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Abstract

We propose an approach without any forgetting to con-

tinual learning for the task-aware regime, where at infer-

ence the task-label is known. By using ternary masks we can

upgrade a model to new tasks, reusing knowledge from pre-

vious tasks while not forgetting anything about them. Using

masks prevents both catastrophic forgetting and backward

transfer. We argue – and show experimentally – that avoid-

ing the former largely compensates for the lack of the latter,

which is rarely observed in practice. In contrast to earlier

works, our masks are applied to the features (activations) of

each layer instead of the weights. This considerably reduces

the number of mask parameters for each new task; with

more than three orders of magnitude for most networks. The

encoding of the ternary masks into two bits per feature cre-

ates very little overhead to the network, avoiding scalabil-

ity issues. To allow already learned features to adapt to the

current task without changing the behavior of these features

for previous tasks, we introduce task-specific feature nor-

malization. Extensive experiments on several finegrained

datasets and ImageNet show that our method outperforms

current state-of-the-art while reducing memory overhead in

comparison to weight-based approaches.

1. Introduction

Fine-tuning has been established as the most common

method to use when learning a new task on top of an al-

ready learned one. This works well if you no longer require

the system to perform the previous task. However, in many

real-world situations one is interested in learning consecu-

tive tasks, all of which, in the end, the system should be able

to perform all. This is the setting studied in lifelong learn-

ing, also referred to as sequential, incremental or continual

learning. In this setting, the popular approach of fine-tuning

suffers from catastrophic forgetting [10, 11, 20, 28, 30]:

all network capabilities are used for learning the new task,

which leads to forgetting of the previous ones.

A popular strategy to avoid this is to use importance-

weight loss proxies or regularizers [1, 14, 18]. These

approaches compute an importance score for each of the

weight parameters of the model based on previous tasks and

use this to decide which weights can be modified for the cur-

rent task. A drawback of these methods is that they store an

extra variable (the importance score) for each weight. This

leads to an overhead of a float per weight parameter, i.e.

double the number of parameters which have to be stored.

Other methods work with a binary mask to select part of the

model for each task [25, 26]. This leads to an overhead of

one bit per task per weight parameter. Finally, some meth-

ods directly make a copy of the network [39] or rely on the

storage of exemplars [4, 24, 36, 37], which again increases

memory consumption and renders these methods unsuitable

when privacy requirements forbid storing of data.

In this paper, we advocate computing a mask at the level

of the features instead of at the level of the weights. We

need the mask to be ternary, i.e. adding a third state allow-

ing features to be used during the forward pass while being

masked during the backward pass. This allows to reuse rep-

resentations from previous tasks without introducing forget-

ting and drastically reduces the number of extra parameters

that need to be stored. As an example, the popular AlexNet

architecture [15] has around 60m weights, while having less

than 10k features. One earlier method that builds on this

idea is HAT [41], which stores an attention value for each

feature for each task. Recently, SSL [3] also brings attention

to the activation neurons by promoting sparsity with losses

inspired by lateral inhibition in the mammalian brain. Those

two recent works stress the importance of focusing on fea-

tures instead of weights, not only because of the reduction

in memory overhead, but also because they allow for better

performance and less forgetting. However, both methods

still allow some forgetting as new tasks are learned.

Over time, the forgetting typically increases with the

number of tasks [1, 14, 18, 24, 36, 41]. However, for many

practical systems, it is undesirable if the accuracy of the

system deteriorates over time, while the system learns new

tasks. Moreover, under these settings, the user typically

has no control on the amount of forgetting, i.e. there are



no guarantees on the performance of the system after new

tasks have been added. Even worse: to the user, it is un-

known how much the system has actually forgotten or how

well the system still performs on older tasks.

For these reasons, some works have studied continual

learning systems without any forgetting at all. Currently,

apart from the methods that make copies of the network for

each task [39], mask-based approaches are the only ones

that guarantee no-forgetting [25, 26]. Indeed, all methods

that allow backward propagation into the parameters of pre-

viously learned tasks have no control on the amount of for-

getting. Not updating the weights used for previous tasks

using a binary mask prevents any forgetting. In the case of

recent approaches PackNet [26] and PiggyBack [25], this

is enforced by binary-masking weights or learning masks

that will be binarized after the task is learned. However,

both these non-forgetting methods mask weights and there-

fore have a larger memory overhead than methods based on

feature-masks. Another drawback of [25] is that it requires

a backbone network as a starting point.

We propose Ternary Feature Masks (TFM), a method for

continual learning which does not suffer from any forget-

ting. Due to the nature of our proposed mask-based ap-

proach, we will only focus on evaluation on task-aware ex-

perimental setups. Instead of applying masks to all weights

in the network, we propose to move the masks to the fea-

ture level, thereby significantly reducing memory overhead.

