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Abstract

Assessing Optical Flow (OF) quality is essential for its
further use in reliable decision support systems. The ab-
sence of ground truth in such situations leads to the com-
putation of OF Confidence Measures (CM) obtained from
either input or output data. A fair comparison across the
capabilities of the different CM for bounding OF error is
required in order to choose the best OF-CM pair for dis-
carding points where OF computation is not reliable. This
paper presents a statistical probabilistic framework for as-
sessing the quality of a given CM. Our quality measure is
given in terms of the percentage of pixels whose OF error
bound can not be determined by CM values. We also pro-
vide statistical tools for the computation of CM values that
ensures a given accuracy of the flow field.

1. Introduction

Optical Flow (OF) is the input of a wide range of de-

cision support systems such as car driver assistance, UAV

guiding or medical diagnose. Discarding areas prone to

have a large error in the computed flow is mandatory for en-

suring reliable systems. In the absence of ground truth, the

quality of the flow can only be obtained by a quantity com-

puted from either sequences or the computed optical flow

itself. These quantities are generally known as Confidence

Measures, CM.

Confidence measures can be formulated from an analytic

or a probabilistic point of view. Analytic approaches use

the energy [3, 21] or the image structure (gradient mag-

nitude [2], structure tensor [20]) as indicators of confi-

dence. Energy-based approaches are linked to the capabil-

ity of finding the energy minima and, thus, energy convex-

ity. Meanwhile, structure-based approaches are related to

numerical stability and model assumptions. Probabilistic

approaches define confidence in terms of probabilistic dis-

tributions of either flow fields itself [10] or its variability

with respect perturbations in the model [12]. Probabilistic

approaches are more flexible and not necessarily linked to

any source of error. Furthermore, they can even be used to

get a confidence fusing all previous measures [15], and thus

can be related to several sources of OF error.

Even if we have a proper confidence measure we still

need a way to evaluate it. Given the large variety of OF

methods and confidence measures, a fair comparison across

them is not an easy task. In their seminal work on optical

flow evaluation, Barron et al. [2] emphasized the impor-

tance of confidence measures to examine optical flow meth-

ods and also carried out a first comparison. A few years

later, Bainbridge-Smith and Lane [1] compared seven dif-

ferent confidence measures for two image sequences. These

results have been the first steps towards a comparison of

confidence measures within a single framework. The im-

portance of such a framework and a general roadmap for

the evaluation of optical flow was recently discussed by an

international group of researchers in [11].

An early general attempt to define a type of confidence

measures evaluation has been made by Bruhn et al. [3].

They validate the quality of confidence measures by means

of sparsification curves. To create such curve, the flow field

is systematically sparsified by a fixed percentage of flow

vectors which are sorted according to their confidence val-

ues. For each such threshold, the remaining average error

is plotted. As explained in [16], sparsification plots are not

suitable for evaluating the quality of a confidence measure.

The main problem is that the removal of pixels ordered by

confidence not necessarily removes pixels with high errors.

This might result in possibly unfair comparisons between

measures.

Aiming at a better comparison, the authors in [16] sug-

gested a framework for confidence measure comparison

based on its error bounding capabilities. The performance

of confidence measures was assessed by computing the

probability density function of having a decreasing depen-

dency between flow errors and confidence measures. A

main concern is the sampling of the 2D distribution space
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given by confidence and error values, which did not cover

the whole space. In addition, it was not invariant to mono-

tonic transformations of confidence measure values, which

do not alter its error bounding capabilities. Attempting to

solve the sampling problem, the same authors proposed in

[17] scanning the 2D scatter given by confidence and error

values by iteratively removing points having large values.

Although the whole space was swept, the criteria for point

removal was a critical point. Besides, invariance under

transformations of the confidence measure was not achieved

either.

Based on the weak and strong points of existing com-

parison frameworks, this paper presents an statistical prob-

abilistic framework for assessing the quality of a given CM

for bounding the error of a particular OF method. Our mea-

sure is given in terms of the percentage of pixels (called

risk) which bound can not be determined by CM values.

The profile of the plots given by the risk over CM per-

centiles provide information about the capabilities of each

pairing OF-CM for predicting the percentage of pixels with

unbounded error. In order to account for monotonically

increasing CM transformations, CM-error scatter plots are

sparsified as in [3] using CM percentiles. We call these plots

Sparse-Density Plots, SDP.

