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Creases are a type of ridge/valley structures of an image characterized by local
conditions. As creases tend to be at the center of anisotropic grey-level shapes,
creaseness can be considered ameasure of medialness, and therefore as useful in many
image analysis problems. Among the several possibiliigsriori the creaseness
based on the level-set extrinsic curvature (LSEC) is especially interesting due to its
invariance properties. However, in practice, it produces a discontinuous response
with a badly dynamic range. The same problems arise with other related creaseness
measures proposed inthe literature. In this paper, we argue that these problems are due
to the very local definition of the LSEC. Therefore, rather than designiragidroc
solution, we propose two new multilocal creaseness measures that we will show to
be free of discontinuities and to have a meaningful dynamic range of response. Still,
these measures are based on the LSEC idea, to preserve its invariance properties.
We demonstrate the usefulness of the new creaseness measures in the context of
two applications that we are currently developing in the field of 3D medical image
analysis, the rigid registration of CT and MR head volumes and the orientation
analysis of trabecular bone patterns; 2000 Academic Press

Key Words: creases; curvature; divergence; structure tensor; trabecular bone;
registration.

1. INTRODUCTION

The ridges and valleys of a gray-level image tend to be at the center of anisotropi
objects; therefore, they are useful skeleton-like descriptors of them. Ridges and valleys
dual in the sense that the valleys of an image are the ridges of the inverted image. In
computer vision literature there is a plethora of different characterizations (algorithmic
mathematical definitions) of the intuitive notion of the ridges/valleys of a landscape. In [
we classified these characterization$ogsil, multilocal, or global, according to the region
of influence induced by them. Definitions falling in the local class areShiat-Venant/
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Haralick conditionin 2D [7, 21, 24, 38], generalized to any dimensiorhagght definition
[10], and the so-calledertex conditionn 2D [17, 24, 25, 53], generalized to any dimension
aslevel definition[10]. From now on, we will use the terereaseto refer to both ridges
and valleys of the local class. We included in the multilocal class the algorithms that extr
the drainage patterngrom digital elevation models by simulating the flow of water over
the Earth’s surface [35, 44, 49, 16, 12, 50, 8]. Finally, we classified in the global class th
algorithms that divide the image domain into districts by special lines ca#pdratrices
[4, 36, 39, 20, 47, 19], among them the popwatershed$54, 2, 40].

In image analysis, the different characterizations of ridges/valleys can be evaluatec
their own merits with regard to their usefulness in different types of applications such
segmentation, drainage pattern delineation, or extraction of medial axes. In this papel
are interested in the last case, that is, in the use of ridges/valleys as an approximation o
center of anisotropic objects in gray-level images. As we argue in [31], the most suita
definitions to extract such medial structures give rise to crease operators. In fact, they ar
mostly used in the literature to extract medial structures, as in fingerprint analysis [34, 2
character recognition [55, 26], registration of medical images [11, 33, 53], and computat
of medial axes of other gray-level objects [6, 17, 38, 45].

Due to their invariance properties, crease definitions basddwehset curvatureare
expected to be very useful in many applications. In addition, a one-to-one relationship
been shown between these creases and shape descriptors based on axes of symmetry,
2D and 3D [17, 58, 27]. Given a functidn: 2 c R — R, we define théevel sessociated
to a constant as the set of point§; = {x € | L(x)=1}. The continuous variation df
produces all the level sets bf The simplest situation occurs in 2B £ 2), wherel induces
a graphic surface which can be thought of as a topographic relief, the level sets being its |
curves, like those drawn in a cartographic map and labeled by a height value. AnalogoL
in 3D we have level surfaces. Ea¢his, in general, composed by several disconnecte
subsets which can be defined a@s—{ 1)-dimensional hypersurfaces éh Eachx € Q
belongs just to one of these hypersurfaces, defined implicitliF gy = L(y) — L(X) =0.
The curvatures of these level-set hypersurfaces are invariant under rotations, translat
and uniform scalings, as well as to arbitrary monotonic gray-level transforms [15, 10]. The
properties are inherited by the creases based on extrema of the curvatures of the leve
hypersurfaces, that is, the creases characterized by the above-mentioned level definiti

In order to develop the level definition and for its use in the rest of the paper, let
introduce some notation. We define a discrete image as the sampling-dinaensional
continuous functiorL: 2 c RY — I' c R. We will consider its partial derivatives up to
ordern, i.e., the so-calletbcal jetof ordern, Jo[L] ={3'L/da; - - - de; }j—o (j =0 gives
L), whereVk € 7; : ax € Ay, for Zj being the set of integers running on [1., j] and Xy
being thed-dimensional (local) coordinate systéxt, . . ., x4}. We also define the operators
vV = (9/0x%, ..., 0/0x%) andvV = (Vt. V) (tmeans transpose and étands for the matrix
product), which allow us to define the gradient and the Hessian of a function, respectiv
Then, we can define the first-order derivativeLoflong the direction given by the vector
v=(%, ..., v)lin Ay coordinates ak, = VL - (v/|v|) and the first-order derivative of
L, along the direction given by the vector= (w?, . . ., w9)! (second-order derivative &f
alongv andw) asL ., = (Vi/|[v])) - VVL - (w/||w]). If we take derivatives of along the axis
of coordinatesc', we use usual notation,; that is, in general ..., =9'L /day - - da;.
Finally, x, y, z andi, j, k will denote the continuous and discrete Cartesian coordinate
respectively.
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FIG.1. In2D crease lines of a certain type are characterized as the loci of extrema of the level-curve curva
k: negative minima, level-by-level, form valley-like curves and positive maxima form ridge-like ones.

Now we can introduce the level definition of creases as follows|dipt> - - - > |&q4| be
the principal curvatureof the level hypersurface passing througtwith ty, . .., tq being
their correspondingrincipal directions[9, 10]. Thenx is anm-dimensional crease point
if (adapted from [10])

_ tt.VVg -t <Oandg > 0 ifridge
VieZy_m V& -ti=0and ) D
tit -VV§& -ti > 0and§ <0 ifvalley.

Accordingly, in 2D negative minima of thievel-curve curvaturelevel by level, form
valley-like curves and positive maxima ridge-like curves (Fig. 1), as is also stated in [:
25, 53]. In 3D we have level surfaces and the crease criterion is based on their princ
curvatures.

Unfortunately, the direct computation of extremality criteria such as (1) involves up
fourth-order image derivatives combined into a complex expression (see p. 637 in [17],
the 2D case, and p. 176 in [37], for 3D). Moreover, in practice, the extremality criterion ter
to give many irrelevant creases [10, 31] so that an elaborate pruning process may be reqt
However, most of the time a curvature measure of the level sets yields a sufficiently h
value along the center of elongated structures to circumvent the computational drawbac
just looking at that curvature ascaeasenesgidgeness and valleyness) measure and the
performing a threshold. This is by no means an infrequent situation, but it is precisely
these anisotropic structures that creases are employed as medial descriptors. For exa
in 2D the level-curve curvature, has been already proposed as a creaseness measure
has been used in the context of medical image analysis [14, 52, 11, 33]. In practice,
approach also removes to a certain extent many of the irrelevant responses given b
strict application of the extremality criterion (1) in 2D. The 3D analogy to the level-cun
curvature is thenean curvaturef the level surfacesy, which is a differential geometric
extrinsicquantity [9]. Because of that, in titedimensional case we use the televel-set
extrinsic curvaturg§LSEC), x4, for the generalization of andxy.

