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Abstract: Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community
has achieved impressive progress recently due the excellent performance of deep neural networks and the availability of large
datasets. Although ethnic bias has been verified to severely affect the performance of face recognition systems, it still remains an
open research problem in face anti-spoofing. Recently, a multi-ethnic face anti-spoofing dataset, CASIA-SURF CeFA, has been
released with the goal of measuring the ethnic bias. It is the largest up to date cross-ethnicity face anti-spoofing dataset covering
3 ethnicities, 3 modalities, 1, 607 subjects, 2D plus 3D attack types, and the first dataset including explicit ethnic labels among the
recently released datasets for face anti-spoofing. We organized the Chalearn Face Anti-spoofing Attack Detection Challenge which
consists of single-modal (e.g., RGB) and multi-modal (e.g., RGB, Depth, Infrared (IR)) tracks around this novel resource to boost
research aiming to alleviate the ethnic bias. Both tracks have attracted 340 teams in the development stage, and finally 11 and 8
teams have submitted their codes in the single-modal and multi-modal face anti-spoofing recognition challenges, respectively. All
the results were verified and re-ran by the organizing team, and the results were used for the final ranking. This paper presents an
overview of the challenge, including its design, evaluation protocol and a summary of results. We analyze the top ranked solutions
and draw conclusions derived from the competition. In addition we outline future work directions.

1 Introduction African East Asian Central Asian 3D Mask
Face anti-spoofing aims to determine whether the captured face
from a face recognition system is real or fake. It is essential to
protect face recognition systems from malicious attacks, such as
a printed face photograph (i.e., print attack), displaying videos on
digital devices (i.e., replay attack), or even 3D attacks (i.e., face
mask). Therefore, the presentation attack detection (PAD) task is a
vital stage prior to visual face recognition systems which has been
widely applied in financial payment, access control, phone unlocking
and surveillance. Some early temporal-based face PAD works [1-4]
attempt to detect the evidence of liveness (e.g., eye-blinking), which
require a constrained human interaction. However, these methods
become vulnerable if someone presents a replay attack or a print
photo attack with cut eye/mouth regions. Another works are based
on static texture analysis [5, 6]. However, these algorithms are not
accurate enough because of the use of handcrafted features, such
as LBP [7-9], HoG [8-10] and GLCM [10], that not necessarily
are able to characterize samples, and adopt traditional classifiers
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Fig. 1: Samples of the CASTA-SURF CeFA dataset. It contains
1,607 subjects, 3 different ethnicities (i.e., Africa, East Asia, and
Central Asia), with 4 attack types (i.e., print attack, replay attack,
3D print and silica gel attacks).

such as SVM and LDA, which may be limited given the complex-
ity of the task. Recently, CNN-based face PAD methods [11-16]
have shown impressive progress due to the excellent performance
of deep neural networks [11, 14, 15, 17] and the availability of large
datasets [15, 18-22]. Although these methods achieve near-perfect
performance in intra-database experiments, they are still vulnerable
when facing complex authentication scenarios. In particular, ethnic
bias has been verified to severely affect the performance of face
recognition systems [23-25], representing an open research problem
in face anti-spoofing.
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In fact, we have verified in our previous work [22] that state-of-
the-art (SOTA) PAD algorithms do suffer from severe ethnic bias,
for example, the ACER metric values vary widely on the test sam-
ples with different ethnicities for the same algorithm. In order to
alleviate the ethnic bias and ensure that face PAD methods are in
a safe reliable condition for users of different ethnicities, Liu et
al. [22] introduce the largest up to date Cross-ethnicity Face Anti-
spoofing (CeFA) dataset, covering 3 ethnicities, 3 modalities, 1, 607
subjects, and 2D plus 3D attack types. Some samples of the CASIA-
SURF CeFA dataset are shown in Fig. 1. Four protocols are defined
to measure the effect under varied evaluation conditions, such as



Table 3 Protocols and Statistics. Note that the A, C and E are short for Africa, Cen-
tral Asia and East Asia, respectively. Track(S/M) means the Single/Multi-modal track.
The PAls means the presentation attack instruments.

cross-ethnicity, unknown spoofs or both of them. To the best of
our knowledge, CeFA is the first dataset including explicit ethnic
labels in current published datasets for face anti-spoofing. Addition-

ally, they provide a base%ine which inclgdes two pgrts to all.evia.te Tack  Supset  Subjects(one ethnicity) Ethnicity PAls # Num.img(rgb)
above bias: (1) The static-dynamic fusion mechanism applied in S M 41 42 43 41 42 43
1 ] 1 1 . - Train 1-200 A C E Replay 33,713 34,367 33,152
qach modality (z..e., RGB, Depth and infrared image); (2) The par e S S b A e e e
tially shared fusion strategy is proposed to learn complementary Test 301-500 C&E A&E A&C  Print 105457 102,207 103,420

information from multiple modalities.

Leveraging on the CeFA dataset, we organized the Chalearn Face
Anti-spoofing Attack Detection Challenge comprising single-modal
(e.g., RGB) and multi-modal (e.g., RGB, Depth, IR) tracks collo-
cated with the Workshop on Media Forensics at CVPR2020. The
goal of this challenge was to boost research on facial PAD aiming to
alleviate the ethnic bias. Both tracks, single-modal track® and multi-
modal track T were run simultaneously on the Codalab platform. The
competition attracted 340 teams in the development stage, with 11
and 8 teams entering the final evaluation stage for the single-modal
and multi-modal face anti-spoofing recognition tracks, respectively.
A summary with the names and affiliations of teams that entered
the final stage is shown in Tables 1 and 2 for the single-modal and
multi-modal tracks, respectively.

Compared to previous challenges on related topics [26-29], the
algorithms of all participating teams were based on deep learning
and did not require of external resources like datasets and pre-trained
models. This was a rule established in the challenging that not only
provides a fairer evaluation scenario, but also brings benefits for
reproduciblity and algorithm implementation in practical applica-
tions. To sum up, the contributions of this paper are summarized as
follows:

e We describe the design and organization of both tracks of the
Chalearn Face Anti-spoofing Attack Detection Challenge, which
is based on the CASIA-SURF CeFA dataset and was run on the
CodalLab platform.

e We provide a complete description of solutions developed in the
context of the challenge.

*https://competitions.codalab.org/competitions/
22151
Thttps://competitions.codalab.org/competitions/
22036

Table 1 Team and affiliations name are listed in the final ranking of this
challenge(Single-modal)

Ranking Team Name Leader Name, Affiliation

1 VisionLabs Alexander Parkin, visionlabs
2 BOBO Zitong Yu, OULU unv.

3 Harvest Jiachen Xue, Horizon

4 ZhangTT Zhang Tengteng, CMB

5 Newland_tianyan Xinying Wang, Newland Inc.
6 Dopamine Wenwei Zhang, huya

7 lecLab Jin Yang, HUST

8 Chuanghwa Telecom Lab. Li-Ren Hou, Chunghwa Telecom
9 Wggtmac Guoging Wang, ICT

10 Hulking Yang, Qing, Intel

11 Dqiu Qiudi

Table 2 Team and affiliations name are listed in the final ranking of this
challenge(Multi-modal)

Ranking Team Name Leader Name, Affiliation

1 BOBO Zitong Yu, OULU unv.

2 Super Zhihua Huang, USTC

3 Hulking Qing Yang, Intel

4 Newland_tianyan Zebin Huang, Newland Inc.
5 ZhangTT Tengteng Zhang, CMB

6 Harvest Yuxi Feng, Horizon

7 Qyxqyx Yunxiao Qin, NWPU

8 Skjack Sun Ke, XMU

2

e We point out critical points on face anti-spoofing detection by
comparing essential differences between a real face and a fake one
from multiple aspects, also discussing future lines of research in the
field.