Confidence intervals of the risk computed over frames

belonging to benchmark databases, can be used to discard

bad areas in sequences presenting similar visual features.

In this paper we have chosen three different OF methods

and four representative confidence measures to validate our

quality framework on the Sintel database [5]. Results in-

dicate that the energy-based measure [3] is well-suited for

discarding OF erroneous outputs, providing that assump-

tions are met.

2. Evaluation Framework
In an ideal case, we would expect the values of a con-

fidence measure to be correlated to the flow End-point Er-

ror, EE. In this case, the relation between measure and er-

ror could be estimated by means of non-linear regression.

The confidence values would provide an estimation of the

flow error and they could be further used for predicting it in

sequences without ground truth. Unfortunately, this is not

possible in the general case, given that errors either follow

a random distribution or can not be estimated. A more real-

istic approach is to define quantities that estimate an upper

bound for the flow error. This is consistent with the bounds

on error propagation defined in the context of numerical sta-

bility [6].

In order that a measure is useful for bounding errors,

the scatter plot between the measure and end-point errors

should show a monotonic tendency. In other words, if CM

values are small, then, OF error is not bounded and it can

take any value. Meanwhile, for large CM values, OF er-

(a) (b)
Figure 1. (a) Scatter plot between CM and EE showing a good pro-

file for the confidence measure. Red vertical lines show different

CM i
0, and red dashed lines the respective EEi

0 bound. (b) Con-

cept of error bound and risk. Red crosses correspond to points that

a confidence measure can not bound. For each percentile (in this

case vertical line at CM0) risk is the percentage of points above

the EEmax.

ror should be bounded so that the output data is reliable.

Figure 1 (a) shows a representative scatter plot for CM-EE

values and illustrates the expected decreasing behavior be-

tween CM and error.

Taking into account the expected relation between CM

and error values, the evaluation of CM quality should as-

sess its capabilities for bounding OF error. This can be

achieved by exploring the decreasing profile of CM-error

scatter plots.

2.1. Sparse Density Plots

In the best case, CM should give an upper bound for EE
everywhere. That is, ∀CM0, EE values should be bounded

for all CM values above CM0. In probabilistic terms, this

implies that the following conditional probability is zero:

∀CM0, ∃EE0 s.t. P (EE > EE0|CM > CM0) = 0 (1)

Figure 1 (a) illustrates EE error bounds for different CM0

values in the case of a perfect relationship between CM and

EE. Vertical lines correspond to several CM0 values and

horizontal lines the best EE0 bound for such CM0 values.

In practice, there is a percentage of points with an error

that can not be bounded by the measure:

∃CM0 s.t. ∀EE0, P (EE > EE0|CM > CM0) > 0 (2)

We define the risk of a confidence measure as the proportion

of points, ρ, which bound can not be determined by CM
values. We note that ρ is, in fact, a function of the thresh-

old values CM0. Since decision support systems usually

require a minimum accuracy, we compute ρ in terms of the

maximum allowed error:

ρ(CM0) := P (EE > EEmax|CM > CM0) (3)

for EEmax the maximum error allowed. It should be clear

that the lower the risk, the higher the power for bound pre-

diction CM has. The scatter plot in fig. 1(b) showing
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CM versus EE illustrates the concept of risk. The verti-

cal red line represents the threshold for CM and the hori-

zontal dashed red line the bound on EE given by EEmax.

For each CM0 its risk is given by the percentage of points

on the upper right square defined by the two lines, which

correspond to the red crosses on the upper part of the plot.

Under the considerations above it should be clear that the

profile of the plots given by the risk as a function of CM,

(CM, ρ(CM)) provide information about CM error bound

capabilities. It is worth noticing that CM error bounding

capabilities are invariant under monotonically increasing

transformations of CM, which only modify the value CM0

achieving a given risk. It follows that CM scatter plots

should be sampled so that the plots (CM0, ρ(CM0)) are in-

variant under monotonically increasing transformations of

CM. This can be achieved by using the percentiles of CM
distribution, namely prctCM , instead of CM values. We de-

fine our Sparse-Density Plots (SDP) as the plots given by:

(prctCM , ρ(prctCM )) (4)