At this point we argue that the LSEC should be a good choice as a creaseness mes
that is, as a reliable approximation wfedialnesgminimum distance from a point inside
an object to its boundary), not in the sense of providing an actual distance but in
sense of decreasing from the center of an object to its boundary. Of course, other chc
are also possible, like the largest principal curvature in absolute value [37, 53]. Howe'
since the LSEC is an average of the principal curvatures, we expect it to be more rol
to noise. Moreover, at very anisotropic zones some of the principal curvatures are lal
in absolute value than the others. Therefore, they will predominate in the averaging
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principal curvatures, and then the LSEC will capture the most relevant creaseness of
zone. However, through the day-to-day use of the LSEC we can see that there appeal
relevant problems, namely, the lack of bdtbmogeneityand continuityin its response,
which prevents the LSEC from being employed as a good medialness approximation.

Accordingly, we devote Section 2 to illustrating the above-mentioned problems and ca
menting on their implications. In Section 3 we propose an alternative operator to overca
them. The new operator works fdrdimensional images and is termemlltilocal level-set
extrinsic curvaturd MLSEC). In the same section, we go a step further and propose a tec
nigue which enhances the MLSEC response througlstifueture tensoanalysis. In this
way, we define a new operator, which we refer to as MLSEC-ST. The next two sectic
demonstrate the usefulness of the new creaseness measures in two real applications on
we are currently working in the field of 3D medical image analysis, the rigid registratic
of CT and MR head volumes (Section 4) and the analysis of the dominant orientation:s
trabecular bone patternsimaged by a CT scanner (Section 5). Finally, Section 6 summa
the main conclusions. As properly suggested by the reviewers of this paper, we have
included Appendices A and B to clarify some relevant formulas in Section 3.

2. LSEC AS A CREASENESS MEASURE

Besides the invariance properties of LSEC, we must ensure that it achieves other desil
properties in order to be really useful as creaseness measure:

e Good contrastAlong an underlying crease the creaseness measure should hay
much higher value than along the sections across.

e Continuity The creaseness measure has to be locally high along the whole unc
lying crease and without gaps since a discontinuous center makes no sense if the obje
not discontinuous.

e HomogeneityAlong a perceptually homogeneous underlying crease (e.g., a ves
in an MRA, the skull in a CT or an MRI, a road in an aerial image), the creaseness meas
should take similar values. A way of pursuing homogeneity consists of ensuring that |
creaseness takes values in a well-known dynamic range, in a meaningful way.

The lack of any of such properties reduces the usefulness of a creaseness measure
used as an approximation of medialness and if it is thresholded to obtain creases.
fortunately, as we are going to see, the LSEC fails to be a continuous and homogent
measure.

2.1. LSEC Based on the Image Scalar Field

The LSEC can be expressed in terms of the derivativesagicording to tensorial calculus
as (see [52], p. 98, and [14], p. 337)

3
Kq = (LaLﬁLaﬂ — La LaLﬂﬁ)(LyLy)_f, o, }3, Y S Xd, (2)

where the Einstein summation convention must be used to expand this expression f

particular dimensioml. The sign ofiq classifiesL as convexiy > 0) or concavely < 0)

with respect to the vertical (gray-level) axis, that is, as ridge-like or valley-like, respective
Ford =2 and using Cartesian coordinates, we obtain the level-curve curvature,

NIw

K =Ky = (ZLxLnyy - LiLXX - LiLW) (Li + Li)_ ’ (3)
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and ford = 3, we obtain two times the mean curvature of the level surfaces:

km = %KB = %(Z(LXLnyy‘F LxLzLxz+ LyLzLyz) - Li(Lyy~|— L.)
_3
- |-32/(Lxx + I-zz) - Lg(Lxx + Lyy)) (Li + Lf, + L;) 2, (4)

In [53]itis shown howk (p. 193) can be derived by applying the implicit function theoren
to the level curves and howy, (p. 195) can be derived from the differential geometry of
the level surfaces. Appendix A shows hewandky can be obtained as the particular 2D
and 3D cases, respectively, of Eq. (2).

The use ok as a 2D creaseness measure was already proposed in [14, 52, 11, 33], w
the family of operatord L, o € [—1, 0], was defined. Taking into account the relation

K =—Lw/Lw, ©))

wherew = (Ly, Ly)t is the gradient vector and= (L, —L,)tis the tangent to the level
curves;L,, can be considered as the measungeighted byL,, (gradient magnitude) in
order to nullify its response atisotropic regions. However, this is a trade-off kjptsdower
inside a ridge/valley region than on its boundary. Thus, we can thiakasf a parameter
that controls that trade-off.

In [11, 33] the same authors generalized thg and« operators to 3D, not by their
direct tensorial extension but by means of two new operators that they tajj¢ddgeness
measure it ,, < 0) andL 4 (valleyness measurelify, > 0), wherep andq are the principal
directions of the level surfaces. Similarly to the 2D case, the families of opelajpls,
andLyq Ly, were defined. In Section 4 we will compalg, andL 4q to the new operators
we propose.

2.2. Problems of the LSEC as a Creaseness Measure

Even though in theory the LSEC is a good creaseness measure, we have found th
output is not sufficiently satisfactory since it contains discontinuities at places where
would not expect any reduction of creaseness because they are at the center of elon
objects. Moreover, the LSEC can have an extremely large dynamic range but can have
a few points with values at the upper and lower bounds, which weuatiers This makes
creaseness differ from medialness since these outliers are not “more in the center”
other points with a high, but not outlier, creaseness value.

A 2D example can be seen in Fig. 2, where we want to obtain a measure which is b
along the center of the skull from a CT and an MR slice, and low elsewhere. We obse
that discontinuities are frequent along these centers. Notice that gaps cannot be los
distinguished from points that actually must have low creaseness. This affects the us
the creaseness measure itself and the extraction of creases by thresholdingdtesisee
findersshould have to decide heuristically which direction to follow when they reach su
discontinuities. Moreover, the results in Fig. 2 are shown for after the application of t
following gray-level transform for a givein> O:

I if 1(x) > I
TAX),D)=<¢—1 iflx) <-I (6)
I(X) otherwise
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FIG. 2. First row, from left to right: (a) MR slice. (b) Smoothed with a Gaussian kernell (¢) 1.0) of the
smoothed image. Second row: (d) CT slice. (e) Smoothed () 1.0). Third row: (g) Level curves from the
ROls of the smoothed MR slice (in this case, with an inverted gray scale for the sake of visualization). Fourth r
(h) The same as for the CT. Fifth row: (i) Zoom of the ROIsafomputed from the MR slice. Sixth row: (j) The
same as for the CT.
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FIG. 3. Left: (a) L., from the smoothed MR slice in Fig. 2b. Right: (b) The same as from the smoothed C
slice in Fig. 2e. In both casds,, was computed according to its expression in terms of image derivatives, not
computinge andL,, and then using Eq. (5).

The purpose of this transform is to select a suitable interval of the LSEC response be
doing the usual 8-bits contrast maximization, for the sake of visualization. Without applyi
T to the LSEC response we would only see its outlier values.

The measuré ,, improves the previous results because it has a more homogeneous
namic range and removes the background response, but still it presents many discontint
along the center of elongated gray-level objects (Fig. 3). In 3D, operators sugh Bg,,
andL 4q exhibit analogous problems, as we will see in Section 4.