Our initial method requires only a 2-bit mask value for each

activation for each task. In addition, we introduce a task-

dependent feature normalization (FN). This allows to adjust

previously learned features to be of more optimal use for

later tasks, without changing the performance or weights

assigned to previous tasks. This introduces a further mem-

ory overhead of storing two floats more per activation per

task. Nevertheless, this method still has a significantly

lower memory overhead than any method which stores ad-

ditional parameters per weight [1, 14, 18, 23, 25, 26, 45].

Mask-based approaches have shown to be better at over-

coming catastrophic forgetting on task-incremental learning

(task-IL) [5, 26, 41]. However, unlike most distillation and

model-based approaches, they make use of some overhead

memory during inference. In Fig. 1 we visualize the abso-

lute memory overhead used by some approaches on an Ima-

geNet scenario with 10 tasks. Considering that the network

used is around 220Mb, we can observe that the approaches

that focus on using feature-masks (HAT, TFM) have a neg-

ligible overhead in comparison to the weight-masked ap-

proaches (PackNet). It should also be noticed that mask-

based approaches keep the same overhead during training,

while distillation and model-based approaches usually du-

plicate the network size at least. In conclusion, our method

has similar memory usage as HAT, however, we outperform

this method on all proposed experiments, and our method

Figure 1. Log scale overhead growth for ImageNet on AlexNet.

Best viewed in color.

is significantly more memory efficient than PackNet whose

performance we either match or outperform.

2. Related work

Continual learning in the proposed task-IL setup has

been addressed in multiple prior works [5, 19, 33, 34]. A

large part of the approaches use regularization-based tech-

niques to reduce catastrophic forgetting without having to

store raw input. They can be divided into two main fami-

lies: distillation approaches and model-based approaches.

Distillation approaches use teacher-student setups that

aim at preserving the output of the teacher model on the

new data distribution. LwF proposes to use the knowledge

distillation loss [22] to preserve the performance of previ-

ous tasks. However, if the data distribution of the new task

is very different from the previous tasks, performance drops

drastically [2]. In order to solve that, iCaRL [36] stores a

subset of each tasks’ data as exemplars; while EBLL [35]

solves the issue by learning undercomplete autoencoders for

each task. LFL is also similar to LwF, preserving the previ-

ous tasks’ performance by penalizing changes on the shared

representation [13]. Expert Gate [2] learns a model for each

task and an autoencoder gate which will choose the model

to be used. Recently, [17, 46] propose to learn new classes

separately and then learn a final model with multiple dis-

tillation and extra unlabelled data. However, most of these

methods need a pre-processing step before each task. Fur-

thermore, a main issue is also the scalability when learning

many tasks, since the described methods have to store data,

autoencoders, or larger models for each new task.

Most model-based approaches, when learning a new

task, apply a smooth penalty for changing weights, propor-

tional to their importance for previous tasks [1, 14, 18, 23,

45]. One of the main issues is they might over or under-

estimate the importance of those weights. The main differ-

ence among those methods is how that importance is cal-



culated. In EWC an approximation of the diagonal of the

Fisher Information Matrix (FIM) is used [14]. R-EWC pro-

poses a rotation of the weight space to get a better approx-

imation of the FIM [23]. In IMM the moments of the pos-

terior distribution are matched incrementally [18]. SI com-

putes the importance weights in an online fashion by storing

how much the loss would change for each parameter over

the training [45]. MAS computes the weight importance in

an online unsupervised way, connecting their approach with

Hebbian learning [1].

Some more works use other underlying methods. PNN

add lateral connections at each layer of the network to a du-

plicate of that layer [39]. Then, the new column learns the

new task while the old one keeps the weights fixed, meaning

that resources are duplicated each time a task is added. This

approach leads to zero-forgetting while making the knowl-

edge of previous tasks available during the learning of a new

one through distillation. However, as each new task adds a

column with the corresponding connections, the overhead

scales drastically with the number of tasks. Progress and

Compress expands the idea of PNN with the use of EWC

but keeping the number of parameters constant [40]. They

propose a two-component setup with a knowledge base and

an active column that follows a similar setup as PNN. Re-

cently, Learn to Grow allows for each layer to reuse existing

weights, adapt them or grow the network [21]. In the worst

case scenario, layers are added which makes the growth lin-

ear in the number of tasks. Finally, ACL combines an archi-

tecture growth with experience replay to learn task-specific

and task-invariant features [8]. However, this comes at a

quite large overhead per task, and we have not been able to

obtain competitive results outside of their proposed small

datasets (i.e. below Finetuning for Flowers 4 tasks).

