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Creases are a type of ridge/valley structures of an image characterized by local
conditions. As creases tend to be at the center of anisotropic grey-level shapes,
creaseness can be considered a measure of medialness, and therefore as useful in many
image analysis problems. Among the several possibilities,a priori the creaseness
based on the level-set extrinsic curvature (LSEC) is especially interesting due to its
invariance properties. However, in practice, it produces a discontinuous response
with a badly dynamic range. The same problems arise with other related creaseness
measures proposed in the literature. In this paper, we argue that these problems are due
to the very local definition of the LSEC. Therefore, rather than designing anad hoc
solution, we propose two new multilocal creaseness measures that we will show to
be free of discontinuities and to have a meaningful dynamic range of response. Still,
these measures are based on the LSEC idea, to preserve its invariance properties.
We demonstrate the usefulness of the new creaseness measures in the context of
two applications that we are currently developing in the field of 3D medical image
analysis, the rigid registration of CT and MR head volumes and the orientation
analysis of trabecular bone patterns.c© 2000 Academic Press
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1. INTRODUCTION

The ridges and valleysof a gray-level image tend to be at the center of anisotropic
objects; therefore, they are useful skeleton-like descriptors of them. Ridges and valleys are
dual in the sense that the valleys of an image are the ridges of the inverted image. In the
computer vision literature there is a plethora of different characterizations (algorithmic or
mathematical definitions) of the intuitive notion of the ridges/valleys of a landscape. In [31]
we classified these characterizations aslocal, multilocal, or global, according to the region
of influence induced by them. Definitions falling in the local class are theSaint-Venant/
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Haralick conditionin 2D [7, 21, 24, 38], generalized to any dimension asheight definition
[10], and the so-calledvertex conditionin 2D [17, 24, 25, 53], generalized to any dimension
as level definition[10]. From now on, we will use the termcreaseto refer to both ridges
and valleys of the local class. We included in the multilocal class the algorithms that extract
thedrainage patternsfrom digital elevation models by simulating the flow of water over
the Earth’s surface [35, 44, 49, 16, 12, 50, 8]. Finally, we classified in the global class those
algorithms that divide the image domain into districts by special lines calledseparatrices
[4, 36, 39, 20, 47, 19], among them the popularwatersheds[54, 2, 40].

In image analysis, the different characterizations of ridges/valleys can be evaluated on
their own merits with regard to their usefulness in different types of applications such as
segmentation, drainage pattern delineation, or extraction of medial axes. In this paper we
are interested in the last case, that is, in the use of ridges/valleys as an approximation of the
center of anisotropic objects in gray-level images. As we argue in [31], the most suitable
definitions to extract such medial structures give rise to crease operators. In fact, they are the
mostly used in the literature to extract medial structures, as in fingerprint analysis [34, 23],
character recognition [55, 26], registration of medical images [11, 33, 53], and computation
of medial axes of other gray-level objects [6, 17, 38, 45].

Due to their invariance properties, crease definitions based onlevel-set curvaturesare
expected to be very useful in many applications. In addition, a one-to-one relationship has
been shown between these creases and shape descriptors based on axes of symmetry, both in
2D and 3D [17, 58, 27]. Given a functionL :Ä⊂Rd→R, we define thelevel setassociated
to a constantl as the set of pointsSl ={x ∈ Ä | L(x)= l }. The continuous variation ofl
produces all the level sets ofL. The simplest situation occurs in 2D (d= 2), whereL induces
a graphic surface which can be thought of as a topographic relief, the level sets being its level
curves, like those drawn in a cartographic map and labeled by a height value. Analogously,
in 3D we have level surfaces. EachSl is, in general, composed by several disconnected
subsets which can be defined as (d − 1)-dimensional hypersurfaces onÄ. Eachx ∈ Ä
belongs just to one of these hypersurfaces, defined implicitly byF(y)= L(y) − L(x)= 0.
The curvatures of these level-set hypersurfaces are invariant under rotations, translations,
and uniform scalings, as well as to arbitrary monotonic gray-level transforms [15, 10]. These
properties are inherited by the creases based on extrema of the curvatures of the level-set
hypersurfaces, that is, the creases characterized by the above-mentioned level definition.

In order to develop the level definition and for its use in the rest of the paper, let us
introduce some notation. We define a discrete image as the sampling of ad-dimensional
continuous functionL:Ä⊂Rd→0⊂R. We will consider its partial derivatives up to
ordern, i.e., the so-calledlocal jet of ordern, Jn[L]={∂ j L/∂α1 · · · ∂α j }nj=0 ( j = 0 gives
L), where∀k ∈ I j :αk ∈ Xd, for I j being the set of integers running on [1, . . . , j ] andXd

being thed-dimensional (local) coordinate system{x1, . . . , xd}. We also define the operators
∇ = (∂/∂x1, . . . , ∂/∂xd) and∇∇ = (∇t · ∇) (t means transpose and “·” stands for the matrix
product), which allow us to define the gradient and the Hessian of a function, respectively.
Then, we can define the first-order derivative ofL along the direction given by the vector
v= (v1, . . . , vd)t in Xd coordinates asLv=∇L · (v/‖v‖) and the first-order derivative of
Lv along the direction given by the vectorw= (w1, . . . , wd)t (second-order derivative ofL
alongv andw) asLvw= (vt/‖v‖) · ∇∇L · (w/‖w‖). If we take derivatives ofL along the axis
of coordinatesxi , we use usual notationLxi ; that is, in generalLα1···α j = ∂ j L/∂α1 · · · ∂α j .
Finally, x, y, z and i, j, k will denote the continuous and discrete Cartesian coordinates,
respectively.
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FIG. 1. In 2D crease lines of a certain type are characterized as the loci of extrema of the level-curve curvature
κ: negative minima, level-by-level, form valley-like curves and positive maxima form ridge-like ones.