Figure 2 shows the main SDP profiles ranged from best

to worst capabilities for error bounding. Left column cor-

responds to the scatter plot CM-EE with the percentiles

{0.25, 0.5, 0.75} marked in red lines, and the EEmax in

dashed red line at 1, while right column shows the corre-

sponding SDP. A confidence measure is able to completely

bound OF error if SDP has an strictly decreasing profile and

reaches the zero value for some prctCM , like the profile

shown in fig2 (a). In such case, pixels belonging to the up-

per percentile [prctCM , 1] have no risk at all, so its error

is bounded. Plots shown in figs.2 (b) and (c) come from

the most usual CM behaviors. In the first case (fig.2 (b)),

there is a small quantity of points where the error is never

bounded by CM values. This introduces an increasing pro-

file at the end of SDP graphics. In the second case (fig.2

(c)), there is a group of pixels with unbounded errors in

the first CM percentiles but for higher percentiles, the er-

ror is completely under control. Finally, figs.2 (d) and (e)

show the worse cases, in the sense that CM is not related to

OF error. The constant profile of fig.2 (d) indicates that the

CM − EE distribution is uniform and, thus, EE can take

any value regardless of CM . The case shown in fig.2 (e) is

even worse. It has a behavior opposite to the expected one

as large CM values have an unbounded error.

2.2. Risk Prediction

The procedure described so far can only be computed

for a representative sample extracted from sequences with

ground truth. For the generalization to any sequence, sta-

tistical inference should be applied. In this framework, we

should determine a confidence interval for the risk given a

percentage of points we would like to keep. In order to do

so, the variability of SDP across a sample of representative

(a) Decreasing profile.

(b) Convex profile.

(c) Concave profile.

(d) Uniform profile.

(e) Increasing profile.
Figure 2. Representative examples of different SDP, ranged from

best to worst capabilities for error bounding. Left column shows

to the scatter plots (CM vs EE). Vertical red lines correspond to

the percentiles 0.25, 0.5, 0.75 and horizontal red line indicates the

EEmax = 1. Right column shows the respective SDP.

sequences should be as low as possible [19]. In this context,

the most relevant feature of confidence measures is not only

a decreasing SDP pattern but also a stable behavior across

different sequences.

For each prctCM , the risk values ρ(prctCM ) taken

across a sample of frames presenting comparable appear-

ance and dynamic conditions define a random variable

Xprct. The one-sided confidence interval [7] for Xprct

mean gives a punctual upper bound for the risk at each given
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(a) (b)
Figure 3. Risk prediction capabilities for sets presenting low, (a),

and large, (b), variability in SDP profiles.

percentile prctCM . If μ(Xprct), σ(Xprct) are, respectively,

the sample mean and variance for Xprct computed on a

sampling of size N (N > 30), then the interval at confi-

dence level 1− α is given by:

[0, μ(Xprct) + tασ(Xprct)] = [0, ρXprct
] (5)

for tα the value of a T-Student distribution with N-2 degrees

of freedom having a cumulative probability equal to 1 − α
[7, 18].

If we consider the upper bounds, ρXprct
, as a function of

CM percentiles prctCM , we get a curve:

Γ := Γ(prctCM ) = (prctCM , ρXprct
)

that should provide an upper bound for the error risk of new

incoming sequences with similar conditions as the sample

used to compute (5). That is, once a prctCM of pixels have

been removed, the error of the remaining ones should be

under EEmax with probability ρXprct
.

The curve Γ actually provides a proper bound if SDP

profiles present a moderate variability across sequence

frames. Otherwise, the risk can not be bounded by means

of Γ values. Figure 3 illustrates the computation of Γ for a

set presenting small variability (fig. 3(a)) and a set with a

large variability (fig. 3(b)). The curve Γ is shown in red and

the testing samples in blue. We observe that in the case of

small variability the distribution of the blue curves concen-

trates around Γ, while it has a larger dispersion for the less

predictable set.

It follows that the capability of a pair OF-CM for risk

bounding can be assessed using the dispersion of a set of

test SDP curves around the curve Γ. The dispersion can be

expressed using the difference function:

ZDiff (prctCM ) := Γ(prctCM )− SDP (prctCM )
= ρXprct

− ρ(prctCM )
(6)

For each prctCM , the function ZDiff (prctCM ) is a contin-

uous function that takes values in the range [−1, 1]. Nega-

tive values indicate that SDP curves are actually bounded by

Γ, while positive ones represent the risk of deviation from

the bound given by Γ values. The function ZDiff (prctCM )

taken across a sampling set of sequences defines a continu-

ous variable. In this context, we consider that Γ is a proper

bound if the average of ZDiff (prctCM ), namely μZDiff
, is

close to zero or negative. This can be statistically checked

using the following one-tailed t-test [18]:

H0 : μZDiff
≥ μ0

H1 : μZDiff
< μ0

(7)

If the null hypothesis H0 is rejected, then the upper bound Γ
is able to predict the error risk for sequences with the same

features up to an average deviation equal to μ0. The value

of μ0 represents the percentage of risk increase we admit

in our predictions. Thus, it varies according to the further

use of flow computation and, in particular, it is set by the

robustness of the decision support system to outliers.