Apart from the above mentioned families, some recent

works use masks to directly influence or completely re-

move forgetting. We refer to this family of approaches as

mask-based. PathNet uses evolutionary strategies to learn

selective routing through the weights [9]. However, it is

not end-to-end differentiable and computationally very ex-

pensive. PackNet trains with available weights, then prunes

the less relevant ones and retrains with a smaller subset of

them [26]. Those weights are then not available for further

learning of new tasks, which quickly reduces the capacity

of the network. This results in lower number of parameters

being free and performance dropping quickly on longer se-

quences. Piggyback proposes to use a pretrained network

as a backbone and then uses binary masks on the weights

to create different sub-networks for each task [25]. Its main

drawback is the backbone network itself, which is crucial to

being able to learn each task on top of it and cannot have

a too different distribution from them. Finally, HAT pro-

poses a hard attention mechanism on the features after each

layer [41]. The attention embeddings are non-binary and

Table 1. Difference between number of weights and features for

different common network architectures (without heads).

Network #weights #features

LeNet [16] 59,956 226

AlexNet [15] 54,547,712 9,344

VGGNet [42] 119,579,904 10,880

ResNet-50 [12] 19,330,304 22,720

are learned together with each task and conditioned by the

attentions of previous ones. This offers plasticity to the em-

beddings in order to learn them, but also allows the possi-

bility to forget previous tasks during the back-propagation

step. A zero-forgetting idea is discussed in the appendices

of their manuscript with a note on binary masks, connecting

the removal of plasticity to inhibitory synapses [29].

In our approach we take the latter side of that balance,

using rigid masks that reduce plasticity but also ensure non-

forgetting of previous tasks. Our approach also focuses on

a natural expansion of the capacity of the network, which

is not addressed in HAT and most of the previous related

work. Our approach uses masks on the features of the net-

work to have a better control over which weights can be

modified while learning new tasks. At the same time, the

mask being ternary allows weights fixed for previous tasks

to be used on new tasks without modifying those weights.

This masking strategy allows the network to not forget any-

thing from previous tasks and reduce the computational

overhead in comparison to masking the weights. Our pro-

posed method is unique in that it combines being expand-

able, having a low overhead cost and having no forgetting.

All other methods have to choose only one of those three

characteristics if any.

3. Learning without any Forgetting

Here we propose our zero-forgetting method for task-

aware incremental learning. As discussed in the introduc-

tion, in order to enforce non-forgetting of previous tasks,

the use of masks that create rigid states is an efficient way.

Works which have addressed this problem have focused on

weight-masks where an additional parameter is learned for

each weight in the network [25, 26]. From a network over-

head point of view, we argue that it is, however, better to

work with feature-masks which learn an additional param-

eter for each feature in the network. In Table 1 we com-

pare the number of weights and features in several popular

networks. The table clearly shows that the overhead is sig-

nificantly lower: on average weight-masks are a quadratic

factor bigger than feature-masks.

First, we discuss binary masks and how those can easily

encode the parts that we want to learn and the parts that we

want to fix. Afterwards, we explore what happens when we

want to learn more than one task and extending to ternary



masks. Finally, we explore the use of feature normalization

to allow for less rigid learning of new tasks.

3.1. Binary feature masks

Using binary feature masks on neural networks means

that the masked neuron will have one of two states (0 or 1).

When the masks are directly multiplied by the neuron acti-

vations, the corresponding filters will be used or not (same

for the backward pass, which will either be applied or not).

Then, for each task we have a binary mask with the neurons

that can be used. Since we pursue zero-forgetting, those

masks will have to be disjoint. In Fig. 2 we show an exam-

ple with two tasks where each of them is only allowed to use

different neurons. A large amount of connections are com-

pletely unused, making the two sub-networks totally sepa-

rable from one another.

Consider a fully-connected layer (the theory can easily

be extended to convolutional layers). The output of the layer

is y = Wx where y ∈ R
p×1, x ∈ R

q×1 and W ∈ R
p×q .

The binary feature mask for the forward pass is defined as:

y = (Wx)⊙mt,l (1)

where mt,l ∈ R
p×1 refers to the mask for task t at

layer l and ⊙ is an element-wise multiplication. Masks

from different tasks are forced to select different features

(
(

ms,l
)T

· mt,l = 0 ∀ s 6= t)). The backward pass for

training task t is defined as:

∂L

∂Wij

= (mt,l
i ∧ m

t,l−1

j )xj

∂L

∂yi
(2)

where ∧ is the AND logical operator and there are only

non-zero gradients for those weights which join in a feature

which is masked for task t.

This setup allows the associated weights to an activation

to be either used-and-learnable, or neither. If used, they will

contribute forward to the next layers (which is good, as it

promotes forward transfer, i.e. sharing of knowledge from

previous tasks). Yet at the same time this also implies that

it will be possible to modify them (which is bad, as it intro-

duces catastrophic forgetting on previous tasks). With only

binary masks, you cannot have one without the other. Al-

ternatively, one could also define two separate binary states:

“used” and ‘learnable”. This has been used for a long time

in deep learning by freezing weights [32]. Freezing weights

is a mask-based way of switching on and off the learning of

a layer. In this case, in both states the layer would contribute

to the outcome of the network, but the update of the weights

would only be done on those layers that are not masked.