Now we can introduce the level definition of creases as follows. Let|ξ1| ≥ · · · ≥ |ξd| be
theprincipal curvaturesof the level hypersurface passing throughx, with t1, . . . , td being
their correspondingprincipal directions[9, 10]. Then,x is anm-dimensional crease point
if (adapted from [10])

∀i ∈ Id−m ∇ξi · t i = 0 and

{
tti · ∇∇ξi · t i < 0 andξi > 0 if ridge

tti · ∇∇ξi · t i > 0 andξi < 0 if valley.
(1)

Accordingly, in 2D negative minima of thelevel-curve curvature, level by level, form
valley-like curves and positive maxima ridge-like curves (Fig. 1), as is also stated in [17,
25, 53]. In 3D we have level surfaces and the crease criterion is based on their principal
curvatures.

Unfortunately, the direct computation of extremality criteria such as (1) involves up to
fourth-order image derivatives combined into a complex expression (see p. 637 in [17], for
the 2D case, and p. 176 in [37], for 3D). Moreover, in practice, the extremality criterion tends
to give many irrelevant creases [10, 31] so that an elaborate pruning process may be required.
However, most of the time a curvature measure of the level sets yields a sufficiently high
value along the center of elongated structures to circumvent the computational drawback by
just looking at that curvature as acreaseness(ridgeness and valleyness) measure and then
performing a threshold. This is by no means an infrequent situation, but it is precisely for
these anisotropic structures that creases are employed as medial descriptors. For example,
in 2D the level-curve curvatureκ, has been already proposed as a creaseness measure and
has been used in the context of medical image analysis [14, 52, 11, 33]. In practice, this
approach also removes to a certain extent many of the irrelevant responses given by the
strict application of the extremality criterion (1) in 2D. The 3D analogy to the level-curve
curvature is themean curvatureof the level surfacesκM, which is a differential geometric
extrinsicquantity [9]. Because of that, in thed-dimensional case we use the termlevel-set
extrinsic curvature(LSEC),κd, for the generalization ofκ andκM.

At this point we argue that the LSEC should be a good choice as a creaseness measure,
that is, as a reliable approximation ofmedialness(minimum distance from a point inside
an object to its boundary), not in the sense of providing an actual distance but in the
sense of decreasing from the center of an object to its boundary. Of course, other choices
are also possible, like the largest principal curvature in absolute value [37, 53]. However,
since the LSEC is an average of the principal curvatures, we expect it to be more robust
to noise. Moreover, at very anisotropic zones some of the principal curvatures are larger
in absolute value than the others. Therefore, they will predominate in the averaging of
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principal curvatures, and then the LSEC will capture the most relevant creaseness of the
zone. However, through the day-to-day use of the LSEC we can see that there appear two
relevant problems, namely, the lack of bothhomogeneityandcontinuity in its response,
which prevents the LSEC from being employed as a good medialness approximation.

Accordingly, we devote Section 2 to illustrating the above-mentioned problems and com-
menting on their implications. In Section 3 we propose an alternative operator to overcome
them. The new operator works ford-dimensional images and is termedmultilocal level-set
extrinsic curvature(MLSEC). In the same section, we go a step further and propose a tech-
nique which enhances the MLSEC response through thestructure tensoranalysis. In this
way, we define a new operator, which we refer to as MLSEC-ST. The next two sections
demonstrate the usefulness of the new creaseness measures in two real applications on which
we are currently working in the field of 3D medical image analysis, the rigid registration
of CT and MR head volumes (Section 4) and the analysis of the dominant orientations of
trabecular bone patterns imaged by a CT scanner (Section 5). Finally, Section 6 summarizes
the main conclusions. As properly suggested by the reviewers of this paper, we have also
included Appendices A and B to clarify some relevant formulas in Section 3.

2. LSEC AS A CREASENESS MEASURE

Besides the invariance properties of LSEC, we must ensure that it achieves other desirable
properties in order to be really useful as creaseness measure:

• Good contrast. Along an underlying crease the creaseness measure should have a
much higher value than along the sections across.
• Continuity. The creaseness measure has to be locally high along the whole under-

lying crease and without gaps since a discontinuous center makes no sense if the object is
not discontinuous.
• Homogeneity. Along a perceptually homogeneous underlying crease (e.g., a vessel

in an MRA, the skull in a CT or an MRI, a road in an aerial image), the creaseness measure
should take similar values. A way of pursuing homogeneity consists of ensuring that the
creaseness takes values in a well-known dynamic range, in a meaningful way.