3. MLSEC AS A CREASENESS MEASURE

If we think fora moment of animage as a continuous function, we can see that by travel
along the center of elongated structures contained in it we go up and down, passing thre
generic critical points (maxima, minima, and saddle points), thatis, points whete0 but
det(VVL) # 0. From Eq. (2) we know that the LSEC is ill-defined at such points since tt
gradient magnitudé., = (L, L,)%? vanishes. In 2D, for instance, we could appeal to th

k>0 M:Maximum
m: Minimum
S: Saddle
k<0 K<0 ;<R

K: level curve curvature
k>0 Gradient vector =
Level curves —
k=0 Osculating circle ---
FIG. 4. Scheme of the level curves around generic critical points. Around extrema the radius of curvature
the level curves goes to zero; therefore its inversgpes to+-oo at maxima and te-oco at minima. A saddle point
is the intersection of two straight segmets of level curve. Thus, we can consider that at a saddie/poisiies.
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FIG. 5. Sampling around a saddle point. Discrete convex paths (ridge-like) are broken due to the sampl
mostly at the surrounding concave area. The more elongated the saddle, the longer the interruption.

geometry of the level curves around the critical points (Fig. 4) to assign a “coherent” va
to x. At a saddle the curvature of the level curves vanishes, at a maximum it has a valu
400, and at a minimum it has a value-ebo, but this precisely would makediscontinuous
and inhomogeneous if critical points are placed along the center of an anisotropic obje
On the other hand, in the discrete domain it is quite unlikely to find a pixel whgee O,
exceptin aflat area. The actual critical points are placed at sub-pixel coordinates. Howe
itis precisely in the discrete domain where the problems of the LSEC measure arise, ma
around saddle points where evedsange of sign barrieoccurs. Figure 5 shows a scheme
of the sampling of a 2D ridge-like saddle-placed sub-pixel, which is reached by a ridge-|
curve. Notice how the underlying surface is mainly sampled at concave zore8)(in
such a way that, by discretizing ridgenessk > 0) is interrupted by valleyness « 0).
This is true even if we sample the analytic expressia; that is, it is not a problem of how
we discretize Eq. (3). Moreover, intuitively it is clear that the more ridge-like the saddle
the larger the interruption is. This is the case for the selected ROIs of the center of the s
from the smoothed MR and CT slices of Fig. 2. We see that the discontinuitiezrafL ,,
along the skull do not correspond to any relevant break of that anatomical structure in
smoothed slices. In addition, saddles are more elongated when the variation of gray-le
along the underlying crease is very gentle, which is the usual situation, mainly if we ¢
processing images of the linear scale-space stack [52, 14].
In this paper we argue that these problems are due to the very local definition of
LSEC, which is not appropriate for the discrete domain, that is, for real-life image analys
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Therefore, we devote Section 3.1 to defining a multilocal operator based on the LSEC,
MLSEC, which will be shown to overcome the problem of discontinuities around critic
points and the inhomogeneity of the LSEC response. In Section 3.2 we will also prese
natural improvement of this operator, the MLSEC-ST operator, by borrowing ideas from
analysis of oriented textures. In Section 3.3 we provide some comments on the computati
aspects of these operators.

3.1. LSEC Based on the Image Gradient Vector Field

In 2D, x can be defined through its geometric relationship with the slope lines, which ¢
the lines integrating the gradient vector figldand are, therefore, orthogonal to the level
curves. Due to the orthogonality, when level curves are parallel straight lines, slope lines
also parallel and straight, and when the level curves bend, the slope lines diverge/conv
(Fig. 6). Therefore, it is clear that there is a connection between the curvature of the le
curves and the degree of parallelism of the slope lines. In vector calculus we have
divergence operator which measures this degree of parallelism. The divergenak of

dimensional vector field: RY — RY, u(x) = (UX(x), ..., ud(x))lis defined as [48]
q
. ou'
div(u) = P )

i=1

Now, if we denote by, thed-dimensional zero vector, we can defingthe normalized
gradient vector field of.: RY — R, as

— w/llwllif [lw]| > O
= 8
" { 0 i jwi=0, ®
and then it can be shown (Appendix B) that
kg = —div(w). 9)

Equation (9) allows for a new geometric interpretationcgf To fix ideas let us return
to the 2D case, and latbe a point where the divergence of a 2D vector figldas to be
computed. Let be a simple closed curve iR? parameterized by, which encloses the
pointx; let n be its unitary normal vector and the area enclosed . Figure 7 depicts
the situation. Then the divergencewétx can also be defined as [48]

w—0

1
div(u) = lim = [ ut-nde.
iv(u) = lim /Cu nde (10)

vYYov oy

Slopelines -

Level Curves

FIG. 6. Slope lines diverge/converge according to the curvature of the level curves.
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FIG. 7. Geometry involved in the definition of the divergence of a vector fiedd x.

For any dimensiowl, we can generalize this definition by assuming tha a d — 1)-
dimensional simple closed boundary of a neighborhao@ W = C) of volumew including
x and thatd? is the @ — 1)-dimensional volume element 6f(e.g., ifC is a closed surface
thend? is an area element).

Taking the limit in Eq. (10) foru=w makes Eq. (9) hold in the continuous domain.
However, we argue that it is precisely the infinitesimal process which gives rise to 1
problems of the LSEC as a creaseness measure. Therefore, we propose in this pap
substitution of the local definition ofy by a multilocal definition based on a discretized
version of Eq. (10), where the multilocality is achieved by assuming that the neighborhc
W or, analogously, its boundag, is a selectable parameter. That is, to computengiv(
atx we will take into account gradient vectors along the gatiroundx. The rationale of
our proposal is to try to capture the tendency to diverge or converge of a vector field i
neighborhood of finite size rather than computing the infinitesimal tendency of the vec
field. We believe that this is more in agreement with our perception of the crease structu

According to this reasoning, for a given dimensibnve will denotexy the multilocal
level-set extrinsic curvature (MLSEC) based on Egs. (8), (9), and (10), given a s&fecte
This can be stated through the following definitions.

DerINITION 1 (divergence for regular grids). In tlledimensional Euclidean space, let
B={i1,...,ir} represent the set af-xels that form the discrete boundafyof a given
neighborhood or windowV (C =0W) centered at al-xel i, and leti/ ={uy, ..., ur},
whereVk € 7;: ux = u(ix) for ad-dimensional vector field. Then, according to Eq. (10),
the divergence ofl ati can be discretized as

. 8
div(u) = — Z up - Nk, (11)
w
k=1
o being the volume oV, N' = {ny, ..., n;} the unit normal vectors t6 at each boundary

site, thatisyk € Z;: ny =n(ix), ands< the discrete volume element©that we assume to
be constant. From now on, we will refertas adjacency.

Given a vector field, in this paper we assume the use of the same windmwcompute
its divergence at any point; therefosé,andw are constant. This means that we can remove
the scaling factos¢/w when computinge since it would be just a global scaling of the
creaseness measure. Therefore, we redefine the discrete divergence as follows.
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DEFINITION 2 (scaled divergence forregular grids). Underthe conditions of Definition
we redefine the divergence ofati as

r
div(u) = rg > U k. (12)
k=1

Here we have introduced the scaling faalgr for a better geometric interpretation of the
dynamic range of4 as we will explain shortly.

DerINITION 3 (MLSEC). According to the divergence operator in Eq. (128 define
our MLSEC operator for a discrete domain as

_ d <
Ko = —div(W) = == > W, ni. (13)
k=1

where the adjacenaywill be given by the specifi€¢ we use.

The simplest case holds in 2B £ 2) with 3 composed by the four nearest neighbors of
each pixel{ =4). Thatis, for the pixel P, of coordinatesi| j], we have3 ={P. j_1, P41,
P.j+1, P—1j} and N ={ny, ng, ns, nw}, according to the scheme of Fig. 8a. Therefore
the 2D MLSEC at P; is computed as

il j1=—2(Wii, j — 1] -nn + Wi +1,j]-ne
+ Wi, )+ 1] ns+ Wi — 1, j]-nw)
=—I@Yi + 1, j1—wi — 1 j1+w?i, |+ 1] —w?i,j—1]), (14)

wherew?! andw? are the components & in 2D. From now on, we will denote this 2D
MLSEC operatok®, where the symbat recalls the shape @f.

The 3D equivalentd = 3) consists of taking3 as the neighbors of a voxel given by
the 6-adjacencyr(=6). That is,B={P, j_1k, P+1,j.k: P.j+1k: P—1j.ks Prjk=1, P jke1)
for the voxel R x and NV = {ny, ng, ns, Nw, Ng, ng}, according to the scheme of Fig. 8b.
Thus, in this case the 3D MLSEC at R is computed as

iali, J, Kl = =i + 1, j. K —w'i =1, j, Kl +w?[i, j + 1K
—wli,j — LK+ i, j,k+ 11— i, j, k—1]), (15)
wherew?!, w?, andw?® are the components @f in 3D. From now on, we will denote this
3D MLSEC operatoky, (ky/2 is a “substitute” for).