Here, we further explore this idea. We advocate that, in a

sequential setup where the capacity of the network might

increase when learning new tasks, the best way to mask the

neurons is by having three states: “used”, “learnable” and

“unused”. This can be achieved by using ternary masks on

the neurons.

3.2. Ternary feature masks (TFM)

Being able to use the connections between the neurons

of the previous tasks and the neurons of the newly added

task is important to reuse the learned information and re-

duce the amount of capacity that needs to be added. By

using a ternary mask we can define three states:

• forward only: features are used during the forward

pass so that the learned information from previous

tasks is used; but the backward pass step is removed in

order to keep the weights and prevent forgetting. This

state is used on features from previous tasks.

• normal: forward and backward passes are applied as

usual to learn the task at hand. This state is used on

new features created by the network expansion.

• masked: neither forward nor backward passes are al-

lowed, the features do not contribute to the network

inference and the weights associated to it are frozen.

This state is used at test time only when evaluating an

old task after a new task is added. When extending the

capacity of the network, the new features will not be

used when doing inference on the previous tasks since

those did not exist at the moment of their training.

Similar as in the case of the binary mask we assign features

to tasks with a mask mt,l (with l the corresponding layer).

Again overlap in the selected features is not allowed. How-

ever, different than before, we now define a second mask

nt,l per task t which is defined as:

n
t,l
i =

{

1, if ∃ s ≤ t : ms,l
i = 1

0, otherwise
(3)

The forward and backward pass are now given by:

y = (Wx)⊙nt,l, (4)

∂L

∂Wij

= (nt,l−1

j n
t,l
i −n

t−1,l−1

j n
t−1,l
i )xj

∂L

∂yi
, (5)

respectively. During the forward pass, features selected by

previously learned tasks can be used in the current task.

During the backward pass, we make sure that all new

weights can be updated while forcing the existing ones from

previous tasks to remain the same. In Fig. 3 we show an ex-

ample with two tasks, where adding features to the layer

allows for more connections to be used than in the binary

case. The part of the mask corresponding to n
t,l−1

j n
t,l
i cor-

responds to all available connections at task t. In a similar

way, the part of the mask corresponding to n
t−1,l−1

j n
t−1,l
i

corresponds to all available connections at task t−1. Sub-

tracting both terms allows us to mask the connections that

contain the already learned content and apply backpropaga-

tion only on the new connections.



Figure 2. Binary masks encode two states: used or unused. In this

case, neurons in grey are learnable for task 1 but neurons in green

are not, and the opposite is true for task 2. All grey weights are

unused by both tasks.

Note that this definition also allows to use the same for-

ward and backward pass in case we would want to re-train

one of the previous tasks. However, since we do not con-

template this option for our proposed setup, we can simplify

equation 5 to (non-revisiting) task-IL. In this case, the for-

ward pass remains the same as in equation 4, and the back-

ward pass can be rewritten as:

∂L

∂Wij

= (mt,l
i ∨ m

t,l−1

j )xj

∂L

∂yi
(6)

where ∨ is the OR logical operator which makes the mask

active when either operands are active.

Since n
t,l
i can never be 0 if one of the current or previous

m
1..t,l
i is 1, both masks mt,l and nt,l can be combined in

a single ternary mask. This is because weights associated

to a feature that is not used in the forward pass are never

updated. With this ternary mask, the states are associated

as follows: when m
t,l
i = 1 and n

t,l
i = 1 the neuron is used

and learnable (normal state), when m
t,l
i = 0 and n

t,l
i = 1

the neuron is used and contributes to the forward pass but

the associated weights are not updated (forward only state),

and finally when m
t,l
i =0 and n

t,l
i =0 the neuron is unused,

not taking part in the inference or the update of the network

(masked state).

Allowing to use previously learned parameters in the for-

ward pass, but only updating network parameters assigned

to the current task in the backward pass is also applied in

Packnet [26] and HAT [41]. However, in contrast to us,

Packnet has the masks on the weights and not on the fea-

tures. HAT applies a soft activation mask, which permits

forgetting of previous tasks. We further distinguish from

these methods by the task-specific feature normalization

(discussed in the next section) which is a crucial ingredient

of our method, and which allows not only to exploit previ-

ously learned features, but also to adapt them to the current

task. This is not possible for neither Packnet nor HAT.

Figure 3. Ternary masks encode three states: masked (frozen), for-

ward only or normal (forward and backward). In comparison to

Fig. 2, all unused connections can now be learned without forget-

ting previous knowledge.

