol, based on distance
between lines of the symbol and lines of the image. Simulated annealing is a
random algorithm, so that convergence is not always guaranteed to be stable
through successive runs of the algorithm. The complexity of the algorithm is
linear with the number of lines in the symbol, although computation time is
high.
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Our goal was mainly to show the feasibility of bayesian inference and de-
formable template matching to hand-drawn symbol recognition without taking
into account computational issues. However, there are some relevant points to
be further studied in order to be able to apply this method to real applications:
first, segmentation of symbols in the drawing should be solved in order to locate
candidate areas where applying the recognition. Secondly, we are investigating
other ways to define internal and external energy yielding an energy function
easier to minimize. In this way, we could reduce computation time and we could
get more stable convergence. Thirdly, the response of the algorithm of the scal-
ability problem should always be tested with a wider set of symbols and images.
Finally, we have assumed independence in the deformations applied to each line;
however this assumption is not always true, specially with complex symbols.
More accurate representation of prior information about deformations and their
associated cost would also allow to improve recognition rates. Generalization to
other types of primitives other than straight lines should also be considered.
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