The lack of any of such properties reduces the usefulness of a creaseness measure when
used as an approximation of medialness and if it is thresholded to obtain creases. Un-
fortunately, as we are going to see, the LSEC fails to be a continuous and homogeneous
measure.

2.1. LSEC Based on the Image Scalar Field

The LSEC can be expressed in terms of the derivatives ofL according to tensorial calculus
as (see [52], p. 98, and [14], p. 337)

κd = (LαLβLαβ − LαLαLββ)(Lγ Lγ )−
3
2 , α, β, γ ∈ Xd, (2)

where the Einstein summation convention must be used to expand this expression for a
particular dimensiond. The sign ofκd classifiesL as convex (κd > 0) or concave (κd < 0)
with respect to the vertical (gray-level) axis, that is, as ridge-like or valley-like, respectively.

For d= 2 and using Cartesian coordinates, we obtain the level-curve curvature,

κ = κ2 =
(
2Lx L yLxy− L2

yLxx − L2
x L yy

)(
L2

x + L2
y

)− 3
2 , (3)
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and ford= 3, we obtain two times the mean curvature of the level surfaces:

κM = 1
2κ3 = 1

2

(
2(Lx L yLxy+ Lx LzLxz+ L yLzL yz)− L2

x(L yy+ Lzz)

− L2
y(Lxx + Lzz)− L2

z(Lxx + L yy)
)(

L2
x + L2

y + L2
z

)− 3
2 . (4)

In [53] it is shown howκ (p. 193) can be derived by applying the implicit function theorem
to the level curves and howκM (p. 195) can be derived from the differential geometry of
the level surfaces. Appendix A shows howκ andκM can be obtained as the particular 2D
and 3D cases, respectively, of Eq. (2).

The use ofκ as a 2D creaseness measure was already proposed in [14, 52, 11, 33], where
the family of operatorsLvvLαw, α ∈ [−1, 0], was defined. Taking into account the relation

κ = −Lvv/Lw, (5)

wherew= (Lx, L y)t is the gradient vector andv= (L y,−Lx)t is the tangent to the level
curves;Lvv can be considered as the measureκ weighted byLw (gradient magnitude) in
order to nullify its response at isotropic regions. However, this is a trade-off sinceLw is lower
inside a ridge/valley region than on its boundary. Thus, we can think ofα as a parameter
that controls that trade-off.

In [11, 33] the same authors generalized theLvv andκ operators to 3D, not by their
direct tensorial extension but by means of two new operators that they calledLpp (ridgeness
measure ifLpp< 0) andLqq (valleyness measure ifLqq> 0), wherep andq are the principal
directions of the level surfaces. Similarly to the 2D case, the families of operatorsLppLαw
andLqqLαw were defined. In Section 4 we will compareLpp andLqq to the new operators
we propose.

2.2. Problems of the LSEC as a Creaseness Measure

Even though in theory the LSEC is a good creaseness measure, we have found that its
output is not sufficiently satisfactory since it contains discontinuities at places where we
would not expect any reduction of creaseness because they are at the center of elongated
objects. Moreover, the LSEC can have an extremely large dynamic range but can have only
a few points with values at the upper and lower bounds, which we calloutliers. This makes
creaseness differ from medialness since these outliers are not “more in the center” than
other points with a high, but not outlier, creaseness value.

A 2D example can be seen in Fig. 2, where we want to obtain a measure which is high
along the center of the skull from a CT and an MR slice, and low elsewhere. We observe
that discontinuities are frequent along these centers. Notice that gaps cannot be locally
distinguished from points that actually must have low creaseness. This affects the use of
the creaseness measure itself and the extraction of creases by thresholding it sincecrease
findersshould have to decide heuristically which direction to follow when they reach such
discontinuities. Moreover, the results in Fig. 2 are shown for after the application of the
following gray-level transform for a givenl > 0:

T(I (x), l ) =


l if I (x) > l

−l if I (x) < −l

I (x) otherwise.

(6)
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FIG. 2. First row, from left to right: (a) MR slice. (b) Smoothed with a Gaussian kernel. (c)T(κ, 1.0) of the
smoothed image. Second row: (d) CT slice. (e) Smoothed. (f)T(κ, 1.0). Third row: (g) Level curves from the
ROIs of the smoothed MR slice (in this case, with an inverted gray scale for the sake of visualization). Fourth row:
(h) The same as for the CT. Fifth row: (i) Zoom of the ROIs ofκ computed from the MR slice. Sixth row: (j) The
same as for the CT.
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FIG. 3. Left: (a) Lvv from the smoothed MR slice in Fig. 2b. Right: (b) The same as from the smoothed CT
slice in Fig. 2e. In both casesLvv was computed according to its expression in terms of image derivatives, not by
computingκ andLw and then using Eq. (5).

The purpose of this transform is to select a suitable interval of the LSEC response before
doing the usual 8-bits contrast maximization, for the sake of visualization. Without applying
T to the LSEC response we would only see its outlier values.

The measureLvv improves the previous results because it has a more homogeneous dy-
namic range and removes the background response, but still it presents many discontinuities
along the center of elongated gray-level objects (Fig. 3). In 3D, operators such asκM, Lpp,
andLqq exhibit analogous problems, as we will see in Section 4.