3.3. Task­specific feature normalization (FN)

Since binary or ternary masks freeze filters learned on

previous tasks, those filters have no room for flexibility to

small changes in the features. This means that even when

being very similar to the ones needed for a new task, they

tend to learn a similar version of those filters with shifted

or scaled operators. This phenomenon is similar to the one

observed when learning several styles for style transfer net-

works. A way of reusing learned filters in a more efficient

way but still keep the zero-forgetting property would be to

use a similar approach as conditional instance normaliza-

tion [7], which consists in transforming a set of features x

into a normalized version x̂ depending on the task.

Let xl,1..I be the features of layer l, and γt, βt the learn-

able parameters for each feature given a fixed task t. We

define the task-specific feature normalization of xl,i as:

x̂l,i = γt,l,i xl,i + βt,l,i (7)

where we apply a conditional normalization on the task

without applying an instance normalization on the mean and

standard deviation across the spatial dimensions. These pa-

rameters allow to slightly adjust the learned filters to the

new tasks without modifying existing parameters (thus no

forgetting happens) and with little overhead to the network

capacity since the γ and β parameters are for each feature

and not for all weights.

3.4. Growing Ternary Feature Masks

One of the core characteristics of our proposed method

is that it can easily grow and expand the capacity of the net-

work as is required. Given a network with L layers, any

layer with the corresponding yl,1..I learned features can be

expanded if those learned features are not enough to rep-

resent the new task. When expanding a layer by N new

features, the output of the layer grows to yl,1..I+N . That

affects only the newly added forward mask values:

n
t,l
j =

{

1, for current task, if 1 ≤ j ≤ I+N

0, for previous tasks, if I < j ≤ I+N
(8)



so that all features can be seen while learning the new task

but ignored by previous tasks. Then, the backward mask:

m
t,l
j =











0, for current task, if 1 ≤ j ≤ I

1, for current task, if I < j ≤ I+N

0, for previous tasks, if I < j ≤ I+N

(9)

so that it only affects the new connections without modify-

ing previous knowledge.

Training small tasks on large networks at the beginning

of a continual learning setup, usually leads to overfitting or

too much repetition of filters. Feature usage on the new

tasks look very unbalanced in comparison to learning larger

tasks [27]. We believe that learning tasks in their correct

capacity and growing when more is needed is a much better

approach to avoid overfitting. This observation is backed by

the better results some other approaches have when pruning

and retraining on smaller sub-networks than when directly

pruning or learning in larger sub-networks [26, 39].

4. Experimental results

In this section we report on a range of experiments to

quantify the effectiveness of our proposed approach and

compare with other state-of-the-art methods and baselines.

More details can be found in the Supplementary material.1

4.1. Experimental Setup

Datasets. We evaluate approaches on a larger lower reso-

lution dataset (tiny ImageNet ILSVRC2012 [6]), on a large-

scale dataset (ImageNet [38]) and some fine-grained classi-

fication datasets: Oxford 102 Flowers [31], CUB-200-2011

Birds [43] and Stanford Actions [44]. Statistics over those

datasets are summarized in Table 2. For all experiments we

take a fixed random set of 10% of images for validation.

The validation set is equally distributed among the number

of classes and fixed for each experiment to ensure a fair

comparison. Since the test set is not labelled for ImageNet

ILSVRC2012, we use the validation set for test instead.

Network architectures. For tiny ImageNet we use

VGG-16, which provides high performance results [42].

Since tiny ImageNet has a low resolution, the last max-

pool layer and the last three convolutional layers from the

feature extractor are removed. For ImageNet and the fine-

grained datasets we use AlexNet [15]. The models are

trained from scratch using only samples from train. Our

proposed method TFM starts with a network that is smaller

than the proposed ones at each layer (reduced number of

output filters). Then, it grows as explained in Sec. 3.4 as

more features are added every time a new task is learned.

We limit the growth of the network to the total size of the

one used by all other approaches.

1Code: https://github.com/mmasana/TernaryFeatureMasks

Table 2. Summary of datasets used.

Dataset #Train #Eval #Classes

tiny ImageNet [6] 100,000 10,000 200

ImageNet [38] 1,281,167 50,000 1000

Oxford Flowers [31] 2,040 6,149 102

CUB Birds [43] 5,994 5,794 200

Stanford Actions [44] 4,000 5,532 40

Training details. We train using backpropagation with

plain Stochastic Gradient Descent following the setup of

HAT [41]. With a batch size of 64, learning rate starts at

0.05, decaying by a factor of 3 when 5 consecutive epochs

have no improvement on the validation loss, until either the

learning rate is reduced below 10−4 or 200 epochs have

passed. Data splits, task sequence, data loader shuffle and

network initialization are fixed for all approaches given a

seed. Following [5], we use dropout with p = 0.5.