We can generalize these specific operators to any dimedsisky . In this case we have
r = 2d (2d-adjacency), and it is easy to show [30] that

d

— 1 . . . e . .

ng—é > wiit iR L = i =1 (16)
k=1

Notice that Eq. (16) is a sum of first-order centered finite differences (CFDs) as defir
in Table I. This means that the boundary based on thadjacency, which delimits the
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TABLE |
Approximation of the First- and Second-order Partial Derivatives
of L[i, j] Using CFDs

L[, ] (LI+ 1, j]1 =Ll -1, j]/2

SyL[i, j] (LLL §+ 1] =L, j—-1D/2

SucL[i, ] (LI +2 j] = 2L, jl+ L[i -2, j])/4
SyyL i ] (LI J+2] =211, j1+ LI, j —2])/4
SyyL[i, j1=26yxLIi, j] (LIT+2,j+2]+L[i-1,j-1]

—L[i -1 j+1-L[i+1]j-1])/4

Note The second-order CFDs are obtained as CFDs of the first-order approximations.

P. Pixel [i,]]

ij

® Central pixel

@ Pixels of the 4-adjacency
: neighborhood of Pi\j

C Boundary of the 4-adjacency
neighborhood of Pi,j

ng=(0,1) n Unit normal to C

Pix Voxel [ij.k]

F. n,=(0,-1,0) ® Central voxel
1
' @ Voxels of the 6-adjacency

neighborhood of P ik

: P.
j R 1,=0.0.1)

C Boundary of the 6-adjacency
neighborhood of [?,j.k

n Unitnormal to C
. nE=(1,U,0)

FIG. 8. Top and middle: (a) Boundaxy of a rectangular grid neighborhood according to the 4-adjacency ir
2D. Bottom: (b) The 3D analogy is the 6-adjacency.
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smallest neighborhood we can use in a rectangular grid to discretize the integral forn
the divergence (Eqg. (12)), provides the same operator as discretizing the differential f
of the divergence (Eq. (7)) by using CFDs to approximate the first-order partial derivativ

Now let us see whyy does not suffer the problems @f. First, we show that it has a
well-defined dynamic range according to the following theorem.

THEOREM1. According to Eq(13)we can state that
lical < d. 17)

Proof. Sincew is a normalized vector field and each normah B is also a unitary
vector, we have that, at arlyxel,

Wt n| = ||W|/In]l|cos(anglef, n))| < 1.

Therefore,

— . d
Gl = Idiv@) =

=

r
Z thk - Nk
k=1

Moreover, it can be shown [30] thakq| approaches the codimension of the creas
structures from/to which the gradient vector field diverges/converges. In practice, this me
that if we want to extract crease structures of dimensioinom ad-dimensional image,
m < d, then, given O< € < 1, we have to double threshold between maf0, (d — m — €)}
and mi{(d — m+ ¢), d}, in the case of ridges, and between frad, (m — d — ¢)} and
min{(m — d — ¢), 0}, for valleys. In fact, along am-dimensional crease there can be
crease points of codimension lower thanFor example, in 2D we can have a ridge line
passing through a local maximum, and we do not want to discard it since a gap wo
be created along that ridge line. A pragmatic decision we have made, which works q
well in practice, consists of using a threshold value selecting the creases of the dimen
that we want and also the creases of lower dimension. This means that to extract cr
structures of dimensiom we have to thresholdy at max0, (d — m — ¢)} for ridges and
at min{(m — d — ¢), O} for valleys. In theory, this approach can produce isolated creases
dimension lower tham, but in practice they can be easily removed by looking at criteri
such as their area in 2D, volume in 3D, and so on. In fact, in the applications we reviev
this paper (Sections 4 and 5) no post-processing of any type was needed: the output o
operators was used “as is.” On the other hand, the exdepends on the adjacencyve
use to compute the divergence. However, for a fixed we verified in a number of applicati
on different kinds of images that a fine tuning is not needed at all.

The formal proof of how thery operator avoids the discontinuities produceddy
demands the introduction of several definitions and intermediate assertions with their:
responding proofs, which can be found in [30]. Instead, for the sake of simplicity, in tt
paper we merely expose the basic idea which we think will be sufficient to clarify t
situation.

In d dimensions, extrema are not a problem at all for the MLSEC. By examining tl
normalized gradient vector field, we see that maxima are perfect attractors (e.g., Fig
and, therefore, the MLSEC reaches its maximum vdlugnalogously, minima are perfect
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FIG.9. Normalized gradient vectors around a ridge-like saddle. If we want to compute the divergence of t
vector field at the central point, with the 4-adjacency only the vectors in gray are involved and with the 8-adjace
both the gray and black vectors are. The discontinuous gray-level lines are the level curves. The third col
shows a nonstable situation, where the divergence based on both the 4-adjacency and the 8-adjacency val
Again, this is an unstable case.

repellers (e.g., Fig. 4), and the MLSEC reaches its minimum valdeNotice that this

is in agreement with our previous statements about the codimension of the creases: ¢
the extrema are points, they can be thought of as creases of dimension 0; therefore,
codimension igl. This means that, unlike the LSEC, any MLSEC measure is well-define
at the extrema of the image.

To clarify how the MLSEC allows us to circumvent the problems of change of sign barri
(discontinuities) that the LSEC presents, let us consider the 2D example of Fig. 9. Supg
we compute the creaseness meastirat the central pixel 8. According to Fig. 8a we
see that in the ridge-like saddle we hawd[(, j — 1] - ny + Wi, j + 1] - ng) = —(Wi[i —

1, j1-nw+WHi 4+ 1, j]- ng). Therefore, following Eq. (14) we obtair[i, j] = 0. Notice
that this is in agreement with the geometric interpretation of the level-curve curvature
a saddle point. However, we are obtaining a low creaseness aauil we would expect

it to be high if these saddles were at the center of an elongated gray-level structure. -
means thak® will produce a gap here, although not a change of sign barrienasuld
do, which would be worse. To avoid this we simply increase the neighbododolved

in the definition of the divergence operator. Let us change, for instance, to the 8-adjace
as shown in Fig. 10, and lat” be the corresponding MLSEC measure. In this case w
have

il jl = —2(WHi, j— 20 nn+ Wi+, — 1] nye+ Wi+ 1] ne
+ Wi+ 2, ) +1]-nes+ Wi, j +1]-ns+ Wi —1, j +1]-nsw
+W =1 ] -nw+Wi — 1, — 1] nwn), (18)

which expands as

i, j1 =iy j1/2— @Yi +1, ] — 1 —w'i — 1, j — 1+ wfi+1j+1]
—wi-1j+1+wi -1, j+1]-wi -1, —1]
+wi+1,j+1]—wi +1, ] —1])/4V2. (19)
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P; Pixel [ij]
® Central pixel

@ Pixels of the 8-adjacency
neighborhood of B}

nN=(Os' 1)
=(-1-1)/Sqrt(2) , Nye=(1,-1)/Sqrt(2)

nWN

ny,=(-1,0) n;=(1,0)

ngw=(-l.l)f8q(2) ng =(1,1)/Sqrt(2)
ng :(0, 1 )

C Boundary of the 8-adjacency
neighborhood of li'i_i

n Unitnormal to C

FIG. 10. BoundaryC involved in the definition ok, according to the 8-adjacency in 2D thakis —

We have seen that’[i, j] =0, and according to Fig. 9 we also have

wii+1lj—-1N=wli+1j+1=—«
wi—-1j—-1=wii-1j+1]=«
wli—1,j—-1=wii+1j-1]=-8
wii—1j+1=wi+1j+1]=5

for « = cosp) andg = sin@). Therefore,

1
«"li, j] = —=(a — B).
[, j] ﬁ( B)
If « > B the saddle is ridge-like and’ > 0. Analogously, iftx < 8 the saddle is valley-like
and«® < 0. The casex = 8, shown also in Fig. 9, consists of an unstable situation. Th
specific value ok™ can be assessed by noticing thdt+ 2 = 1; therefore,

K" = %(0[—\/1—0(2).