3. Experimental Settings
The goal of our experiments is to show the applicability

of the presented framework for selecting OF-CM pairs able

to predict the risk for a given type of sequences. In order to

do so, two experiments have been carried out:

1. Explorative analysis of predictable sequences. The

validity of the bound given by (5) is assessed at level

sequence. However, not all sequences are proper to

predict a bound because they are either too good (thus

the resulting flow field has no errors) or too bad (they

do not fulfil theoretical model assumptions). For that

reason, the first step is to carry on an explorative anal-

ysis of predictable sequences before assessing error

bound at sequence level. The predictability of se-

quences is assessed by matching the profile of the Γ
curves to the main SDP profiles shown in fig.2.

2. Assessment of error bound at sequence level. For

each OF method, unpredictable sequences have been

removed for assessment of the error bound capabili-

ties. For each sequence, Γ curves have been computed

using a sampling of 20 random frames over a uniform

sampling of prctCM given by {0, 0.1, . . . , 1}. The

variable ZDiff is defined by considering concatenat-

ing values for all sequences. Tests are done at a signif-

icance level α = 0.05 [18]. The risk increase has been

set to μ0 = 0.05, which implies that we assume up to

a 5% of deviation from the risk predicted by Γ.

In order to cover as much methods and sequence features

as possible, we have chosen the Sintel database [5], three

representative OF methods, and four confidence measures

with different grounds.

Database. We have selected 17 sequences from the Sin-

tel Database [5] with at least 40 frames in order to perform

the experiments. The Sintel database contains sequences
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with large motion, specular reflection, motion blur, defocus

blur and atmospheric effects and, thus, covers a complete

bunch of sequence features.

Optical flow algorithms. In order to asses the range of

applicability of our framework, we have applied it to the fol-

lowing representative and state of the art optical flow meth-

ods 1:

• Combined local-global method (CLG) [4]: This

method combines Lucas-Kanade data term [14] with

an L2 norm smoothness term. The method CLG has

been chosen due to its simplicity on the formulation

and also because this method has as data term a solv-

able equation, that is, the data term can solve the opti-

cal flow on its own.

• Horn-Schunck method (HS) [8]: This is the classic

approach that uses OF brightness constancy equation

with an L2 norm smoothness term. The method HS

has been chosen because it is the original formulation

for variational OF techniques. In addition, due to its

simplicity on the formulation, we can control better the

different error sources and thus it facilitates a further

analysis of confidence measures performance.

• Classic-NL method (NL) [22]: This total variation

method uses the L1 norm to combine OF brightness

constancy assumption with the smoothness term. The

method NL has been chosen because it is one new

implementation that uses the L1 norm to avoid over-

regularization of the OF computation.

Confidence Measures. In order to find optimal confi-

dence measures for each OF method, we have considered

four CM with different grounds:

• Image structure (Ck). From all measures based on im-

age structure [2], we selected the condition number of

the data-term system defined in [16].

• Energy (Ce). The confidence measure is computed

by evaluating the flow field over the functional as de-

scribed in [3].

• Statistical (Cs). It assesses the computed optical flow

calculating the local variability by means of the Maha-

lanobis distance between the computed vector and the

distribution given by the surrounding ones [9].

• Bootstrap (Cb). It measures OF variability with respect

to perturbations in the model [12].

Therefore, we have 3× 4 = 12 possible OF-CM pairs.

1Using the free source code from [13] for the CLG method and [22] for

HS and NL methods.

4. Results and discussion
4.1. Explorative analysis of predictable sequences

A first analysis of the predictability of the sequences is

summarized in table 1. For each sequence and each pair

OF-CM, a label ranging from -1 to 3 is assigned to the pro-

files of the trained upper bound. The labels are assigned

following the opposite order of the plots shown in figure 2

from the worst profile (-1) to the best one (3). As well, those

sequences that have a good profile and the upper bound is

below 1 for all pixels have been labeled by a 3*. To make

the table more readable, we have assigned a different color

to each label.