2 Challenge Overview

In this section, we describe the organized challenge, including a brief
introduction to the CASIA-SURF CeFA dataset, evaluation metrics,
and the challenge protocol.

2.1 CASIA-SURF CeFA

CASIA-SURF CeFA [22] is the largest up to date cross-ethnicity
face anti-spoofing dataset, covering 3 ethnicities, 3 modalities,
1,607 subjects, and 2D plus 3D attack types. More importantly, it
is the first public dataset designed for exploring the impact of cross-
ethnicity in the study of face anti-spoofing. Some samples of the
CASIA-SURF CeFA dataset are shown in Fig. 1.

The motivation of CASIA CeFA dataset is to provide a benchmark
to allow for the evaluation of the generalization performance of new
PAD methods. Concretely, four protocols are introduced to measure
the affect under varied evaluation conditions: cross-ethnicity (Pro-
tocol 1), (2) cross-PAI (Protocol 2), (3) cross-modality (Protocol 3)
and (4) cross-ethnicity and cross-PAI (Protocol 4). In order to facil-
itate the competition more challenging, we adopt Protocol 4 in this
challenge, which is a challenging protocol designed via combining
conditions of both Protocol 1 and 2. As shown in Table 3, it has
three data subsets: training, validation and testing sets, which con-
tain 200, 100, and 200 subjects for each ethnicity, respectively. Note
that the remaining 107 subjects are 3D masks. In order to fully mea-
sure the cross-ethnicity performance of the algorithm, one ethnicity
is used for training and validation, and the left two ethnicities are
used for testing. Since there are three ethnicities in CASIA-SURF
CeFA, a total of 3 sub-protocols (i.e., 4_1, 4_2 and 4_3 in Table 3)
are adopted in this challenge. In addition to the ethnic variation, the
factor of PAIs are also considered in this protocol by setting different
attack types in training and testing phases.

2.2 Evaluation metric

In this challenge we selected the recently standardized ISO/IEC
30107-3* metrics: Attack Presentation Classification Error Rate
(APCER), Normal Presentation Classification Error Rate (NPCER)
and Average Classification Error Rate (ACER) as the evaluation
metrics, these are defined as follows:

APCER = FP/ (FP + TN) )
NPCER = FN/(FN +TP) )
ACER = (APCER + NPCER) /2 3)

where TP, FP, TN and FN correspond to true positive, false pos-
itive, true negative and false negative, respectively. APCER and
BPCER are used to measure the error rate of fake or live samples,
respectively. Inspired by face recognition, the Receiver Operating

*https://www.iso.org/obp/ui/iso

IET Research Journals, pp. 1-12
© The Institution of Engineering and Technology 2015



Characteristic (ROC) curve is introduced for large-scale face Anti-
spoofing detection in CASIA-SURF CeFA dataset, which can be
used to select a suitable threshold to trade off the false positive rate
(FPR) and true positive rate (TPR) according to the requirements of
real applications.

2.3 Challenge protocol

The challenge was run in the CodalLab platform, and comprised two
stages as follows:

2.3.1 Development Phase: (Started: Dec. 13, 2019 - Ended:
in March 1, 2020). During this phase, participants had access to
labeled training subset and unlabeled validation subset. Since the
protocol used in this competition (Protocol 4) comprises 3 sub-
protocols (see 2.1), participants firstly need to train a model for each
sub-protocol, then predict the score of the corresponding validation
set, and finally simply merge the predicted scores and submit them to
the CodaLab platform and receive immediate feedback via a public
leader board.

2.3.2  Final phase: (Started: March 1, 2020 - Ended: March
10, 2020). During this phase, labels for the validation subset and
the unlabeled testing subset were released. Participants can firstly
take the labels of the validation subset to select a model with better
performance, then they use this model to predict the scores of the
corresponding testing subset samples, and finally submit the score
files in the same way as the development phase. We will feedback all
results of the three sub-protocols online which including the values
of APCER, BPCER, and ACER. Like [20], the mean and variance
of evaluated metrics for these three sub-protocols are calculated for
final results. Note that to fairly compare the performance of partic-
ipants’ algorithms, this competition does not allow the use of other
training datasets and pre-trained models. To be eligible for prizes,
winners had to publicly release their code under a license of their
choice and provide a fact sheet describing their solution.

3 Description of solutions

In the final ranking stage, there were 19 teams submitting their code
and face sheets for evaluation. According to the information pro-
vided, in the following we describe the solutions developed by each
of the teams, with detailed descriptions for top ranked participants
in both single-modal (RGB) and multi-modal (RGB-Depth-IR) face
anti-spoofing recognition challenge tracks.

Tables 1 and 2 show the final ranking for both tracks. It can be
seen from these tables that most participants came from the indus-
trial community. Interestingly, the VisionLabs team was not only the
winner of the single-modal track, but also the winner of the Chalearn
LAP multi-modal face anti-spoofing attack detection challenge at
CVPR 2019 [29]. In addition, the BOBO team designs novel cen-
tral difference convolution (CDC) [30] and Contrastive depth loss
(CDL) [31] for feature learning, and achieved second and first place
in both single-modal and multi-modal tracks, respectively.

3.1  Single-modal Face Anti-spoofing Challenge Track

Baseline. We provided a baseline for approaching this task via
designing a SD-Net [22] which takes Resnetl8 [32] as the back-
bone. As shown in Fig. 2, it contains 3 branches: static, dynamic
and static-dynamic branches, which learn hybrid features from static
and dynamic images. For static and dynamic branches, each of them
consists of 5 blocks (i.e., conv, resl, res2, res3, res4) and 1 Global
Average Pooling (GAP) layer, while in the static-dynamic branch,
the conv and res1 blocks are removed because it takes fused features
of res1 blocks from static and dynamic branches as input.

For dynamic image generation, a detailed description is pro-
vided in [22]. In short, we compute its dynamic image online with
rank pooling using K consecutive frames. Our selection of dynamic
images for rank pooling in SD-Net is further motivated by the fact
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Fig. 2: The framework of SD-Net. The figure is provided by the
baseline team and ranked NO.11 in single-modal track.
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Fig. 3: The framework is provided by the VisionLabs team. Note
that the SimpleNet architecture: 4 blocks of Conv 3 x 3- BatchNorm
- Relu - MaxPool of sizes 16, 32, 64, 128 followed by Conv 5 x 5
with 256 filters. The figure is provided by the VisionLabs team and
ranked NO.1 in single-modal track.

that dynamic images have proved its superiority to regular optical
flow [33, 34].