3. MLSEC AS A CREASENESS MEASURE

If we think for a moment of an image as a continuous function, we can see that by traveling
along the center of elongated structures contained in it we go up and down, passing through
generic critical points (maxima, minima, and saddle points), that is, points whereLw= 0 but
det(∇∇L) 6= 0. From Eq. (2) we know that the LSEC is ill-defined at such points since the
gradient magnitudeLw= (Lγ Lγ )1/2 vanishes. In 2D, for instance, we could appeal to the

FIG. 4. Scheme of the level curves around generic critical points. Around extrema the radius of curvature of
the level curves goes to zero; therefore its inverse,κ, goes to+∞ at maxima and to−∞ at minima. A saddle point
is the intersection of two straight segmets of level curve. Thus, we can consider that at a saddle pointκ vanishes.
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FIG. 5. Sampling around a saddle point. Discrete convex paths (ridge-like) are broken due to the sampling,
mostly at the surrounding concave area. The more elongated the saddle, the longer the interruption.

geometry of the level curves around the critical points (Fig. 4) to assign a “coherent” value
to κ. At a saddle the curvature of the level curves vanishes, at a maximum it has a value of
+∞, and at a minimum it has a value of−∞, but this precisely would makeκ discontinuous
and inhomogeneous if critical points are placed along the center of an anisotropic object.

On the other hand, in the discrete domain it is quite unlikely to find a pixel whereLw= 0,
except in a flat area. The actual critical points are placed at sub-pixel coordinates. However,
it is precisely in the discrete domain where the problems of the LSEC measure arise, mainly
around saddle points where even achange of sign barrieroccurs. Figure 5 shows a scheme
of the sampling of a 2D ridge-like saddle-placed sub-pixel, which is reached by a ridge-like
curve. Notice how the underlying surface is mainly sampled at concave zones (κ <0) in
such a way that, by discretizingκ, ridgeness (κ >0) is interrupted by valleyness (κ <0).
This is true even if we sample the analytic expression ofκ; that is, it is not a problem of how
we discretize Eq. (3). Moreover, intuitively it is clear that the more ridge-like the saddle is,
the larger the interruption is. This is the case for the selected ROIs of the center of the skull
from the smoothed MR and CT slices of Fig. 2. We see that the discontinuities ofκ andLvv

along the skull do not correspond to any relevant break of that anatomical structure in the
smoothed slices. In addition, saddles are more elongated when the variation of gray-levels
along the underlying crease is very gentle, which is the usual situation, mainly if we are
processing images of the linear scale-space stack [52, 14].

In this paper we argue that these problems are due to the very local definition of the
LSEC, which is not appropriate for the discrete domain, that is, for real-life image analysis.
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Therefore, we devote Section 3.1 to defining a multilocal operator based on the LSEC, the
MLSEC, which will be shown to overcome the problem of discontinuities around critical
points and the inhomogeneity of the LSEC response. In Section 3.2 we will also present a
natural improvement of this operator, the MLSEC-ST operator, by borrowing ideas from the
analysis of oriented textures. In Section 3.3 we provide some comments on the computational
aspects of these operators.

3.1. LSEC Based on the Image Gradient Vector Field

In 2D,κ can be defined through its geometric relationship with the slope lines, which are
the lines integrating the gradient vector fieldw and are, therefore, orthogonal to the level
curves. Due to the orthogonality, when level curves are parallel straight lines, slope lines are
also parallel and straight, and when the level curves bend, the slope lines diverge/converge
(Fig. 6). Therefore, it is clear that there is a connection between the curvature of the level
curves and the degree of parallelism of the slope lines. In vector calculus we have the
divergence operator which measures this degree of parallelism. The divergence of ad-
dimensional vector fieldu : Rd → Rd, u(x)= (u1(x), . . . ,ud(x))t is defined as [48]

div(u) =
d∑

i=1

∂ui

∂xi
. (7)

Now, if we denote by0d thed-dimensional zero vector, we can definew̄, the normalized
gradient vector field ofL: Rd → R, as

w̄ =
{

w/‖w‖ if ‖w‖ > 0

0d if ‖w‖ = 0,
(8)

and then it can be shown (Appendix B) that

κd = −div(w̄). (9)

Equation (9) allows for a new geometric interpretation ofκd. To fix ideas let us return
to the 2D case, and letx be a point where the divergence of a 2D vector fieldu has to be
computed. LetC be a simple closed curve inR2 parameterized bỳ, which encloses the
point x; let n be its unitary normal vector andω the area enclosed byC. Figure 7 depicts
the situation. Then the divergence ofu atx can also be defined as [48]

div(u) = lim
ω→0

1

ω

∫
C

ut · n d`. (10)

FIG. 6. Slope lines diverge/converge according to the curvature of the level curves.
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FIG. 7. Geometry involved in the definition of the divergence of a vector fieldu atx.

For any dimensiond, we can generalize this definition by assuming thatC is a (d − 1)-
dimensional simple closed boundary of a neighborhoodW (∂W = C) of volumeω including
x and thatd` is the (d− 1)-dimensional volume element ofC (e.g., ifC is a closed surface
thend` is an area element).