(a) Example of too good sequence.

(b) Example of too bad sequence.

(c) Example of predictable sequence.
Figure 4. SDP profiles for different kind of sequences: prediction

not necessary (a), non-predictable (b) and predictable (c). Left col-

umn shows to the scatter plots (CM vs EE). Vertical red lines cor-

respond to the percentiles 0.25, 0.5, 0.75 and horizontal red line

indicates the EEmax = 1. Right column shows the respective

SDP.

Focusing on columns, we can observe that there are three

kind of sequences: too good sequences (labeled by 3*), too
bad sequences (labeled by -1) and predictable ones.

Too good sequences: Current optical flow methods are

able to accurately solve the flow field of sequences fulfilling

the method theoretical requirements (brightness constancy,

small displacements, etc). There are some sequences that

met such requirements and thus they had not only a good

profile for all pairs OF-CM but also a very low upper bound
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Table 1. Profile labels for each pair OF-CM.

of the EE (alley2, sleeping1, and sleeping2). Since the

error of the optical flow for those sequences is below 1

pixel for almost all pixels, the risk is almost 0 for all per-

centiles. Thus, the SDP does not provide additional infor-

mation, and further prediction is not necessary. Therefore,

these sequences are removed from further analysis. Fig-

ure 4(a) shows an illustrative example of this kind of se-

quence. On the left column, the scatter plot shows that most

of points are below EEmax. This means that the error is

subpixel and thus, for each percentile, the risk is almost 0,

as we can observe in the plot on the right hand side of the

figure.

Too bad sequences: Different OF methods require spe-

cific assumptions in order to properly perform the flow field.

In case sequences do not fulfil such requirements, errors are

arbitrarily large. In this case, none of the CMs is able to re-

late to the error and these sequences have to be removed

from further analysis. This is the case of the sequences

which scored −1 for all CM and an OF method, shown in

figure 1. For instance, CLG is based on Lucas-Kanade, thus,

its performance drops in case images do not have enough

texture or corners, like ambush5, cave4 or shaman3. In

the case of NL, the use of an approximation to the L1

norm (which can not be derived near zero) disturbs results

in case images have large areas of uniform intensity, like

mountain1 and shaman3. Besides, fast motion introduces

sudden changes in appearance and new objects and occlu-

sions abruptly appear into the scene (market5) or blurs too

much the image (cave2), making any OF method fail. As

well, in the case of market5, illumination changes violate

brightness constancy constrain. Whether optical flow as-

sumptions are met should be checked a priori using image

processing. Figure 4(b) shows an illustrative example of

this kind of sequence. The scatter plot on the left hand

side of the figure, we can observe that most of the points

are above EEmax, and thus the risk is high (shown on the

right hand side of the figure). As well, and most important,

the density of the scatter plot is accumulates on the upper

percentiles (marked in vertical red lines), resulting an in-

creasing risk profile, which is not able to be predicted.

Predictable sequences: The remaining sequences obtain

different scores along the different pairs OF-CM, and thus,

there exists at least one pair OF-CM that can predict the

risk. This set of sequences are the candidates to carry on

the assessment of error bound at sequence level. Figure

4(c) shows an illustrative example of this kind of sequence.

The scatter plot on the left hand side shows the density of

points is accumulated on the lower percentiles (marked in

red vertical lines), and most of them are below 0.25 per-

centile. This results in a decreasing profile of the curve,

shown on the right hand side of the figure, and thus, the risk

can be predicted.

Once we have removed non-predictable sequences and

sequences where prediction is not necessary, we can ob-
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serve that different measures have different performances

according to methods or sequences. Given that the average

of our score indicates its prediction capabilities, pairs be-

low 2 will be discarded. In this context, measure Ck scores

0 for all methods because it is too restrictive and discards

all pixels for this database. The confidence measure Cb is

successful when the data-term of the flow algorithm can re-

solve optical flow by itself (without the regularity term), this

holds for L2 approaches (and specially for CLG scheme)

but not for total variation methods such as NL. In this case,

its average score is 0.87 and, thus, it should be discarded.