VisionLabs. Due to high differences in the train and test subsets
(i.e., different ethnics and attack types), the VisionLabs team used
a data augmentation strategy to help train robust models. Similar
to previous works which convert RGB data to HSV and YCbCr
color spaces [35], or Fourier spectrum [36], they decided to convert
RGB to other “modalities”, which contain more authentic informa-
tion instead of identity features. Specially, the Optical Flow and
RankPooling are used as shown in Fig. 3.

As shown in Fig. 3, the proposed architecture consists of four
branches where two branches are used for dynamic images via
dynamic pooling algorithm and the left two branches are used for the
optical flow images. For optical flow modality, they calculated two
flows between first and last images of RGB video as well as between
the first and second images. For the rank pooling modality, they used
the rank pooling algorithm [34] where different hyperparameters
used to generate two different dynamic images.

Formally, a RGB video with K frames is represented by { X},
where ¢ =0, ..., K — 1 and t = {0, 1} is the label (0-fake, 1-real).
Then for each RGB video, they sample L = 16 images uniformly,
obtaining {X;} where j = 0, ..., 15. Then, they remove black bor-
ders and pad image to be square of size (112, 112). Then they apply
intensive equal color jitter to all images, emulating different skin
color.

As shown in Fig. 3, they apply 4 “modality” transforms: rank
pooling ({X}}. C=1000). rank pooling ({X}'}, C=1), Flow(X,
X {"5), Flow (XéC , X f), where C is the hyperparameter for SVM
in the rank pooling algorithm [34]. The code of rank pooling was
released *. These transforms return 4 tensors with sizes 3 x 112 X
112, 3 x 112 x 112, 2 x 112 x 112, 2 x 112 x 112 respectively.
Further, the features of each modal sample are extracted by an inde-
pendent network (namely SimpleNet and its structure depicted in
Fig. 3) with size of d = 256 and all features are concatenated to get
a tensor of shape 4 x d. Then they apply Max, Avg and Min pooling

*https://github.com/MRzzm/rank—-pooling-python



Attel_ltionl‘

)
m;_,ba
o =
¢ : =i silai=ia
Ve %b AR Qg = |e
= )/ S &S =2|Q|=
= s(s(e Sla sl
5 el eI
Q I 4li=]ie] oYliegiietie]
= S-S alaala
g clgle DITIOIC
~ 80 Block1 Block2

sigmoid

|
1 l
160 i

160 1
Attention2

Attention1

-

IA

160 160

DownSample

(_ CDC(input_channels/out_channels) )

\A

N )
s5e e
S|s|a
O ||\ ||
ol el | e’ N
Q99 )
ala|& S
NSNS, o

Block3

LITI)L ‘ L('HI_

Lyour=BLip+(1-P) Ly,

=2
=
g

Z
£
z

fal

160 160

ttention3

Fig. 4: The framework of regression network. The figure is provided by the BOBO team and ranked N O.2 in single-modal track.

among first dimension and concatenate results to get 3 X d tensor.
Finally, a binary cross—entrogy is adopted in their network. The code
of VisionLabs was released '.

BOBO. Most CNN-based methods [11, 12, 14, 37] only treat face
anti-spoofing as a binary classification, and train the neural net-
work supervised by the softmax loss. However, these methods fail
to explore the nature of spoof patterns [15], which consist of skin
detail loss, color distortion, moire pattern, motion pattern, shape
deformation and spoofing artifacts. In order to relieve the above
issues, similar to [31], the BOBO team adopts depth supervision
instead of binary softmax loss for face anti-spoofing. Different
from [31], they design a novel Central Difference Convolution
(CDC) [30] and a Contrastive Depth Loss (CDL) for feature learning
and representation.

The structure of the depth map regression network based on CDC
is shown in Fig. 4. It consists of 3 blocks, 3 attention layers con-
nected after each block, and 3 down-sampling layers followed by
each attention layer. Inspired by the residual network, they use a
short-cut connection, which is concatenating the responses of Low-
level Cell (Blockl), Mid-level Cell (Block2) and High-level Cell
(Block3), and sending them to two cascaded convolutional layers
for depth estimation. All convolutional layers use the CDC network
which is followed by a batch normalization layer and a rectified
linear unit (ReLU) activation function. The size of input image
and regression depth map are 3 X 256 x 256 and 1 x 32 x 32,
respectively. Euclidean Distance Loss (EDL) is used for pixel-wise
supervision in this work which is formulated:

Lppr, =|IDp — Dglf3, C))

where Dp and D¢ are the predicted depth and groundtruth depth,
respectively.

EDL applies supervision on the predicted depth based on pixel
one by one, ignoring the depth difference among adjacent pixels.
Intuitively, EDL merely assists the network to learn the absolute
distance between the objects to the camera. However, the distance
relationship of different objects is also important to be supervised
for the depth learning. Therefore, one proposed the Contrastive
Depth Loss (CDL) to offer an extra supervision, which improves the

thttps://github.com/AlexanderParkin/CASIA-SURF._
CeFA
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Fig. 5: The kernel K{°"""#5" in contrastive depth loss.

generality of the depth-based face anti-spoofing model:
Lepr :ZHKiCDL@DP—KiCDL@DG”%’ 5)

K2

where KZC DL s the i contrastive convolution kernel, i € [0, 7].
The details of the kernels can be found in Fig. 5.

Therefore, the total loss Lyeq; employed by this team is
defined as follow:

Loverant = B-LeprL + (1 - 5) ~Lepr, (6)
where [ is the hyper-parameter to trade-off EDL loss and CDL
loss in the final overall loss L ,,epqq;- Finally their code is publicly
available *.

Harvest. It can be observed from Table 3 that the attack types of
the spoofs in the training and testing subsets are different. The Har-
vest team considered the motion information of real faces is also an
important discriminative cue for face anti-spoofing attack detection.
Therefore, how to effectively learn the motion information of real
faces from the interference motion information of the replay attack
is a key step. As shown in Fig. 6, the live frame displays obvious tem-
poral variations, especially in expressions, while there is very little
facial changes in the print spoof samples for same subject, which
inspires the Harvest team to capture the subtle dynamic variations
by relabelling live sequence. Suppose the labels of spoof and live

*https://github.com/ZitongYu/CDCN/tree/master/
FAS_challenge CVPRW2020
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Fig. 6: Visual comparison of real face, replay attack, print attack
motion information for Harvest team.
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Fig. 7: The framework of training and testing phases for Harvest.
The figure is provided by the Harvest team and ranked NO.3 in
single-modal track.

samples are 0 and 1 respectively. They define a new temporal-aware
label via forcing the labels of the real face images in a sequence
to change uniformly from 1 to 2, while the spoofing faces stay
0. Let X = {z1,x2,...,2n} denote a video containing n frames,
where x1 and z,, represent the first and final frames, respectively.
They encode this implicit temporal information by reformulating the
ground-truth label, such as:

14t )
n

where the genuine label grows over time. Note that they do not
encode the temporal variations in the spoof video due to their irregu-
lar variations in sequence. As shown in Fig. 7, the overall framework
consists of two parts below:

(1) In the training stage, they encode inherent discriminative
information by relabelling live sequence.