Figure 11 depictg” as a function 0d. This example shows how we can avoid disconti-
nuities at saddle points by increasing the size of the neighborhood.

At a given dimensiord, the MLSEC measure based on tlee&@ljacencyx, vanishes
at saddles only ifl is even. Otherwise, the value of will capture the tendency of the
gradient vector field to converge or diverge [30]. Witkis even we can still capture this
tendency by increasing the size of the neighborhood used to compute the divergence, &
have done in the previous 2D example.

On the other hand, we have already mentioned that, in practice, critical points are pla
at sub-pixel coordinates. This implies that around a maximum the MLSEC will just ha
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FIG. 11. Plot of the MLSEC measure’ as a function of the angle 8 6 < (r/4) given bya = cosg).

a value nead, and around a minimum neard. In the case of the saddles, the fact that
they are usually placed at sub-pixel coordinates implies that just by u$iwg are already
able to detect ridgeness or valleyness without suffering from discontinuities. For examj
in Fig. 5 itis clear thak ® will not vanish since the saddle is placed at sub-pixel level: whe
is captured is the convergence of the normalized gradient vector field.

Figure 12 shows the results of applying the operator to the smoothed MR and CT
slices of Fig. 2. Since the MLSEC has a well-behaved dynamic range, we show directly
output of«® without using the transforii of Eq. (6). Notice also how the discontinuities
along the center of the skull disappear with respect to Fig. 2. Figure 13 shows a sim
comparison on a synthetic image having many anisotropic critical points placed at sub-p
locations.

In summary, we have shown that, unlike the LSEC, the MLSEC yields a continuous &
homogeneous response, and both the LSEC and the MLSEC are well-contrasted creas
measures. In addition, as the MLSEC is based on the relative orientations of the normal
gradient vector field, it is invariant under rigid transforms and scalings of the image ax
and under arbitrary monotonic gray-level transforms. With respect to the thickness of
response, we can state as a general rule that it increases with the neighborhood selec
compute the divergence. Figure 14 illustrates the results of computiby varying the
radius of a circular neighborhood. In spite of this, it can be an advantage in specific appl
tions like that in Section 5. However, we must be careful when increasing the neighborh
so that close convex/concave regions do not interfere with each other.

3.2. LSEC Based on the Image Structure Tensor Field

Once we have establishag as a good creaseness measure, we can go further a
enhance it by modifying, in a convenient way, the gradient vector field of the image beft
applying the divergence operator. We want to filter the gradient vector field in such a w
that the configurations of Fig. 15a approach those of Fig. 15b since then attraction/repuls
and therefore creaseness, will be higher. At the same time, the qualitative behavior of
gradient vector field at regions where there is neither attraction nor repulsion must rerr
unchanged. This filtering can be carried out in a natural way througstitheture tensar
which is a well-known tool for analyzing oriented textures [3, 22]. Moreover, without extr
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FIG. 12. First row, from left to right: (ax™ of the smoothed MR slice in Fig. 2. (b) The same as for the CT.
Second row: (c) Normalized gradient vector field from the ROIs of the smoothed MR slice. Third row: (d) T
same as for the CT. Fourth row: (ey of the ROIs from the MR slice. Fifth row: (f) The same as for the CT.

computational cost, we get a coarse measure of the degree of anisotropy that will alloy
to attenuate the creaseness measure at zones in which we are not interested, like flat re

In the d-dimensional space, given a symmetric neighborhood of gizeentered at a
given pointx, namely,N'(x; o1), the structure tensor is defined to be the symmetric an
semi-positive definitel x d matrix

S(x; 01) = N(X; 01) * (W(X) - W'(X)), (20)

where the convolution#” is elementwise.
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X

FIG. 13. From top to bottom and left to right: (4)(x, y) = sin(60x? 4 30y?) + sin(8 arctany/x)) sampled
in [—1,1] x [—1, 1] at a resolution of 12& 128 pixels. (b)T («, 1.0) with an ROI framed, where has been
analytically computed and then sampled. (c) Zoom of the ROI. White lines: ridge-like creases after thresholc
«; pixels wherec > 0 have been set to lighter gray, and where 0 they are to darker. Notice the change of sign
barrier. (d)x*. (€) Zoom of the previous ROI. Notice that there are no undesired changes of sign. (f) Relief frc
the samples of a zone of the test image. (g) Level curves revealing the presence of a generic ridge-like sa
(h) Normalized gradient vector field of the relief. (i)after sampling its analytic expression. Tjjx, 1.0). (k) In
white, pixels where is positive (ridge-like). (Ix. (m) In white, pixels where < is positive.

The eigenvector which corresponds to the highest eigenval®&expd), sayw'(x; o1),
yields thedominant gradient orientatioat x, where “dominant” means inside the neigh-
borhoodN (x; a7). In fact, a suitable choice for this window isdadimensional Gaussian,
i.e., N(x; o1) = G(x; 01), which implies that a gradient vector at a pojrinside the neigh-
borhood contributes to the computation3{k; o)) weighted as a function of the distance
fromxtoy.

The eigenvector which corresponds to the lowest eigenval8gxod; ), namelyy'(x; o1),
yields thedominant orientationat x, which is perpendicular to thdominant gradient
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FIG. 14. From top to bottom and left to righk, from the smoothed CT slice in Fig. 2, taking a circular
neighborhood of radius, 2, 3, or 4, respectively.

orientation Notice that the gradient of a function points toward the direction of maximui
change, and the dominant orientation is perpendicular to this direction since anisotr
appears as similar gray values along one orientation and large perpendicular variation
This analysis assumes that within each neighborhood there is a single dominant or
tation. In order to verify this assumption, we introduce a normal@didence measure
to each orientation we associate a real vaue [0, 1] which can be computed from the
eigenvalues of the structure tensor. Similarity of the eigenvalues of the structure tensor
plies isotropy, and, as a resut should be close to zero. Therefore, denoting hy. . ., A4
the eigenvalues 08, a logical choice consists of testing whether the sum of quadrat
differences of them,

d d
rabGo) = Y (il o) = 20 0)) (21)
i=1 j=i+1
Ridge Valley Ridge Valley
Attraction Repulsion Attraction Repulsion
(a) ®

FIG. 15. Attraction and repulsion of vectors in (b) are higher than in (a).
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exceeds a predefined thresholdharacteristic foh  in the structure we want to enhance.
A suitable function is [42]:

C(X;01:C) = 1 — g (alxon))?/2e* (22)
Now we can obtain an enhanced creaseness measure by the following steps:

1. Compute the structure tensor fi€dased on the gradient vector field We will
use a Gaussian neighborhood to com&itie the 3D case (to be used in Sections 4 and 5
this gives

s1(X;01;0p)  S12(X;01;00)  S13(X; 015 D)
S(x;01;0p) = | S12(X;01;0p)  S2(X;01;0D)  Se3(X; 015 0D)
$13(X;01;0p)  S23(X; 01;0p)  S33(X; 01; 0p)
s1(X; 01;00) = G(X; 01) * (Lx(X; o0)Lx(X; 0D))
S12(X; 015 00) = G(X; 01) * (Lx(X; 60) Ly(X; 0D)) (23)
s13(X; 01; 0p) = G(X; 01) * (Lx(X; op)L2(X; 0D))
S22(X; 01; 0p) = G(X; 01) * (Ly(X; op)Ly(X; 0p))
$3(X; 01;00) = G(X; 01) * (Ly(X; op)L2(X; 0D))
S33(X; 01; 0p) = G(X; 01) * (Lz(X; op)L2(X; 0D)).