The measure Ce is adequate if model assumptions are met,

thus, it is the best performer for our selected data-set be-

cause non-predictable frames coincide with frames failing

to met the optical flow algorithm requirements. Finally, Cs

depends more on the nature of optical flow and achieves

better results in the presence of patches presenting regular

motion. It follows that its average drops below 2 for HS
and NL, which are the OF methods that include more vari-

ability in sequences.

For that reasons, we consider as a proper candidates the

following pairs OF-CM: CLG-Cb, CLG-Ce, HS-Cb, HS-

Ce, NL-Ce. The tests explained in subsection 2.2 will serve

to check the predictability of the error of those pairs for

sequences with similar features.

4.2. Assessment of error bound at sequence level

Table 2 summarizes the ZDiff t-test statistics associated

to each OF-CM pair. We report the null hypothesis (with

1 if it is rejected), the p-value and the confidence interval

upper bound of the difference test.

For all cases, risk could be predicted with a deviation

below 10% (as CI upper bound in last column are below

.08). However, none of the measures succeeded in predict-

ing HS risk with a deviation less than 5%. This is mainly

attributed to a large variability in HS performance, which is

very sensitive to the theoretical assumptions (such as sud-

den changes in OF spatial distribution or smooth image ap-

pearance). This introduces large variation in SDP plots as il-

lustrated in fig. 5 which shows SDP and Γ for the ambush7

sequence. This is a representative case of a sequence with-

out all frames meeting the assumptions required for the OF

method. Like in real world conditions, this is a common

issue along most Sintel sequences and suggests a different

basic sampling (image patches, for instance) other than se-

quence frames for computing statistics. The measure Cs

also failed to achieved the desired performance, probably

due to its high dependance on motion patch regularity.

The only pairs that are good candidates to predict error

risk with a deviation under 5% are CLG-Cb, CLG-Ce and

NL-Ce. This is a sensible result given that the set of test se-

quences that were considered for this experiments fulfilled

the theoretical assumption required for good performance

Figure 5. SDP profiles and curve Γ for the sequence ambush7.

H p-val CI

CLG Cb 1 4.9977e-05 0.0460

CLG Ce 1 0.0073 0.0485

CLG Cs 0 0.9997 0.0631

HS Cb 0 1 0.0798

HS Ce 0 1.0000 0.0601

NL Ce 1 0.0022 0.0481
Table 2. Difference test.

of the OF methods (see the discussion carried out at the end

of Section 4.1).

5. Conclusions and Further Research

This paper presents statistical and probabilistic tools for

validating the capabilities of confidence measures for as-

sessing OF quality in the absence of ground truth. Con-

fidence measures are evaluated in the measure that they

establish a threshold ensuring a bound on OF error up to

a percentage of pixels (SDP plots). We also describe the

statistics needed to compute the threshold (the Γ curve) of

the confidence measure that ensures a given accuracy of the

flow field. Our framework has been validated on the Sintel

database [5], by three representative OF methods, and four

confidence measures with different grounds.

Our experiments indicate that measures based on either

local image structure [2] or local motion regularity [9] are

not the best suited for predicting OF error risk, at least for

the considered OF methods. Energy-based [3] and bootstrap

[12] measures are better candidates, as far as, sequences

match some assumptions. In particular, the bootstrap is

suitable for CLG methods, while the energy-based could

predict error risk for a wider range of variational meth-

ods. None of the confidence measures could predict HS

risk, probably due to a bad definition of the samples used to

compute Γ.

This preliminary work constitutes a first new effort in the

use of statistical and probabilistic tools for the evaluation of

the capabilities of CM for predicting OF error in decision
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support systems. However, more research is needed in order

to fully validate our framework as a solid methodology for

the implementation of OF error prediction strategies.

The performance of our methodology depends on sev-

eral factors. On the one hand, it depends on the variability

of the dynamical appearance of the frames taken in, both,

the training set used to compute Γ and new incoming se-

quences. On the other hand, the error of a pair OF-CM can

be predicted provided that sequences fulfill some assump-

tions. In case this assumption are not met, SDP profiles

have a significant large variability that can not be properly

modeled by the Γ curves. Therefore the risk of this kind

of sequences can not be predicted and should be excluded a

priori.
In our experiments, we visually identified the theoretical

assumptions. This already validates our methodology for
some application fields having very controlled acquisition
conditions, such as medical imaging. However, in order
that our system can effectively run on an arbitrary decision
support application (such as ADAS), whether OF assump-
tions are met should be checked a priori using image
processing.
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