(2) In inference stage, they aggregate the static-spatial fea-

tures with dynamic-temporal information for sample classification.
Finally, combined with the strong learning ability of backbone, their
method achieved 3rd in the single-modal track and the code is
publicly available *.
ZhangTT. Similar to the SD-Net in baseline [22], this team pro-
poses a two-branch network to learn hybrid features from static and
temporal images. They call it quality and time tensor, respectively.
As shown in Fig. 8, they take the ResNet [32] as backbone for each
branch and use the single frame and multi-frame as input of the two
branches. Specially, the quality tensor and time tensor are first sent to
anormal 7 X 7 receptive field convolution layer for preliminary fea-
ture extraction. After feature extraction by three independent blocks,
a higher-level expression quality feature map and time feature map
were obtained. Then the quality feature and the time feature are con-
catenated together to form a new feature map for final classification
with a binary cross-entropy loss function. The blocks in this work
are same with the ResNet block [32].

For data preprocessing, they first discarded the color information
by converting the RGB modality to grayscale space, and then used
histogram equalization to mitigate the skin tone gap between eth-
nicities. Finally, they adopted the following four strategies to reduce
the difference between replay and print attacks: 1) They regard face

*https://github.com/yueyechen/cvpr20
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Fig. 8: Architecture of the proposed for single-modal track. The
figure is provided by the ZhangTT team and ranked NO.4 in
single-modal track.

anti-spoofing work as a classification task for 4 classes instead of
binary. Such as the 4 categories are live-invariable (label 0), fake-
invariable (label 1), live-variable (label 2), fake-variable (label 3),
respectively. 2) Dithering each channel of the attack sample solves
the problem of consistency of each frame of the print attack. 3) To
enhance the robustness, consider randomly superimposing Gaussian
noise and superimposing gamma correction on each channel of the
time tensor. 4) In order to discriminate the texture difference, the first
channel of the time tensor is separately identified and recorded as
the quality tensor. It is sent to the network to extract features without
noise superposition. Their code is publicly available .
Newland_tianyan. This team mainly explores single-modal track
from two aspects of data augment and network design. For data aug-
ment, on the one hand, they introduced print attacks in the training
set by randomly pasting paper textures on real face samples. On the
other hand, they performed random rotation, movement, brightness
transformation, noise and fold texture addition on the same frame
of real face to simulate the case that there is no micro expression
change for the print attack. For network design, this team uses a 5-
layer sequence network which taking 16 frames of samples as input
to learn the temporal features. In order to improve the generalization
faced with different ethnicities, the images are subtracted from the
neighborhood mean before sending to the network due to the sam-
ples of different ethnicities vary widely in skin color. Their code is
publicly available *

Dopamine. This team uses face ID information for face anti-
spoofing tasks. The architecture is shown in Fig.9, a multi-task
network is designed to learn the features of identity and authenticity
simultaneously. In the testing phase, these two scores are combined
to determine whether a sample is a real face. They use the softmax
score from real/fake classifier and the feature computed by the back-
bone network (Resnet100) to compute minimal similarity between
same person. In theory, the feature similarity score of the attack sam-
ple is close to 1, and the real face is close to 0. Their code is publicly
available T

IecLab. This team uses feathernet and 3DResNet [38] to learn
the authenticity and expression features of the samples, and finally
merged the two features for anti-spoofing tasks. Their code is
publicly available 3

Chuanghwa Telecom Lab. This team combines subsequence fea-
tures with Bag of local features [39] within the framework of
MIMAMO-Net. Finally, the ensemble learnin%[ strategy is used for
feature fusion. Their code is publicly available

Thttps://github.com/ZhangTT-race/
CVPR2020-SingleModal
*https://github.com/XinyingWang55/
RGB-Face-antispoofing—Recognition
Thttps://github.com/xinedison/huya_face

fhttps://github.com/lrelia/CVPR2020-FaceAntiSpoofing

Shttps://github.com/wtomin/MIMAMO~Net
Yhttps://drive.google.com/open?id=
1ouLl1X69K1QEU172iKH10~_Uvztl1W8f_ 1
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Fig. 10: The framework of PSMM-Net. The figure is provided by
the baseline team and ranked NO.8 in multi-modal track.

Wgqtmac. This team focused on improving face anti-spoofing
generalization ability and proposed an end-to-end trainable face
anti-spoofing approach based on deep neural network. They choose
Resnet18 [32] as the backbone and use warmup strategy to update
the learning rate. The learned model performs well on the develop-
ing subset. However, it is easily overfitted on the training set and ﬁets
worse results on the testing set. Their code is publicly available .
Hulking. The main role of PipeNet proposed by this team is to
selectively and adaptively fuse different modalities for face anti-
spoofing task. Since single-modal track only allow the use of RGB
data, the team’s method has limited performance in this challenge.
We detail the team’s algorithm in Section 3.2. Their code is publicly
available *.

Dqiu. This team treats the face anti-spoofing as a binary classifi-
cation task and uses Resnet50 [32] as the backbone to learn the
features. Since no additional effective strategies were used, no good
results were achieved on the testing set.

3.2 Multi-modal

Baseline. In order to take full advantage of multi-modal sam-
ples to alleviate the ethnic and attack bias, we propose a novel
multi-modal fusion network, namely PSMM-Net [22]. As shown in
Fig. 10. It consists of two main parts: a) the modality-specific net-
work, which contains three SD-Nets to learn features from RGB,
Depth, IR modalities, respectively; b) and a shared branch for all
modalities, which aims to learn the complementary features among
different modalities. In order to capture correlations and complemen-
tary semantics among different modalities, information exchange
and interaction among SD-Nets and the shared branch are designed.

There are two main kind of losses employed to guide the training
of PSMM-Net. The first corresponds to the losses of the three SD-
Nets, i.e.color, depth and ir modalities, denoted as Lootor | pdepth
and £*", respectively. The second corresponds to the loss that guides

Ihttps://github.com/wgqtmac/cvprw2020.git
*https://github.com/muyiguangda/

cvprw-face-project

the entire network training, denoted as £*"°!®, which bases on

the summed features from all SD-Nets and the shared branch. The
overall loss £ of PSMM-Net is denoted as:

L= Ewhole + Ccolor +£depth + [:ir (8)

BOBO. For the Multi-modal track, as shown in Fig. 11, this team
takes 3 independent networks (Backbone) to learn the features of the
3 modalities (e.g., RGB, Depth, IR). Therefore, the entire structure
consists of two main parts: a) the modality-specific network, which
contains three branches (the backbone network of each modality
branch is not shared) to regress depth maps of RGB, Depth, IR
modalities, respectively; b) a fused branch (via concatenation) for all
modalities, which aims to learn the complementary features among
different modalities and output final depth map with same size
(1 x 32 x 32) of single-modal track. Similar to single-modal track,
the CDL and CDE loss functions are used in multi-modal track in
the form of weighted sums. As the feature-level fusion strategy (see
Fig. 11) might not be optimal for all protocols, they also try two
other fusion strategies: 1) input-level fusion via concatenating three-
modal inputs to 256 x 256 x 9 directly, and 2) score-level fusion
via weighting the predicted score from each modality. For these
two fusion strategies, the architecture of single-modal CDCN (see
Fig. 4) is used. Through comparative experiments, they concluded
that the input-level fusion (i.e., simple fusion with concatenation)
might be sub-optimal because it is weak in representing and selecting
the importance of modalities. Therefore, this final result is com-
bined with the best sub-protocols results (i.e., feature-level fusion
for protocol 4_1 while score-level fusion for protocol 4_2 and 4_3).
Especially for score-fusion, they weight the results of RGB and
Depth modalities averagely as the final score (i.e., fusion_score =
0.5 x RGB_score 4+ 0.5 x depth_score). This simple ensemble
strategy helps to boost the performance significantly in their experi-
ments.