The new parameterp denotes the standard deviation of the Gaussian kernel involved
the differentiation process needed to computén a well-posed manner (Section 3.3).
The parametesp is called thedifferentiation scalen opposition tos; which is called
the integration scale The differentiation scale is tuned to the size of the objects whos
orientation has to be determined, while the integration scale is tuned to the size of
neighborhood in which an orientation is dominant.

2. Perform the eigensystem analysisSfln this analysis, opposite directions are
equally treated. Thus, in order to apply the divergence operator in the next step, we n
assign a proper direction to the dominant gradient orientatiomo recover such direction
we putw’ in the same quadrant in 2D, octant in 3D, etc.was hen, we obtain the new
vector field

W = signfv'" - w)w’, (24)

where the function sigm{ takes the value-1 if x > 0, —1 if x <0, and 0 ifx = 0. In this
way, attraction/repulsion of vectors is reinforced. As an example, Fig. 16 compares
normalized gradient vector field versus the vector field.

3. Compute the new enhanced creaseness meas(. SEC-ST) as the following
definition states:

DerINITION 4 (MLSEC-ST). According to the divergence operator in Eq. (12), we de
fine our MLSEC-ST operator for a discrete domain as:

7y = —div(W). (25)

We will use the termx© to denote the 2D MLSEC-ST measure based on the 4-adjacen
divergence andy; for the 3D analogous.
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FIG. 16. First row: (a) Smoothed CT slice from Fig. 2 with four new ROIs framed. Second row: (b) Vectc
field w in the ROIs. Third row: (c) Vector field according to the structure tensor analysis.

4. Thisis an optional step. Compute a suitable confidence me@sameduce crease-
ness in the structures we are not interested in. Then we cargd@kasthe final creaseness
measure.

Figure 17 shows the results obtained usifigfid—k °C to compare withc, Ly, and«®
of Figs. 2, 3, and 12. Notice how the MLSEC-ST measure does keep the good prope
of the MLSEC due to the multilocal support of the divergence and exhibits a more hon
geneous output. Besides, singeconsists of an average direction of gradient vectors, th
MLSEC-ST operator also has the same invariance properties as the MLSEC and the LS

3.3. Computational Aspects

To obtain derivatives of a discrete imaben a well-posed manner [52, 14], we use the
CFDs (Table I) of a Gaussian smoothed version of the image,

La(X;0p) ~ 84(L(X) * G(X;0p)),  « € Ay, (26)

whereop stands for the standard deviation of the Gaussiansafor the CFD along the
axis. We perform the convolution in the spatial domain, taking advantage of the separab

and symmetry properties of the Gaussian kernel to save time.
A method to calculate botk in 2D and«y in 3D consists of computing the set of
image derivatives, therefore, and then applying the respective equations. Analyzing th
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FIG. 17. First row from left to right: (@) (o) = 4.0 pixels) of the smoothed MR slice in Fig. 2. (BX°C
with ¢ = 1000. Second row: (®< (o; = 4.0 pixels) of the smoothed CT slice in Fig. 2. (df°C with c=1000.
Third row: (e) Zoom of the ROIs of” computed from the MR slice. Fourth row: (f) The same as for the CT.

computational requirements of andxy;, that is, the 2D and 3D MLSEC measures basec
on the smallest neighborhood when computing the divergence, we realize that even thc
they are multilocal measures they require less memory and operations than their I
counterparts andky (Table Il). However, in 3D it is convenient to write an algorithm

that scans the image voxel by voxel, computing the respective expression. The ree
for this is that it saves memory: by first computing all the image derivatives involved

ky we need simultaneously seven float 3D images (Table I1), which could mean a lot
memory. Therefore, we have adopted a voxel scanning approach [30] to minimize merr
requirements and therefore disk access. On the other hand, when scanning pixel-by-|
and computingc® or «y, we have to buffer values to avoid the repetition of calculations
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TABLE Il
Number of Operations at Each Pixel/Voxel to Computex and « in 2D,
and ky and ky in 3D

K e ey K
Maximum number of images 6 5 9 7
simultaneously in memory
Additions and subtractions 15 6 33 10
Products and divisions 8 4 13 6
Square roots 1 1 1 1
Divisions by a constant 5 4 9 6

In practice this makes“ and«y, slightly more time-consuming thanand«y. Yet, the
difference is small, as shown in Table IlI.

The computation okg consumes many more resources tkarand«g (Table 111) due
to the eigensystem analysis and, mainly, the Gaussian averaging of the structure te
components. In 2D we compute the eigenvalues of the structure tensor analytically; in
we are currently using the TQL method [46]. Again, to save memory, at the moment
use an implementation af°"in 2D andxy,; in 3D based on pixel-by-pixel scanning [30]
(implementation available upon request, contact the first author).

When computing either the MLSEC or the MLSEC-ST it is clear that the larger tt
neighborhoodV used to implement the divergence operator, the larger the resources nee
Therefore, whenever it is possible, the best option is to keep on working with the smal
neighborhood, that is, the one based on tti@8jacency.

4. REGISTRATION OF CT AND MR HEAD VOLUMES

Image registration attempts to solve the problem that arises when two images taken a
ferent times by different sensors or from different viewpoints need to be brought into spa
agreementin order to fuse their information. An upcoming application of image registrati
is in the field of medical images, especially after the introduction of 3D modalities.

We have focused on CT-MR registration because these modalities are widely availe
and provide partially complementary information (CT depicts bones accurately, while N

TABLE 11l
CPU Time in a 200-MHz Pentium Pro PC with 128 MB of RAM Memory under Linux OS

Gaussian smoothing

Image dimensions o =4.0) Ly K P %° (0, =4.0)
256 x 256 0.09s 0.058 s 0.058 s 0.072s 0.6s
512x 512 0.37s 0.24s 0.24s 0.28s 24s

Lpp or qu Km I?ﬁ E,ﬁ (O’| =40)
128x 128x 84 2s 7s 1.8s 2.1s 80s

250x 250x 180 18s 75s 23s 23.3s 720s




134 LOPEZ ET AL.

differentiates soft tissues). First, multisensor registration methods used physical marl
visible in both modalities to provide reference points, but they were manual and had
drawbacks of lacking retrospectiveness and not being patient friendly.

Currently, we are developing an automatic registration method for CT and MR he
volumes, which is similar to that introduced by Dr. van den Elsen in [11]. It is based on't
fact that the skull is visible in both CT and MR brain images. The signal produced by t
bone is strong in CT, but weak in MR, in such a way that the skull forms a ridge structt
in the CT volume and a valley in the MR. Moreover, since the skull is undeformable, or
rigid transformations need to be considered. Thus, only six parameters must be found, t
rotation angles and a 3D translation vector. Scaling factors are known from the acquisi
system settings (image dimensions and field of view).

Let us briefly review the steps of our registration procedure. The first one consists
scaling the CT and MR images to have voxels of the same size. Second, we must extrac
center of the skull from both the CT and the MR scaled images. Since the skull in the
volume appears as a ridge structure, we can use a ridge operator working in 3D to ext
the center of the skull. Let us term &sthe response of such an operator. Analogously, wi
can use a valley operator working in 3D to extract its center)Lie¢ its response. The last
step consists of iteratively transformifijuntil it becomes properly aligned with. This is
a difficult task due to the huge size of the data and the high dimensionality of the spact
transformations. To overcome the first drawback we use a pyramidal séaiahd()’ are
sampled to generate a multiresolution pyramid), following Dr. van den Elsen’s propos
To overcome the second drawback we incorporate an optimized search at each level o
pyramid, in this case, unlike Dr. van den Elsen who used an exhaustive search whict
general, is more time-consuming.