Taking the limit in Eq. (10) foru= w̄ makes Eq. (9) hold in the continuous domain.
However, we argue that it is precisely the infinitesimal process which gives rise to the
problems of the LSEC as a creaseness measure. Therefore, we propose in this paper the
substitution of the local definition ofκd by a multilocal definition based on a discretized
version of Eq. (10), where the multilocality is achieved by assuming that the neighborhood
W or, analogously, its boundaryC, is a selectable parameter. That is, to compute div(w̄)
at x we will take into account gradient vectors along the pathC aroundx. The rationale of
our proposal is to try to capture the tendency to diverge or converge of a vector field in a
neighborhood of finite size rather than computing the infinitesimal tendency of the vector
field. We believe that this is more in agreement with our perception of the crease structures.

According to this reasoning, for a given dimensiond we will denote ¯κd the multilocal
level-set extrinsic curvature (MLSEC) based on Eqs. (8), (9), and (10), given a selectedC.
This can be stated through the following definitions.

DEFINITION 1 (divergence for regular grids). In thed dimensional Euclidean space, let
B={i1, . . . , ir } represent the set ofd-xels that form the discrete boundaryC of a given
neighborhood or windowW (C= ∂W) centered at ad-xel i, and let U ={u1, . . . ,ur },
where∀k ∈ Ir : uk= u(ik) for a d-dimensional vector fieldu. Then, according to Eq. (10),
the divergence ofu at i can be discretized as

div(u) = δ`

ω

r∑
k=1

ut
k · nk, (11)

ω being the volume ofW,N ={n1, . . . ,nr } the unit normal vectors toC at each boundary
site, that is,∀k ∈ Ir : nk= n(ik), andδ` the discrete volume element ofC that we assume to
be constant. From now on, we will refer tor as adjacency.

Given a vector field, in this paper we assume the use of the same windowW to compute
its divergence at any point; therefore,δ` andω are constant. This means that we can remove
the scaling factorδ`/ω when computing ¯κd since it would be just a global scaling of the
creaseness measure. Therefore, we redefine the discrete divergence as follows.
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DEFINITION 2 (scaled divergence for regular grids). Under the conditions of Definition 1,
we redefine the divergence ofu at i as

div(u) = d

r

r∑
k=1

ut
k · nk. (12)

Here we have introduced the scaling factord/r for a better geometric interpretation of the
dynamic range of ¯κd as we will explain shortly.

DEFINITION 3 (MLSEC). According to the divergence operator in Eq. (12), we define
our MLSEC operator for a discrete domain as

κ̄d = −div(w̄) = −d

r

r∑
k=1

w̄t
k · nk, (13)

where the adjacencyr will be given by the specificC we use.

The simplest case holds in 2D (d= 2) withB composed by the four nearest neighbors of
each pixel (r = 4). That is, for the pixel Pi, j of coordinates [i, j ], we haveB={Pi, j−1,Pi+1, j ,

Pi, j+1,Pi−1, j } andN ={nN, nE, nS, nW}, according to the scheme of Fig. 8a. Therefore,
the 2D MLSEC at Pi, j is computed as

κ̄2[i, j ] = − 2
4

(
w̄t[i, j − 1] · nN + w̄t[i + 1, j ] · nE

+ w̄t[i, j + 1] · nS+ w̄t[i − 1, j ] · nW
)

= − 1
2(w̄1[i + 1, j ] − w̄1[i − 1, j ] + w̄2[i, j + 1]− w̄2[i, j − 1]), (14)

wherew̄1 andw̄2 are the components of̄w in 2D. From now on, we will denote this 2D
MLSEC operator ¯κe, where the symbol¦ recalls the shape ofC.

The 3D equivalent (d= 3) consists of takingB as the neighbors of a voxel given by
the 6-adjacency (r = 6). That is,B={Pi, j−1,k,Pi+1, j,k,Pi, j+1,k,Pi−1, j,k,Pi, j,k−1,Pi, j,k+1}
for the voxel Pi, j,k andN ={nN, nE, nS, nW, nF , nB}, according to the scheme of Fig. 8b.
Thus, in this case the 3D MLSEC at Pi, j,k is computed as

κ̄3[i, j, k] = − 1
2(w̄1[i + 1, j, k] − w̄1[i − 1, j, k] + w̄2[i, j + 1, k]

− w̄2[i, j − 1, k] + w̄3[i, j, k+ 1]− w̄3[i, j, k− 1]), (15)

wherew̄1, w̄2, andw̄3 are the components of̄w in 3D. From now on, we will denote this
3D MLSEC operator ¯κe

M (κ̄e

M/2 is a “substitute” forκM).
We can generalize these specific operators to any dimensiond asκ̄e

d . In this case we have
r = 2d (2d-adjacency), and it is easy to show [30] that

κ̄e

d = −
1

2

d∑
k=1

w̄k[i 1, . . . , i k + 1, . . . , i d] − w̄k[i 1, . . . , i k − 1, . . . , i d]. (16)

Notice that Eq. (16) is a sum of first-order centered finite differences (CFDs) as defined
in Table I. This means that the boundary based on the 2d-adjacency, which delimits the
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TABLE I