Super. CASIA-SUREF CeFA is characterized by multi-modality (i.e.,
RGB, Depth, IR) and a key issue is how to fuse the complementary
information between the three modalities. This team explored multi-
modal track from three aspects: (1) Data preprocessing. (2) Network
construction. (3) Ensemble strategy design.

Since the dataset used in this competition retained the black
background area outside the face, this team tried to remove the
background area using the histogram threshold method to mitigate
its interference effect on model learning. To increase the diversity
of training samples, they use random rotation within the range of
[—30°, 3077, flipping, cropping and color distortion for data aug-
mentation. Note that the three modalities of the same sample are
maintained in a consistent manner to obtain the features of the
corresponding face region.

Inspired by [21] which employs the “Squeeze-and-Excitation”
Block (SE Block) [40] to re-weighting the hierarchy features of each
modality, this team takes a multi-stream architecture with three sub-
networks to study the dataset modalities, as shown in Fig.12. We can
see that the RGB, Depth and IR data are learnt separately by each
stream, and then shared layers are appended at a point (Res-4) to
learn joint representations. However, the single-scale SE block [40]
does not make full use of features from different levels. To this end,
they extend the SE fusion from single scale to multiple scales. As
shown in Fig. 12, the Res-1, Res-2 and Res-3 blocks from each
stream extract features from different modalities. After that, they
first fuse features from different modalities via the SE block after
Res-1, Res-2 and Res-3 respectively, then concatenate these fused
features and sending them to aggregation block (Agg Blcok), next
merging these features (including shared branch features after the
Global Average Pooling (GAP)) via element summation operations
similar to [41]. Finally, they use the merged features to predict real
and fake. Differently from [41], they add a dimension reduction layer
before fully-connected (FC) layer for avoiding the overfitting.

To increase the robustness to unknown attack types and ethnici-
ties, they design several new networks based on the basic network
shown in Table 4. Such as the Network A with a dimension reduc-
tion layer and without SE fusion after each res block. While the
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Fig. 11: The framework of regression network for 3 modalities. The figure is provided by the BOBO team and ranked NO.2 in multi-modal

track.
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Fig. 12: The framework of Super team. The ResNet34 or
IR_ResNet50 as the backbone. The figure is provided by the Super
team and ranked /NO.2 in multi-modal track.

Table 4 The networks ensemble ways adopted by Super team. Each
network carries functions marked by v".

Network Backbone SE block  Dimension reduction  Agg block
A ResNet34 v v
B ResNet34 v v
C ResNet34 v
D IR_ResNet50 v

Network B and C are similar to [41] and [21] respectively. For the
IR_ResNet50, it uses the improved residual block which aims at fit-
ting the face recognition task. In the experiments, they found that dif-
ferent networks performed differently under the same sub-protocol.
Therefore, they selectively trained these networks according to dif-
ferent sub-protocols and get the final score via averaging the results
of selected networks. Their code is publicly available *

Hulking. As for this team, they propose a novel Pipeline-based
CNN (namely PipeNet) fusion architecture which taking modified
SENet-154 [40] as backbone for multi-modal face anti-spoofing.
Specifically, as shown in Fig. 13, it contains two modules, namely
SMP (Selective Modal Pipeline) module and LFV (Limited Frame
Vote) module for the input of multiple modalities and sequence
video frames, respectively. We can see that the framework contains
three SMP modules, and each module takes a modal data (i.e., RGB,
Depth, IR) as input. Taking the RGB modality as an example, they
firstly use one frame as input and randomly crop it into patches, then
send them to Color Pipeline which consists of data augmentation
and feature extraction operations. They use a fusion strategy, which
is concatenating the responses of C'olor Pipeline, Depth Pipeline
and I RPipeline, and sending them to FusionM oudle for further

*https://github.com/hzh8311/challenge2020_face_

anti_spoofing
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Fig. 13: The overall architecture of PipeNet. The figure is provided
by the Hulking team and ranked N O.3 in multi-modal track.

feature abstraction. After the linear connection, input all frame fea-
tures of the video to the LFV module, and iteratively calculate the
probability that each frame sample belongs to the real face. Finally,
the output is prediction for real face probability of the input face
video.

Newland_tianyan. For multi-modal track, this team uses two inde-
pendent ResNet-9 [32] as backbones to learn the features of depth
and ir modal data respectively. Similar to single-modal track, the
inputs of depth branch are subtracted from the neighborhood mean
before entering the network. In addition to data augment similar to
the single-modal track, they transferred the RGB data of real sam-
ples to gray space and added light spots for data augment. Their code
is publicly available *

ZhangTT. A multi-stream CNN architecture called ID-Net is pro-
posed for multi-modal track. Since the different feature distributions
of different modalities, the proposed model attempt to explore the
interdependence between these modalities. As shown in Fig. 14,
there are two models trained by this team which one is trained
using only IR as input and the other using both IR and Depth as
inputs. Specially, a multi-stream architecture is designed with two
sub-networks to perform multi-modal features fusion and the fea-
ture maps of two sub-networks is concatenated after a convolutional
block. The final score is a weighted average of the results of two
models. Their code is publicly available t

Harvest. Different from other teams, they pay more attention to
network structure, this team mainly explores data preprocessing
and data augmentation to improve the generalization performance.
Through experimental comparison, they found that IR modal data is
more suitable for face anti-spoofing task. Therefore, in this multi-
modal track, only the IR modal data participates in model training.

*https://github.com/Huangzebin99/CVPR-2020
thttps://github.com/ZhangTT-race/
CVPR2020-MultiModal



Fig. 14: Architecture of the proposed for multi-modal track. The
figure is provided by the ZhangTT team and ranked N O.5 in multi-
modal track.

input Face

Fig. 15: The supervision and the network of Qyxqyx team. The
orange cube is convolution layer. The pixel-wise binary label in their
experiment is resized into 32 x 32 resolution. The figure is provided
by the Qyxqyx team and ranked NO.7 in multi-modal track.