If we assume thak has the same origin of coordinatesgsve can state tha® and) are
perfectly aligned if at any voxelwe haveR (i) = V(i). Obviously, this is an ideal situation.
In practice, a reliable method to evaluate HRBwesembled’ consists of correlating them.
The higher the correlation the better the alignment. The correlation performs well, but
have to be careful during the search for the aligning transform to avoid being caughtin lo
maxima of the correlation betwedd andV .

It has been experimentally seen that, if we use the correlation operator to coRpack
V, a reliable approach consists of working with creaseness measures, fhagisg a 3D
ridgeness measure of the CT volume aha valleyness measure of the 3D MR volume. Of
course, with this approach good contrast, continuity, and homogeneity are quite desir:
properties to avoid noisy local maxima of the correlation betw@emd)’, and to generate
a meaningful multiresolution pyramid of both measures.

In her work, Dr. van den Elsen proposed the pair of 3D operatgysindL q introduced
in Section 2.1. As can be seen in Fig. 18, both measures present discontinuities alon
skull, and they do not have a homogeneous response. Figure 19 shows the results obt
with «y; andCky,. We observe that the responseffis continuous and more homogeneous
along the skull of both the CT image and the MR image. Moreover, its computation is le
time-consuming than that df,, andLqq (Table Ill). However, it is clear tha€ky, is the
best option.

Concerning the way to compare our registration method with other existing ones,
are currently obtaining results to be evaluated in the framework of the “Evaluation
Retrospective Image Registration” project conducted by Dr. Fitzpatrick and Dr. West
Vanderbilt University. This project has as its primary goal the blinded evaluation of
group of retrospective image registration techniques using as a gold standard a prospe
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FIG.18. Fromthe leftcolumntothe right one: (a) Transversal, coronal, and sagittal slices ok286& 180
CT volume with cubic voxels. (b)-Ly, > 0 from the CT volume. (c).qq > O from the MR volume. (d) Slices of
a 250x 250 x 180 MR image with cubic voxels. The operators were applied after the Gaussian smoothing of
images, withop, = 4.0 pixels.

marker-based registration method. Its first results have been already published [57,

According to them, it seems that one of the best algorithms is that of Studholme, Hill 2
Hawkes [51], and it is based on theutual information(MI) technique [5, 56]. Therefore,
we decided to start by comparing our results directly with those of this algorithm. T

FIG. 19. From the left column to the right one: (g}, > 0 from the CT image in the first column of Fig. 18.
(b) —ky; > 0 from the MR image in the last column of Fig. 18. @J,5 > 0 from the same CT image. (6)Ck,; > 0
from the same MR image. In both (c) and (d) the same specific parameters were used, ®lamelypixels and
¢=1000. The operators were applied after the Gaussian smoothing of the images, withO pixels.
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FIG. 20. Top row: (a) Example where the bone of the CT volume has been fused with the MR data af
our registration process. Bottom row: (b) Location of the creases obtained by thresholding the MLSEC-ST-b:
ridgeness and valleyness measures from the CT and MR volumes, respectively, at their final positions. The d
gray indicates ridges from the CT data, the medium gray indicates valleys from the MR data, and white indic
spatial coincidence of these ridges and valleys.

study is presented in [29], where the comparison indicates that our method is more rol
(reliability under adverse conditions) than the MI with comparable accuracy. Figure
shows a fusion example after registering the CT and MR volumes of Fig. 18 using ¢
method.

5. ANALYSIS OF THE ORIENTATION OF TRABECULAR BONE PATTERNS

Human bone can be classified as cortical or trabecular, depending on its relative der
[18]. Most bones are built of both types; the cortical part forms a dense shell, in contrast v
the mesh appearance of the trabecular part, which covers the inner side of the shell. T
is increasing clinical evidence that measures of architecture in the trabecular bone pa
play an important role in the loss of bone strength, e.g., in bone diseases like osteopor
Since means of prevention and treatment of osteoporosis are now available [28], tools
in vivo diagnosis of relevant bone properties are invaluable.

The trabecular patternis visible at resolutions which can be appreciated from conventic
CT images. A neutron diffraction study by Bacehal. [1] confirmed that there exists a
high correlation between the direction of individual trabeculae and routes of stress, wh
are apparent at a larger scale and are related to mechanical loading in the body accol
to [18]. Our aim is to determine these stress routes from 3D noninvasively obtained date
order to study the relationships between structure, mechanical loading, and, in patholog
cases, malgrowth.
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The routes of stress can be seen as an oriented texture in 3D images. Since they app
scales which are considerably higher than the size of individual trabeculae and vary wi
the human skeleton, in [43, 42, 41] we used a multiscale texture analysis method base
the structure tensor. This method, let us call it method 1, consists of the following steps

1. Analysis of the trabeculae. At each vokeff the image:
(a) Obtain the eigenvectors and eigenvaluel(ob"2; o§29), that is, the structure
tensor with parameters tuned to the trabecular pattern.
(b) Take the dominant orientation(i; o\"3%; oi2b).
(c) ComputeC(i; o"3b; oiab; ctrab),
2. The dominant orientatiovi(i; o\"2% o42°) is considered as a meaningful dominant
orientation of the trabecular patternGf(i; o2 o42b; cab) > t'"ab wheret"™ is a given
threshold value on [AL], which is the range of the confidence measure.

With this method, however, cortical bone and intertrabecular space yield high confider
The main problemisthe cortical bone influence, which manifests itself in two different way

e Pa Orientations due to cortical bone and intertrabecular space are included in
orientations of the voxels passing the test of step 2. Therefore, measures that look f
global preferred orientation, such as a histogram of orientations, are affected by them.

e Pb: If we choose a large,"@ with the purpose of obtaining a more global measure
of the trabeculae orientation, then, since cortical bone is a highly oriented structure, it \
have a high influence in the trabeculae orientations that are “at a distance lowefthan

In order to overcome these problems we have revised method 1. Our main aim wa
inhibit cortical bone effects without performing a fine segmentation, which in general is
nontrivial task since trabecular and cortical bone produce a response of similar gray-le
so they cannot be distinguished from each other by simply thresholding. With this aim,
observe that cortical bone produces aridge structure in CT images. Therefore, as in the
of CT/MR registration, we can approximately segment cortical bone by using the MLSE
ST, but with a divergence operator based on a neighborhood of an appropriate size (Fig.
In addition, to avoid intertrabecular space influence, we only consider the orientation:
the center of the trabeculae (this is like saying that the dominant orientation of a cylin
is that of its central axis). We term the method deriving from this idea as method 2, wh
is adapted here from [32] in order to better appreciate the contribution of our MLSEC-
operator in this application:

1. Analysis of the cortical bone. At each voxelf the image, compute the weighted
creaseness measufg(i: 0" o5 C(i; 0, 050" c°") as described in Section 3.2, where
the parameters are tuned to the cortical bone size and contrast. In this case, given ar
o, we will use the points of the boundary of a discrete sphere to discretize the diverge
according to Eq. (12). Let us refer by} (i; 0,°°"; 05°") to the MLSEC-ST operator computed
by using such a spherical neighborhood. Then, as we have already seen in Fig. 14, by te
a sufficiently largep, we can obtain high creaseness values along the whole cortical bo
not only along its center.

2. Analysis of the trabeculae. At each vokelf the image:

(a) Obtain the eigenvectors and eigenvalueS(ofo,"2°; o42b).
(b) Takev'(i; o\ o 4ab),
(c) Computec,(i; o\ o830)C(i; 010, o430 ct'ab) as described in Section 3.2.
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3. Combine the trabecular and the cortical bone analysis. Given the threshold val
t"aandtrunning on [0 3] (ridgeness range of the MLSEC-ST in 3D){f (i; o™ o¥3b)
C(i; altrab; Ogab; ctrab) -~ ttrab and KT;I (i; Olcort; asort)c(i; Olcort; 080“) < tcort’ then V’(i; 0|"ab;
o33 is considered as a meaningful dominant orientation of the trabecular pattern.