Baselines. Finetuning uses the cross-entropy loss to

learn each task as it comes, without using data from previ-

ous tasks nor avoiding catastrophic forgetting. Incremental

Joint training breaks the no-revisiting data rule and learns

with data from the current task as well as all the previous

tasks, serving as an upper-bound to compare all approaches.

Finally, we propose to use Freezing as a baseline where we

learn the first task and then freeze all layers except the head

for the remaining tasks.

Hyperparameters. Distillation and model-based ap-

proaches use hyperparameters to control the trade-off be-

tween forgetting and intransigence on the knowledge of pre-

vious tasks. On top of that, LwF has a temperature scaling

hyperparameter for the cross-entropy loss. From the mask-

based models, HAT has a trade-off hyperparameter too and

a maximum for the sigmoid gate steepness. PackNet has a

prune percentage of the layers.

For TFM, at each new task, several growth percentages

are evaluated on the validation set without the knowledge

of previous or future tasks. We pick the lowest growth rate

which obtains a performance within a margin of the best

performance (we set the margin to be 1.5% for tiny Ima-

geNet and 0.1% for fine-grained). Then, we learn the task at

hand on train and move to the next task. For ImageNet this

scheme would be computationally demanding and we use a

fixed growth schedule, starting from 55% of the weights for

the first task and add 5% for all remaining tasks.

4.2. Fine­grained datasets

A common setup to evaluate task-IL over a number of

learning sessions are disjoint splits (tasks) inside the same

classification dataset. It should be noted that we start train-

ing from scratch resulting in lower scores than reported by

papers which train from a pretrained network. However, be-

cause of the large number of classes in ImageNet (including



Table 3. Comparison with the state-of-the-art. Accuracy after

learning 4 tasks on AlexNet from scratch. Number between brack-

ets indicates forgetting.

Oxford 102 Flowers

Method Task 1 Task 2 Task 3 Task 4 Avg.

Finetuning 10.0 (-20.3) 5.1 (-17.1) 6.7 (-13.6) 17.3 (0.0) 9.8

Freezing 30.3 (0.0) 39.8 (0.0) 32.0 (0.0) 33.1 (0.0) 33.8

Joint 54.6 (+24.3) 58.9 (+11.5) 57.7 (+4.5) 47.0 (0.0) 54.6

EWC [14] 12.1 (-18.2) 11.6 (-38.1) 9.3 (-24.4) 25.8 (0.0) 14.7

HAT [41] 17.2 (-12.7) 19.3 (-28.5) 28.6 (+1.4) 31.6 (0.0) 24.2

PackNet [26] 32.0 (0.0) 53.7 (0.0) 43.6 (0.0) 37.9 (0.0) 41.8

TFM w/o FN 36.4 (0.0) 54.1 (0.0) 38.6 (0.0) 39.0 (0.0) 42.0

TFM 36.4 (0.0) 53.8 (0.0) 45.5 (0.0) 37.6 (0.0) 43.3

CUBS 200 Birds

Method Task 1 Task 2 Task 3 Task 4 Avg.

Finetuning 7.4 (-30.2) 2.6 (-30.0) 29.7 (-3.4) 43.1 (0.0) 20.7

Freezing 37.6 (0.0) 35.1 (0.0) 35.4 (0.0) 38.4 (0.0) 36.6

Joint 48.7 (+11.1) 52.1 (+6.0) 50.7 (+1.5) 51.9 (0.0) 50.8

EWC [14] 16.2 (-21.4) 19.0 (-21.2) 24.2 (-14.0) 41.7 (0.0) 25.3

HAT [41] 18.7 (-1.8) 19.4 (-0.4) 28.5 (-0.6) 31.2 (0.0) 24.4

PackNet [26] 35.3 (0.0) 42.8 (0.0) 44.4 (0.0) 45.9 (0.0) 42.1

TFM w/o FN 42.9 (0.0) 44.1 (0.0) 48.3 (0.0) 49.1 (0.0) 46.1

TFM 42.9 (0.0) 43.1 (0.0) 49.9 (0.0) 48.8 (0.0) 46.2

Stanford 40 Actions

Method Task 1 Task 2 Task 3 Task 4 Avg.

Finetuning 24.4 (-10.5) 26.5 (-7.7) 17.6 (-16.8) 28.9 (0.0) 24.4

Freezing 34.9 (0.0) 29.4 (0.0) 30.1 (0.0) 30.5 (0.0) 31.2

Joint 45.7 (+10.8) 40.3 (+4.8) 43.2 (-1.1) 40.2 (0.0) 42.4

EWC [14] 24.2 (-10.7) 28.2 (-2.0) 25.2 (-5.6) 34.3 (0.0) 28.0

HAT [41] 25.7 (-1.0) 25.5 (-2.7) 30.1 (-2.1) 34.4 (0.0) 28.9

PackNet [26] 32.5 (0.0) 32.9 (0.0) 36.7 (0.0) 34.3 (0.0) 34.1

TFM w/o FN 35.3 (0.0) 38.3 (0.0) 39.2 (0.0) 38.0 (0.0) 37.7

TFM 35.3 (0.0) 37.2 (0.0) 42.0 (0.0) 37.2 (0.0) 38.0

a subset of Birds) we consider training from scratch pro-

vides a more natural setting for continual learning.