Similar to the team Super, they first use the face detector to remove
the background area outside the face. Concretely, they use a face
detector to detect face ROI (Region of Interest) with RGB data, and
then mapping theses ROISs to IR data to get the corresponding face
position. Since only IR modal data is used, more sample augmen-
tation strategies are used in network training to prevent overfitting.
Such as the image is randomly divided into patches in online manner
before sending to network. In addition, they tried some tricks includ-
ing triplet loss with semi-hard negative mining, sample interpolation
augmentation and label smoothing.

Qyxqyx. Based on the work in [15], this team adds an additional
binary classification supervision to promote the performance for
multi-modal track. Specifically, the network structure is from [15,
42] and the additional binary supervision is inspired by [43]. As
shown in Fig. 15, taking the RGB modality as an example, the input
samples are supervised by two loss functions which are a binary
classification loss and a regression loss after passing through the fea-
ture network. Finally, the weighted sum of the binary output and the
pixel-wise regression output as the final score. Their code is publicly
available *.

Skjack. The network structure is similar to team Super. They use
ResNet-9 [32] as backbone and fuse the RGB, Depth and IR features
after the res-3 block, then a 1 x 1 convolution operation is used to
compress the channel. Since there are no additional novel innova-
tions, the team’s algorithm did not perform well in this competition.
Their code is publicly available f,

4 Challenge Results

In this section, we first report the results of the participating teams
from the perspective of both single-modal and multi-modal tracks,
and then analyze the performances of the participants’ methods.
Finally, the shortcomings and limitations of these algorithms are
pointed out.

*https://github.com/qyxqyx/FAS_Chalearn_challenge
Thttps://github.com/skJack/challange.git

4.1  Challenge Results Report

4.1.1  Single-modal (RGB) Track: Since the single-modal
track only allows the use of RGB data, the purpose is to evaluate
the performance of the algorithms on a face anti-spoofing system
with a VIS camera as the acquisition device. The final results of the
11 participating teams are shown in Table 5, which includes the 3
considered indicators (e.g., APCER, BPCER, ACER) on three sub-
protocols (e.g., 4_1, 4 2, 4_3). The final ranking is based on the
average value of the ACER on three sub-protocols (smaller means
better performance). At the same time, we report the thresholds for
all algorithms to make decisions on real faces and attack samples.
The thresholds of the top three teams are either very large (i.e.,
more than 0.9 for BOBO) or very small (i.e., 0.01 for Harvest),
or have very different thresholds for different sub-protocols (i.e.,
0.02 vs.0.9 for VisionLabs). In addition, VisionLabs achieves the
best results on APCER with the value of 2.72%, meaning that the
algorithm can better classify attack samples correctly. Whilst, Wgqt-
mac’s algorithm obtains the best results on the indicator of BPCER
(0.66%), indicating that it can better classify real face. Overall, the
results of the first ten teams are better than the baseline method [22]
when ranking by ACER. The VisionLabs team achieved the first
place with a clear advantage.

4.1.2  Multi-modal: The Multi-modal Track allows the partici-
pating teams to use all the modal data. The purpose is to evaluate the
performance of the algorithms on anti-spoofing systems equipped
with multi-optic cameras, such as the Intel RealSense or Microsoft
Kinect sensor. The results of the eight participating teams in the final
stage are shown in Table 6. BOBO team’s algorithm gets first place
performance, such as APCER = 1.05%, BPCER = 1.00%, and
ACER = 1.02%. While the team of Super ranks second with a
slight disadvantage, such as ACER = 1.68%. It is worth noting
that Newland-tianyan’s algorithm achieves the best results on the
APCER indicator with the value of 0.24%. Similar to the conclu-
sion of the single-modal track, most of the participating teams have
relatively large thresholds which are calculated on the validation set,
especially the Super and Newland-tianyan teams with the value of
1.0 on three sub-protocols, indicating that these algorithms treat the
face anti-spoofing task as an anomaly detection. In addition, we can
find that the ACER values of the top four teams are 1.02%, 1.68%,
2.21%, and 2.28%, which are better than the ACER of the first place
of the single-modal track, such as 2.72% for the team of Vision-
Labs. It shows the necessity of our multi-modal track in improving
accuracy in face anti-spoofing task.

4.2  Challenge Results Analysis

In this section we analyze the advantages and disadvantages of the
algorithm performance of each participating team in detail according
to different tracks.

4.2.1  Single-modal: As shown in Table 3, the testing subset
introduces two unknown target variations simultaneously, such as the
different ethnicities and attack types in training and testing subsets,
which pose the huge challenge for participating teams. However,
most teams achieved relatively good results in the final stage com-
pared to baseline, especially the top three teams get ACER values
below 10%. It is worth mentioning that different algorithms have
their own unique advantages, even if the final ranking is relatively
backward. Such as the value of BPCER of Wgqtmac’team is 0.66%,
meaning about 1 real sample from 100 real face will be treated as
fake ones. While, APCER=0.11% for the team of VisionLabs indi-
cates about 1 fake samples from 1000 attackers will be treated as real
ones.

To fully compare the stability of the participating team’s algo-
rithms, similar to [21], we introduce the receiver operating charac-
teristic (ROC) curve in this challenge which can be used to select
a suitable trade off threshold between false positive rate (FPR) and
true positive rate (TPR) according to the requirements of a given
real application. As shown in Fig. 16, the results of the top one
team (VisionLabs) on both three sub-protocols are clearly superior
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Table 5 The results of Single-modal track. Avg+Std indicates the mean and variance operation and best results are