Approximation of the First- and Second-order Partial Derivatives

of L[i , j ] Using CFDs

δx L[i, j ] (L[i + 1, j ] − L[i − 1, j ])/2
δy L[i, j ] (L[i, j + 1]− L[i, j − 1])/2
δxxL[i, j ] (L[i + 2, j ] − 2L[i, j ] + L[i − 2, j ])/4
δyyL[i, j ] (L[i, j + 2]− 2L[i, j ] + L[i, j − 2])/4
δxyL[i, j ]= δyxL[i, j ] (L[i + 1, j + 1]+ L[i − 1, j − 1]

−L[i − 1, j + 1]− L[i + 1, j − 1])/4

Note. The second-order CFDs are obtained as CFDs of the first-order approximations.

FIG. 8. Top and middle: (a) BoundaryC of a rectangular grid neighborhood according to the 4-adjacency in
2D. Bottom: (b) The 3D analogy is the 6-adjacency.
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smallest neighborhood we can use in a rectangular grid to discretize the integral form of
the divergence (Eq. (12)), provides the same operator as discretizing the differential form
of the divergence (Eq. (7)) by using CFDs to approximate the first-order partial derivatives.

Now let us see why ¯κd does not suffer the problems ofκd. First, we show that it has a
well-defined dynamic range according to the following theorem.

THEOREM1. According to Eq.(13)we can state that

|κ̄d|≤ d. (17)

Proof. Sincew̄ is a normalized vector field and each normaln in B is also a unitary
vector, we have that, at anyd-xel,

|w̄t · n| = ‖w̄‖‖n‖|cos(angle(̄w, n))| ≤ 1.

Therefore,

|κ̄d| = |div(w̄)| = d

r

∣∣∣∣∣
r∑

k=1

w̄t
k · nk

∣∣∣∣∣ ≤ d

r

∣∣∣∣∣
r∑

k=1

1

∣∣∣∣∣ = d.

Moreover, it can be shown [30] that| κ̄d | approaches the codimension of the crease
structures from/to which the gradient vector field diverges/converges. In practice, this means
that if we want to extract crease structures of dimensionm from ad-dimensional image,
m≤ d, then, given 0<ε <1, we have to double threshold ¯κd between max{0, (d−m− ε)}
and min{(d − m+ ε), d}, in the case of ridges, and between max{−d, (m− d − ε)} and
min{(m − d − ε), 0}, for valleys. In fact, along anm-dimensional crease there can be
crease points of codimension lower thanm. For example, in 2D we can have a ridge line
passing through a local maximum, and we do not want to discard it since a gap would
be created along that ridge line. A pragmatic decision we have made, which works quite
well in practice, consists of using a threshold value selecting the creases of the dimension
that we want and also the creases of lower dimension. This means that to extract crease
structures of dimensionm we have to threshold ¯κd at max{0, (d −m− ε)} for ridges and
at min{(m− d− ε), 0} for valleys. In theory, this approach can produce isolated creases of
dimension lower thanm, but in practice they can be easily removed by looking at criteria
such as their area in 2D, volume in 3D, and so on. In fact, in the applications we review in
this paper (Sections 4 and 5) no post-processing of any type was needed: the output of our
operators was used “as is.” On the other hand, the exactε depends on the adjacencyr we
use to compute the divergence. However, for a fixed we verified in a number of applications
on different kinds of images that a fine tuning is not needed at all.

The formal proof of how the ¯κd operator avoids the discontinuities produced byκd

demands the introduction of several definitions and intermediate assertions with their cor-
responding proofs, which can be found in [30]. Instead, for the sake of simplicity, in this
paper we merely expose the basic idea which we think will be sufficient to clarify the
situation.

In d dimensions, extrema are not a problem at all for the MLSEC. By examining the
normalized gradient vector field, we see that maxima are perfect attractors (e.g., Fig. 4),
and, therefore, the MLSEC reaches its maximum valued. Analogously, minima are perfect
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FIG. 9. Normalized gradient vectors around a ridge-like saddle. If we want to compute the divergence of this
vector field at the central point, with the 4-adjacency only the vectors in gray are involved and with the 8-adjacency
both the gray and black vectors are. The discontinuous gray-level lines are the level curves. The third column
shows a nonstable situation, where the divergence based on both the 4-adjacency and the 8-adjacency vanishes.
Again, this is an unstable case.

repellers (e.g., Fig. 4), and the MLSEC reaches its minimum value−d. Notice that this
is in agreement with our previous statements about the codimension of the creases: since
the extrema are points, they can be thought of as creases of dimension 0; therefore, their
codimension isd. This means that, unlike the LSEC, any MLSEC measure is well-defined
at the extrema of the image.