We compare our method (TFM) and an ablation ver-

sion of it without the task-specific feature normalization

(TFM w/o FN) with two mask-based approaches (HAT,

PackNet), a well-known model-based approach (EWC) and

the baselines (Finetuning, Freezing, Joint) on three fine-

grained datasets (Flowers, Birds, Actions). As can be seen

in Table 3, our approach outperforms the other approaches

for the three datasets. For these datasets only on Flowers

a considerable performance gain is observed when adding

task-specific feature normalization. Only PackNet man-

ages to obtain competitive results, however, on both Birds

and Actions, TFM does significantly better, while having a

much lower memory overhead than PackNet (0.2Mb versus

27.3Mb respectively). It is also interesting to note how well

Freezing works as a non-forgetting baseline.

4.3. Task­similarity effects on tiny ImageNet

Next we experiment on several ten-task splits of tiny Im-

ageNet. We compare our approach (TFM) with two distilla-

tion methods (LFL [13], LwF [22]), two model-based meth-

Table 4. Comparison with Tiny ImageNet on VGGnet from

scratch. Average accuracy after learning all tasks. Classes are

randomly split and fixed for all approaches.

Tiny ImageNet – avg. acc. after 10 tasks

Approach
Random Semantic Larger

split split 1st task

Finetuning 47.4 28.0 57.2

Freezing 42.7 32.8 69.9

LfL [13] 47.7 27.8 60.0

LwF [22] 56.4 37.8 61.1

IMM-mode [18] 48.3 33.9 62.0

EWC [14] 47.8 27.8 56.6

HAT [41] 54.2 44.0 66.5

PackNet [26] 56.4 45.2 70.8

TFM w/o FN (Ours) 54.9 44.3 72.4

TFM (Ours) 56.0 45.3 73.3

ods (EWC [14], IMM [18]) and two mask-based methods

(HAT [41], PackNet [26]). We also include two baselines

(Finetuning, Freezing). Performance is evaluated under the

same conditions on a random tiny ImageNet partition and

on a semantically similar partition (see Table 4). For further

information on the latter and for per-task comparison, check

the Supplementary material.

For random splits most methods have quite good results

on the last tasks with minor to no forgetting. LFL, IMM and

EWC provide some improvement over Finetuning. LwF has

a very good performance due to tasks being quite similar.

All mask-based models have a very similar performance,

with PackNet having the better performance. In the seman-

tically similar splits, which has a more different distribution

for each task than the random case, some approaches have

difficulties avoiding catastrophic forgetting as the sequence

gets longer. It is interesting to see, that the good perfor-

mance of LwF on the random split is not transferred when

we using semantic splits. As observed before [2], LwF fails

when there exists large changes in the distributions between

tasks. Mask-based models outperform all other approaches

again, with TFM having the better performance. Freezing

the feature extractor after the first task and learning only the

classifier for the remaining tasks works better in the seman-

tically similar splits than in the random splits.

4.4. Effect of starting­task size on tiny ImageNet

We also propose an experimental setup where the first

task of tiny ImageNet uses 110 classes (55%) while the re-

maining 9 tasks use 10 classes (5%) each (see Table 4). This

allows most of the methods to start with a rich representa-

tion after learning the first task. In this setup, comparing ex-

isting methods with the Freezing baseline is more interest-

ing. EWC shows little forgetting, but that causes the model

to become too rigid and learn the rest of the tasks with more

difficulty and having a lower overall performance. Trying to



Table 5. Comparison with the state-of-the-art. ImageNet on AlexNet from scratch. Accuracy of each task after learning all tasks. Number

between brackets indicates forgetting.

ImageNet - classes randomly split

Approach
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Avg.