shown in bold.
Team Name  Method(keywords) Prot. Thre. FP FN APCER(%) BPCER(%) ACER(%) Rank
OpticalFlow, 4.1 0.02 4 21 0.22 5.25 2.74
. RankPooling, 4.2 0.90 0 12 0.00 3.00 1.50
VisionLabs 12 augment, 43 0.10 2 31 0.11 7.75 3.93 1
SimpleNet Avg+Std 0.341+0.48 242 21+9 0.11+0.11 5.33+2.37 2.72+1.21
CDC, CDL, EDL, 41 0.95 201 10 1117 25 6.83
BOBO Multi-level cell, 4.2 0.99 120 8 6.67 2.0 4.33 >
Attention moudle, 4.3 0.99 67 12 3.72 3.0 3.36
Depth supervision ~ Avg+Std  0.97+0.02 129467 10+2 7.181+3.74 2.50+0.50 4.84+1.79
Motion cues, 4.1 0.01 31 48 1.72 12.0 6.86
relabelling live 4.2 0.01 116 51 6.44 12.75 9.6
Harvest  sequence, 43 0.01 109 67 6.06 16.75 11.4 8
ResNet Avg+Std  0.01+0.00 85+47 55+10 4.74+2.62 13.83+2.55 9.28+2.28
Quality tensor, 4.1 0.9 103 74 5.72 18.5 12.11
Time tensor, 4.2 0.9 132 45 7.33 11.25 9.29
ZhangTT  poia 13 0.9 57 108 3.17 27.0 15.08 4
preprocessing Avg+Std 0.9 97+£37 75+31 5.40+2.10 18.911+7.88 12.161+2.89
Data augment, 4.1 0.77 34 117 1.89 29.25 15.57
Newland- ~ Temporal feature, 4.2 0.7 513 11 28.5 2.75 15.62 5
tianyan Neighborhood 4.3 0.55 299 6 16.61 1.5 9.06
mean Avg+Std 0.67+0.11  282+239 44462 15.66+13.33 11.16+1567 13.414+3.77
ID information, 4.1 0.02 325 6 18.06 1.5 9.78
Dopamine Multi-task, 4. 2 0.22 367 24 20.39 6.0 13.19 6
p Score fusion, 4.3 0.01 636 0 35.33 0.0 17.67
Resnet100 Avg+Std  0.07+0.11  442+-168 10+12 24.59+9.37 2.50+3.12 13.54+3.95
4.1 0.33 696 21 38.67 5.25 21.96
3D ResNet .
. 4.2 0.45 606 26 33.67 6.5 20.08
lectab  Fuealure fusion, 43 0.45 489 2 2717 6.5 16.83 7
Avg+Std 0.40+0.07 5974103 24+2 33.16+5.76 6.08+0.72 19.6242.59
Subsequence 4.1 0.87 538 44 29.89 11.0 20.44
Chunghwa-  feature, 4.2 0.93 352 113 19.56 28.25 23.9 8
Telecom Local feature, 4.3 0.79 442 7 24.56 17.75 21.15
MIMAMO-Net Avg+Std  0.86+0.06 444493 76+34 24.66+5.16 19.00+8.69 21.83+1.82
4.1 0.85 1098 1 61.0 0.25 30.62
Wodimae  neNeuis, 42 10 570 7 31.67 175 16.71 0
9 Soﬂmaf(’ Y. 43 0.56 1117 0 62.06 0.0 31.03
Avg+Std 0.80+0.22 928+310 243 51.57+17.24 0.66+0.94 26.12+8.15
4.1 0.81 635 138 35.28 345 34.89
Hulkin PipeNet, 4.2 0.82 1027 37 57.06 9.25 33.15 10
9 Softamx 4.3 0.67 768 59 42.67 14.75 28.71
Avg+Std 0.76+0.08 810+199 78+53 45.00+11.07 19.50+13.27 32.254+3.18
41 1.0 1316 142 73.11 35.5 54.31
Daiu ResNet50, 4.2 1.0 567 60 315 15.0 23.25 1
a Softmax 4.3 1.0 664 146 36.89 36.5 36.69
Avg+Std 1.00+0.00 849+407 116+48 47.16+22.62 29.00+12.13 38.08+15.57
Static and 4.1 1.0 1331 7 73.94 1.75 37.85
Baseline Dynamic 4 2 1.0 1379 27 76.61 6.75 41.68 .
features, 4.3 1.0 836 57 46.44 14.25 30.35
RankPooling Avg+Std  1.00+£0.00 1182+300 30+25 65.66+16.70 7.58+6.29 36.62+5.76

Table 6 The results of Multi-modal track. Avg+Std indicates the mean and variance operation and best results are shown in

bold.
Team Name  Method(keywords) Prot. Thre. FP FN APCER(%) BPCER(%) ACER(%) Rank
CDC, CDL, EDL, 4.1 0.98 6 2 0.33 0.5 0.42
BOBO Feature fusion, 4.2 0.95 25 3 1.39 0.75 1.07 4
Score fusion, 4.3 0.94 26 7 1.44 1.75 1.6
Depth supervision Avg+Std  0.95+0.02 19411 442 1.05+0.62 1.00+0.66 1.02+0.59
Data preprocessing, 4.1 1.0 9 11 0.5 2.75 1.62
Super Dimension reduction, 1_2 1.0 5 17 0.28 4.25 2.26 2
P SE fusion, 4.3 1.0 20 5 1.11 1.25 1.18
Score fusion Avg+Std  1.0+0.00 11.33+7.76 11+6 0.62+0.43 2.75+1.50 1.68+£0.54
PipeNet, 4.1 0.96 31 0 1.72 0.0 0.86
Hulkin SENet-154, 42 1.0 99 5 55 1.25 3.37 3
9 Selective Modal Pipeline, 4.3 1.0 46 9 2.56 2.25 2.4
Limited Frame Vote Avg+Std  0.98+0.02 58+35 4+4 3.25+1.98 1.16+1.12 2.21+1.26
Resnet9, 4.1 1.0 0 3 0.0 0.75 0.37
Newland- Data preprocessing, 4.2 1.0 4 26 0.22 6.5 3.36 4
tianyan Neighborhood mean, 4.3 1.0 9 23 0.5 5.75 3.12
Data augment Avg+Std  1.0040.00 414 17+£12  0.24+0.25 4.331+3.12 2.28+1.66
ID Net 4.1 0.94 0 19 0.0 4.75 2.37
g . 4.2 0.9 66 34 3.67 8.5 6.08
ZhangTT Feature fusion, ' 0.79 102 0 567 00 283 5
Score fusion 3 i i i i
Avg+Std  0.87+0.07 56451 17+17  3.11+2.87 4.411+4.25 3.76+2.02
Data preprocessing, 4.1 0.87 13 4 0.72 1.0 0.86
Data augment, 4.2 0.93 180 28 10.0 7.0 8.5
Harvest o 1R, 43 0.96 119 8 6.61 2.0 4.31 6
Semi-hard negative mining Avg+Std  0.92+0.04 104+84 13+12  5.77+4.69 3.33+3.21 4.55+3.82
Binary supervision 4.1 0.98 1 53 0.06 13.25 6.65
" : 2 4.2 0.98 19 8 1.06 2.0 1.53
Qxayx Exebwise ragression, 123 0,89 257 19 14.28 475 9.51 7
Avg+Std  0.95+0.05 92+142 26+23 5.12+£7.93 6.661+5.86 5.8944.04
4.1 0.0 1371 2 76.17 0.5 38.33
Skiack Resnet9, 4.2 0.01 1155 46 64.17 115 37.83 8
) Softmax 4.3 0.0 511 93 28.39 23.25 25.82
Avg+Std 0.00+0.00 10124447 47445 56.24+24.85 11.754+11.37 33.99+7.08
SD-Net, 4.1 1.0 413 109 22.94 27.25 251
Baseline A shared branch, 4 2 0.17 1340 23 74.44 5.75 40.1 N
PSMM-Net, 4.3 0.02 864 55 48.0 13.75 30.87
Fusion fusion, Avg+Std  0.39+0.52 8721463 62+43 48.46+25.75 15.58+10.86 32.02+7.56
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Fig. 16: The ROC of 12 teams in single-modal track. From left to right are the ROCs on protocol 4_1, 4_2 and 4_3.

visionlabs BOBO harvest
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Fig. 17: The mismatched samples of top three teams in single-
modal track. FN and FP indicate false negative and false positive
respectively.

to other teams, revealing that using optical flow method to convert
RGB modal data to other sample spaces can effectively improve the
generalization performance of the algorithm to deal with different
unknown factors. However, the TPR value of the remaining teams
decreased rapidly as the FPR reduced (e.g., TPR@FPR=10""2 val-
ues of these teams are almost zero). In addition, we can find that
although the performance of ACER for Harvest team is worse than
that of the BOBO team, the performance of the TPR@FPR=10"3
is significantly better than the BOBO team. It is mainly because the
false positive (FP) and false negative (FN) samples of the Harvest
team are relatively close (see from Table 5).