To clarify how the MLSEC allows us to circumvent the problems of change of sign barrier
(discontinuities) that the LSEC presents, let us consider the 2D example of Fig. 9. Suppose
we compute the creaseness measure ¯κe at the central pixel Pi, j . According to Fig. 8a we
see that in the ridge-like saddle we have (w̄t[i, j − 1] · nN + w̄t[i, j + 1] · nS)=−(w̄t[i −
1, j ] ·nW+ w̄t[i +1, j ] ·nE). Therefore, following Eq. (14) we obtain ¯κe[i, j ]= 0. Notice
that this is in agreement with the geometric interpretation of the level-curve curvature at
a saddle point. However, we are obtaining a low creaseness at Pi, j , and we would expect
it to be high if these saddles were at the center of an elongated gray-level structure. This
means that ¯κe will produce a gap here, although not a change of sign barrier asκ would
do, which would be worse. To avoid this we simply increase the neighborhoodW involved
in the definition of the divergence operator. Let us change, for instance, to the 8-adjacency
as shown in Fig. 10, and let ¯κh be the corresponding MLSEC measure. In this case we
have

κ̄h[i, j ] = − 1
4

(
w̄t[i, j − 1] · nN + w̄t[i + 1, j − 1] · nN E + w̄t[i + 1, j ] · nE

+ w̄t[i + 1, j + 1] · nE S+ w̄t[i, j + 1] · nS+ w̄t[i − 1, j + 1] · nSW

+ w̄t[i − 1, j ] · nW + w̄t[i − 1, j − 1] · nW N
)
, (18)

which expands as

κ̄h[i, j ] = κ̄e[i, j ]/2− (w̄1[i + 1, j − 1]− w̄1[i − 1, j − 1]+ w̄1[i + 1, j + 1]

− w̄1[i − 1, j + 1]+ w̄2[i − 1, j + 1]− w̄2[i − 1, j − 1]

+ w̄2[i + 1, j + 1]− w̄2[i + 1, j − 1])/4
√

2. (19)
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FIG. 10. BoundaryC involved in the definition of ¯κ2 according to the 8-adjacency in 2D that is ¯κh.

We have seen that ¯κe[i, j ]= 0, and according to Fig. 9 we also have

w̄1[i + 1, j − 1] = w̄1[i + 1, j + 1] = −α
w̄1[i − 1, j − 1] = w̄1[i − 1, j + 1] = α
w̄2[i − 1, j − 1] = w̄2[i + 1, j − 1] = −β
w̄2[i − 1, j + 1] = w̄2[i + 1, j + 1] = β,

for α= cos(θ ) andβ = sin(θ ). Therefore,

κ̄h[i, j ] = 1√
2

(α − β).

If α >β the saddle is ridge-like and ¯κh > 0. Analogously, ifα <β the saddle is valley-like
and κ̄h < 0. The caseα=β, shown also in Fig. 9, consists of an unstable situation. The
specific value of ¯κh can be assessed by noticing thatα2+ β2= 1; therefore,

κ̄h = 1√
2

(α −
√

1− α2).

Figure 11 depicts ¯κh as a function ofθ . This example shows how we can avoid disconti-
nuities at saddle points by increasing the size of the neighborhood.

At a given dimensiond, the MLSEC measure based on the 2d-adjacency, ¯κe

d , vanishes
at saddles only ifd is even. Otherwise, the value of ¯κe

d will capture the tendency of the
gradient vector field to converge or diverge [30]. Whend is even we can still capture this
tendency by increasing the size of the neighborhood used to compute the divergence, as we
have done in the previous 2D example.

On the other hand, we have already mentioned that, in practice, critical points are placed
at sub-pixel coordinates. This implies that around a maximum the MLSEC will just have
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FIG. 11. Plot of the MLSEC measure ¯κh as a function of the angle 0≤ θ ≤ (π/4) given byα= cos(θ ).

a value neard, and around a minimum near−d. In the case of the saddles, the fact that
they are usually placed at sub-pixel coordinates implies that just by using ¯κe

d we are already
able to detect ridgeness or valleyness without suffering from discontinuities. For example,
in Fig. 5 it is clear that ¯κe will not vanish since the saddle is placed at sub-pixel level: what
is captured is the convergence of the normalized gradient vector field.

Figure 12 shows the results of applying the ¯κe operator to the smoothed MR and CT
slices of Fig. 2. Since the MLSEC has a well-behaved dynamic range, we show directly the
output ofκ̄e without using the transformT of Eq. (6). Notice also how the discontinuities
along the center of the skull disappear with respect to Fig. 2. Figure 13 shows a similar
comparison on a synthetic image having many anisotropic critical points placed at sub-pixel
locations.

In summary, we have shown that, unlike the LSEC, the MLSEC yields a continuous and
homogeneous response, and both the LSEC and the MLSEC are well-contrasted creaseness
measures. In addition, as the MLSEC is based on the relative orientations of the normalized
gradient vector field, it is invariant under rigid transforms and scalings of the image axes,
and under arbitrary monotonic gray-level transforms. With respect to the thickness of the
response, we can state as a general rule that it increases with the neighborhood selected to
compute the divergence. Figure 14 illustrates the results of computing ¯κ2 by varying the
radius of a circular neighborhood. In spite of this, it can be an advantage in specific applica-
tions like that in Section 5. However, we must be careful when increasing the neighborhood
so that close convex/concave regions do not interfere with each other.