(1-100) (101-200) (201-300) (301-400) (401-500) (501-600) (601-700) (701-800) (801-900) (901-1000) all

Finetuning 25.8 (-43.0) 32.2 (-36.2) 31.4 (-35.3) 37.8 (-27.7) 39.1 (-27.7) 43.7 (-25.7) 46.0 (-22.8) 50.0 (-16.5) 53.4 (-12.1) 63.7 (0.0) 42.3

Freezing 68.8 (0.0) 53.5 (0.0) 52.0 (0.0) 51.2 (0.0) 51.3 (0.0) 53.9 (0.0) 52.2 (0.0) 53.9 (0.0) 51.7 (0.0) 51.2 (0.0) 54.0

LwF [22] 27.6 (-41.2) 37.2 (-19.9) 42.0 (-22.6) 44.4 (-20.9) 50.5 (-14.1) 56.6 (-11.3) 57.9 (-9.1) 61.2 (-5.0) 62.0 (-1.3) 62.7 (0.0) 50.2

IMM-mode [18] 68.5 (-0.3) 53.6 (0.0) 52.1 (0.0) 51.7 (-0.1) 52.5 (+0.3) 55.5 (+0.2) 54.7 (+0.1) 53.5 (0.0) 54.2 (+0.1) 51.8 (0.0) 54.8

EWC [14] 21.8 (-47.0) 26.5 (-41.7) 29.5 (-36.5) 32.9 (-32.6) 35.6 (-30.9) 40.4 (-28.1) 40.0 (-26.2) 44.7 (-20.7) 47.8 (-16.2) 61.1 (0.0) 38.0

PackNet [26] 67.5 (0.0) 65.8 (0.0) 62.2 (0.0) 58.4 (0.0) 58.6 (0.0) 58.7 (0.0) 56.0 (0.0) 56.5 (0.0) 54.1 (0.0) 53.6 (0.0) 59.1

TFM (Ours) 63.6 (0.0) 62.2 (0.0) 60.1 (0.0) 61.6 (0.0) 62.6 (0.0) 64.5 (0.0) 64.0 (0.0) 63.7 (0.0) 63.0 (0.0) 59.9 (0.0) 62.5

lower the trade-off hyperparameter shows a stronger forget-

ting of the first tasks and causes severe catastrophic forget-

ting. Distillation approaches try to keep representations the

same as new tasks are learned. However, small changes in

the weights cause forgetting later into the sequence. HAT

works fine, but with a limited capacity to make changes,

ends up not learning the new tasks as easily. Freezing the

network after the first task seems to be one of the best op-

tions in this setup, since the rich representation of the first

110 classes is a good starting point to learn the rest of the

tasks with a simple classifier. We therefore advocate for the

Freezing baseline to be included in continual learning com-

parisons since it often provides a much harder baseline than

Finetuning. Only PackNet and TFM are able to improve

over that baseline even if they start from a smaller capac-

ity, with TFM having the best results. We again refer to the

Supplementary material for further per-task results.

4.5. ImageNet

Most of the compared task-aware approaches have not

been evaluated using a large-scale dataset such as Ima-

geNet. We therefore compare our proposed method (TFM)

with some of those state-of-the-art approaches. In Table 5

we can see that TFM outperforms all other approaches on

ImageNet split into 10 tasks of random classes. LwF does

well when learning each new task with the help of the rep-

resentations of previous tasks. However, as more tasks are

included, older tasks start forgetting more. IMM (mode)

has the opposite effect, it focuses on intransigence and tries

to keep the knowledge of older tasks, running out of capac-

ity for the newer tasks. This allows for the approach to not

forget much and even have a small backward transfer, but

at the cost of performing worse with newer tasks. EWC has

the worst performance, possibly due to the difficulty of hav-

ing a good approximation of the FIM when there is so many

classes per task. HAT had problems scaling to this scenario,

showing difficulties to learn new tasks. Both PackNet and

TFM have a good overall zero-forgetting performance, and

rely on the amount of capacity of the network more than

other approaches. PackNet has a better performance during

the first three tasks, taking advantage of the compression

power of the pruning and finetuning. TFM has much less

capacity for those tasks and therefore provides a bit lower

start. However, as the remaining capacity of the network

gets smaller for PackNet, TFM is capable of growing at a

more scalable pace, getting a better performance on the re-

maining seven tasks and achieving the best results overall.

5. Conclusions

For many practical applications, it is important that net-

work accuracy on tasks does not deteriorate when learn-

ing new tasks. Therefore, in this paper, we propose a new

method for continual learning which does not suffer from

any forgetting. Other than previous methods which apply

masks to the weights, we propose to move the mask to the

features (activations). This greatly reduces the number of

extra parameters which are added per task and reduce the

overhead of the network in which other approaches incur.

In addition, we propose to apply a task-specific feature nor-

malization of features, which allows adjusting previously

learned features to new tasks. In ablation experiments this

was found to improve results of the ternary feature masks.

Furthermore, when compared to a wide range of other con-

tinual learning techniques, our method consistently outper-

forms these methods on a variety of datasets. However,

as a limitation, the usage of mask-based approaches be-

comes computationally less efficient when moving from the

proposed task-IL scenario to a class-incremental one. The

absence of the task-label at inference time requires mask-

based approaches to evaluate one forward pass per task to

provide the joint prediction. We consider adapting mask-

based approaches to a class-incremental setting as an inter-

esting direction for future research.
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