Finally, for the top three teams, we randomly selected some mis-
matched samples as shown in Fig. 17. We can see that most of the
FN samples of the VisionLabs team are real faces with large motion
amplitude, while the most of FP samples are 3D print attacks, indi-
cating that the team’s algorithm has correctly classified almost all
2D attack samples. In addition, due to the challenging nature of our
competition dataset, such as it is difficult to distinguish the real face
from attack samples without the label, the BOBO team and the Har-
vest team did not make correct decisions on some difficult samples.

4.2.2  Multi-modal: From the Table 6, we can find that the
ACER values of the top 7 teams are relatively close, and the top 4
teams are better than VisionLabs (ACER=2.72%) in single-modal
track. It indicates that the complementary information between
multi-modal datasets can improve the accuracy of the face anti-
spoofing algorithm. Although newland-tianyan ranked fourth in
ACER, they achieved the best results on the APCER indicator
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(e.g., APCER=0.24%). It means the smallest number of FP sam-
ples among all teams. In addition, from the Table 6 and Fig. 18, we
can find that although the ACER values of the top two algorithms
are relatively close, the stability of the Super team is better than
the BOBO, such as the values of TPR@FPR=10""2 for Super and
newland-tianyan are better than BOBO on both three sub-protocols.
Finally, we can find from the Fig. 19 that the FP samples of the
top three teams contain many 3D print attacks, indicating that their
algorithms are vulnerable to 3D face attacks.

5 Open Issues and Opportunities

In this section, we will first summarize some common issues that
appear in this challenge, then analyze some of the causes that result
to the problems, and put forward some feasible solutions to alleviate
these problems in combination with practical applications. Finally
we formulate the future work based on the CASIA-SURF CeFA
dataset.

5.1  Critical Issues and Breakthrough Point

From Tables 5 and 6 of the competition results, we can find that the
threshold for both single-modal and multi-modal track is generally
high. This is while the meaning of the threshold in our challenge is
the minimum probability that a sample will be classified as a real
face. For instance, the thresholds on three sub-protocols reach to 1
for the team of dqiu in single-modal track and the top-ranked teams
(Super, Hulking and newland-tianyan) in multi-modal track. These
over-confidence problems mean that some attack samples will be
judged as real faces with high probability, which is unreasonable
in practical applications. We analyze the following three reasons
responsible for this problem: (1) Caused by the task itself. The
nature of the face anti-spoofing task is a binary classification task.
If the sample scale is small and lacks diversity, it can easily lead to
extreme thresholds. This phenomenon is also found in other binary
classification tasks, such as face detection. (2) Caused by different
collection environments for positive (real face) and negative sam-
ples (spoof). For example, the attack samples of the same subject
are collected under multiple lighting conditions, while real face is
collected only in indoor environments. (3) Caused by the lack of gen-
eralization performance when the algorithm faces unknown attack
types and ethnicities. According to the characteristics of the test-
ing protocol that contains 2 unknown variables (i.e., cross-PAls and
cross-ethnicity) in training and testing phases, some teams design
networks and loss functions pay more attention to the motion infor-
mation of real face and replay attack in the training phase, and treat
any unseen static-samples (including spoofs and real faces) in the
testing phase as abnormal information (spoofs), resulting in poor
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process. Finally, a binary cross-entropy loss might discover arbitrary
cues, such as spot or screen bezel of the spoof medium, that are
RGB not the faithful spoof patterns. Therefore, the supervision should be
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Fig. 19: The mismatched samples of top three teams in multi-
modal track. FN and FP indicate false negative and false positive
respectively.

generalization ability in cross-PAls. Other teams have subtracted
different neighborhood mean values according to different ethnic-
ities to alleviate the interference caused by skin color differences.
However, in the face of unknown ethnic samples, the inability to
subtract the appropriate neighborhood mean causes classification
errors. In summary, poor generalization performance (i.e., unable
to correctly classify unknown real samples and attack types) causes
the classification threshold to be too large or too small. To alle-
viate this problem, we propose feasible solutions from the three
aspects of data collection, training strategy and algorithm design.
CASIA-SURF CeFA is the largest up to date face anti-spoofing
dataset and contains various attack types and attack environments,
such as the attack types include print attacks and replay attacks
under multiple lighting conditions. However, the diversity of the
device and environment for collecting real face samples is limited.
It inevitably brings the problem of sample imbalance. Therefore, the
CASIA-SURF CeFA dataset should consider supplementing some
real samples including acquisition equipment and shooting environ-
ment. Whilst, an effective training strategy is to balance the positive
and negative proportions of samples in each batch during the training
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designed from the essential differences between live and spoof faces,
such as the rPPG signals (i.e., heart pulse signal) which can reflect
human physiological signs.

5.2 Future Work and Opportunities

Face anti-spoofing based on multi-modal datasets attract increasing
research interests. However, the gap exploration between sensing
patterns of different face modalities remains an open research prob-
lem in face anti-spoofing. Some previous works [22, 44] have been
verified the existence of performance deviations of the SOTA algo-
rithms in different face modalities. At the same time, they designed
a testing protocol to measure the degree of modal bias, such as the
Protocol 3 in CASIA-SURF CeFA [22]. Similar to heterogeneous
face recognition (e.g., NIR-VIS [45-47]), which refers to matching
faces across different modalities (or sensing patterns), we cast the
face anti-spoofing task as a heterogeneous face matching problem.
In this way, the discrimination information of other modal samples
can be used to assist the learning of RGB modal data. And after the
model is trained, there is no need to load other modal samples during
the testing phase.

Since the existing datasets for training and verification are col-
lected in VIS spectrum, the use of samples of additional modalities
(e.g., Depth or IR) to assist the learning of RGB modal data while
without extra modalities in testing phase is interesting in the practical
applications. On the other hand, CASIA-SURF [21] and CASIA-
SURF CeFA [22] are multi-modal face anti-spoofing datasets and
each sample contains 3 paired modalities, which may provide us with
the possibility to study heterogeneous face anti-spoofing.

6 Conclusion

We organized the Chalearn Face Anti-spoofing Attack Detection
Challenge at CVPR2020 based on the CASIA-SURF CeFA dataset
with two tracks and running on the CodaLab platform. Both tracks
attracted 340 teams in the development stage, and finally 11 and
8 teams have submitted their codes in the single-modal and multi-
modal face anti-spoofing recognition challenges, respectively. We
described the associated dataset, and the challenge protocol includ-
ing evaluation metrics. We reviewed in detail the proposed solutions
and reported the challenge results. Compared with the baseline
method, the best performances from participants under the ACER
value are from 36.62 to 2.72, and 32.02 to 1.02 for the single-modal
and multi-modal challenges, respectively. We analyzed the results of
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the challenge, pointing out the critical issues in FAD task and pre-
senting the shortcomings of the existing algorithms. Future lines of
research in the field have been also discussed.
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