With this method only trabecular bone is taken into account, that is, the dominant ¢
entation of this pattern is neither artificially reinforced nor disturbed by the intertrabecu

FIG. 21. From top to bottom and left to right: (a) Transversal sagittal and coronal sections of the bottom
afibula. (b) In black, voxels taken into account by method 1. (c) Ridges &p@ifi method 2. (d) Ridges from
k4 C in method 2. (e) Voxels taken into account by method 2, that is, voxels selected in (c) but not in (d).
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space or the cortical bone, and dominant orientations that do not correspond to trabec
are removed provided,™ is kept sufficiently small. Therefore, this scheme solRes
Because in this application we wanted to evaluate the effeBaandPb separately, we
started by solving judPa, andPb will be solved in future work.

Now we illustrate the 3D results by concentrating the analysis on the bottom of the fib
(Fig. 21a), imagedh vitro by means of a CT scanner with realisiticvivo settings, pixel
resolution of 025 x 0.25 mm and slice thickness of®mm. To perform this analysis we
first interpolate the data to get cubic voxels. Since the bone is mainly oriented vertice
with respect to the image coordinates we expect to obtain this orientation as the n
significant. We have used the following parameters for methagi®= 0.5, o' = 3.0,
andc"@ = 2500. With method 2 the parameters wer" = 4.0, 05" = 3.0, c°°rt 1000,
p=5, 053 =0.5,0"=3.0, andc"@=1000. In these experiments we have taken th
ridges in step 2 of method 2 as the loci whefgC™> 0.5, and the ridge areas of step 1
as the loci whereC > 0.4. In method 1 we have taken as relevant orientations tho:

FIG. 22. From top to bottom and left to right: (a) Orthographic projection of a normalized histogram of 3|
orientations (superior hemisphere discretized intx@2 cells) from the trabecular bone in the fibula, according
to method 2. Dark denotes a high incidence. (b) The same as for method 1. (c) Projection only takes into acc
the planes framed in Fig. 21a, according to method 2. (d) The same as for method 1.
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placed at points wher€ > 0.5. Figure 21b shows the voxels whose orientations will be
taken into account by method 1, and Fig. 21e shows the ones taken into account by me
2. We visualize the 3D anisotropy in the trabecular structure in Figs. 22a, and 22b. B
methods reveal that the main orientation is slightly off the vertical axis, which runs along t
longitudinal axis of the fibula. Method 1 gives a more noisy result than method 2 beca
cortical bone orientations do count. However, in this case the main orientation is still fou
by method 1 due to the fact that we analyze a large part of the fibula and the cortical b
is oriented mainly as the trabeculae, and only more at the bottom of the fibula do th
orientations differ. Instead, taking into account only orientations from the planes markec
Fig. 21a, we appreciate a major difference between the two methods (Figs. 22¢ and 22

6. SUMMARY

The level-set extrinsic curvature (LSEC) is a creaseness measuralfiorensional im-
ages that acts as an approximation of medialness for gray-level objects. In this papel
have first identified two problems that it presents when used as a tool for image analy
the badly dynamic range and the discontinuities of the response. Related creaseness
sures, likeLyy in 2D or«wm, Lpp, andLqq in 3D, also present discontinuities and lack of
homogeneity. We have analyzed these problems and reached the conclusion that the
due to the local definition of the LSEC itself. Therefore, we have proposed an alternat
multilocal operator based on the LSEC idea, the MLSEC, which has been directly desig
for the discrete domain. It has been shown that this new operator avoids the problem
the LSEC. We have also proposed an extension of the MLSEC which adapts the struc
tensor from oriented texture analysis to enhance the response of the MLSEC. This |
operator, the MLSEC-ST, can be combined with its associated confidence measure to
an even cleaner creaseness measure along the center of the objects of interest.

Results have been shown in the context of two applications on 3D images, namely,
registration of CT and MR head volumes and the computation of trabecular bone domir
orientations from CT volumes. In the first case, our MLSEC-ST measure has been show
be ideal as a common feature from CT and MR volumes to perform the registration. Curr
results indicate that the obtained overall accuracy is in most cases sub-pixel and compal
to that achieved by the mutual information method. In the second case, we have prese
a new method to define trabecular orientation in a quantitative robust manner. This met
presents as an improvement, with respect to the previously existing operator (also base
the structure tensor analysis), the use of the MLSEC-ST operator to reduce the influenc
the analysis of both the cortical bone and the intertrabecular space, which are also stro
oriented structures.

Finally, we have to mention that in this paper we have concentrated on showing res
of the MLSEC-ST in 3D applications. In [30] we show how the MLSEC gives satisfactor
results in the context of other applications.

APPENDIX A

Expression in Terms of Cartesian Coordinates of the LSEC in 2D and 3D

In this appendix we show how to obtain Egs. (3) and (4) from Eq. (2). According to t
Einstein summation convention (if an index occurs twice in a given term or in multiplicatiy
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terms, a summation over all possible index values is assumed, in this case, frof)) Wé¢o
have

d d
Lo Lﬁ af ZZZinin Lyixi,

i=1 j=1

d d d
Lololgs = (ZLX ><2ijxj>=ZL§i<Zijxj),
i i=1 j=1
d
L,L, => Laly :ZL :

i=1

Then, using Cartesian coordinates in 2D £ x, x2 =), we have

Lalplop = LiLux + 2LxLyLyy + LiLyy.
Lalalgs = L2(Lux + Lyy) + L3(Lax + Lyy).
Lalplas — Lalolps = 2LyLyLyy — LiLyy — LiLy,
LyL, =LZ+L%,

andin3D kl=x,x?>=y, x3=2)

Lolglep = 2(LxLyLyxy + Lyl Lxz 4+ LyL;Lyy)
+ LiLax+ LiLyy+ Lilys

Lalablps = LE(Lxx+ Lyy+ Lzd) + L3(Lax + Lyy + L)
+ L2(Lxx + Lyy + Lz,

Lalplas — Lalalps = 2(LuLylyy + LxLzlyz + LyLoLys) — L2(Lyy + Ls2)
= L3(Lxx + Lzg) — LA(Lxx + Lyy),
LyL, =Li+L5+LZ
Of course, we are always supposing continuity of the partial derivatives, and there

Lyixi = Lyixi. Finally, by mere substitution in Eq. (2) of the 2D and 3D Cartesian formula
we obtain Egs. (3) and (4), respectively.

APPENDIX B

The LSEC in Terms of the Gradient Vector Field

The aim of this appendix is to prove the equality of Eq. (9) given Egs. (2), (7), and (!
The normalized gradient vector is expressed in terms of its componewts-4k,1, . . .,
Lxd)t(Z?zl L2,)~2. Therefore, to prove Eq. (9) we have to show that

Zid=1 Z?=1 LxiLxiLxixi — Zidzl Lii (Z?:l inxl zd: i < Ly )
d 3/2 172
(X L) =X\ (T, L2)
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where the right-hand side of Eq. (2) has been translated into the “summational langue
according to Appendix A. This equality can be proved by developing its right-hand side
follows:

LI Ly
9 Ly (Z?:l L% )1/2 — Ly %(Z?:l Lii)_l/zz( Z?:l Ly Lxixi)
_E YLy
_ zd: L (Z?:l Lyi Lyixi) = Lyix (Z(jj:l L)
T & () L2)¥
_ Yot L ( Z?zl LyiLyixi) = 2 Lix (E?=l L3)
B (L, L2)¥
O Ll L — X5y Sy L L2
- (o L2)™
L Lk b — S0 L2 (254 Lind)
B (T, 12)%
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