3.2. LSEC Based on the Image Structure Tensor Field

Once we have established ¯κd as a good creaseness measure, we can go further and
enhance it by modifying, in a convenient way, the gradient vector field of the image before
applying the divergence operator. We want to filter the gradient vector field in such a way
that the configurations of Fig. 15a approach those of Fig. 15b since then attraction/repulsion,
and therefore creaseness, will be higher. At the same time, the qualitative behavior of the
gradient vector field at regions where there is neither attraction nor repulsion must remain
unchanged. This filtering can be carried out in a natural way through thestructure tensor,
which is a well-known tool for analyzing oriented textures [3, 22]. Moreover, without extra
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FIG. 12. First row, from left to right: (a) ¯κe of the smoothed MR slice in Fig. 2. (b) The same as for the CT.
Second row: (c) Normalized gradient vector field from the ROIs of the smoothed MR slice. Third row: (d) The
same as for the CT. Fourth row: (e) ¯κe of the ROIs from the MR slice. Fifth row: (f) The same as for the CT.

computational cost, we get a coarse measure of the degree of anisotropy that will allow us
to attenuate the creaseness measure at zones in which we are not interested, like flat regions.

In the d-dimensional space, given a symmetric neighborhood of sizeσI centered at a
given pointx, namely,N (x; σI ), the structure tensor is defined to be the symmetric and
semi-positive definited × d matrix

S(x; σI ) = N (x; σI ) ∗ (w(x) · wt(x)), (20)

where the convolution “∗” is elementwise.
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FIG. 13. From top to bottom and left to right: (a)L(x, y)= sin(60x2 + 30y2)+ sin(8 arctan(y/x)) sampled
in [−1, 1] × [−1, 1] at a resolution of 128× 128 pixels. (b)T(κ, 1.0) with an ROI framed, whereκ has been
analytically computed and then sampled. (c) Zoom of the ROI. White lines: ridge-like creases after thresholding
κ; pixels whereκ >0 have been set to lighter gray, and whereκ <0 they are to darker. Notice the change of sign
barrier. (d) ¯κe. (e) Zoom of the previous ROI. Notice that there are no undesired changes of sign. (f) Relief from
the samples of a zone of the test image. (g) Level curves revealing the presence of a generic ridge-like saddle.
(h) Normalized gradient vector field of the relief. (i)κ after sampling its analytic expression. (j)T(κ, 1.0). (k) In
white, pixels whereκ is positive (ridge-like). (l) ¯κe. (m) In white, pixels where ¯κe is positive.

The eigenvector which corresponds to the highest eigenvalue ofS(x; σI ), sayw′(x; σI ),
yields thedominant gradient orientationat x, where “dominant” means inside the neigh-
borhoodN (x; σI ). In fact, a suitable choice for this window is ad-dimensional Gaussian,
i.e.,N (x; σI )=G(x; σI ), which implies that a gradient vector at a pointy inside the neigh-
borhood contributes to the computation ofS(x; σI ) weighted as a function of the distance
from x to y.

The eigenvector which corresponds to the lowest eigenvalue ofS(x; σI ), namely,v′(x; σI ),
yields thedominant orientationat x, which is perpendicular to thedominant gradient
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FIG. 14. From top to bottom and left to right: ¯κ2 from the smoothed CT slice in Fig. 2, taking a circular
neighborhood of radius 1, 2, 3, or 4, respectively.

orientation. Notice that the gradient of a function points toward the direction of maximum
change, and the dominant orientation is perpendicular to this direction since anisotropy
appears as similar gray values along one orientation and large perpendicular variations.

This analysis assumes that within each neighborhood there is a single dominant orien-
tation. In order to verify this assumption, we introduce a normalizedconfidence measure:
to each orientation we associate a real valueC ∈ [0, 1] which can be computed from the
eigenvalues of the structure tensor. Similarity of the eigenvalues of the structure tensor im-
plies isotropy, and, as a result,C should be close to zero. Therefore, denoting byλ1, . . . , λd

the eigenvalues ofS, a logical choice consists of testing whether the sum of quadratic
differences of them,

λ1(x; σI ) =
d∑

i=1

d∑
j=i+1

(λi (x; σI )− λ j (x; σI ))
2, (21)

FIG. 15. Attraction and repulsion of vectors in (b) are higher than in (a).
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exceeds a predefined thresholdc characteristic forλ1 in the structure we want to enhance.
A suitable function is [42]:

C(x; σI ; c) = 1− e−(λ1(x;σI ))2/2c2
. (22)

Now we can obtain an enhanced creaseness measure by the following steps:

1. Compute the structure tensor fieldS based on the gradient vector fieldw. We will
use a Gaussian neighborhood to computeS. In the 3D case (to be used in Sections 4 and 5)
this gives

S(x; σI ; σD) =

s11(x; σI ; σD) s12(x; σI ; σD) s13(x; σI ; σD)

s12(x; σI ; σD) s22(x; σI ; σD) s23(x; σI ; σD)

s13(x; σI ; σD) s23(x; σI ; σD) s33(x; σI ; σD)


s11(x; σI ; σD) = G(x; σI ) ∗ (Lx(x; σD)Lx(x; σD))

s12(x; σI ; σD) = G(x; σI ) ∗ (Lx(x; σD)L y(x; σD))

s13(x; σI ; σD) = G(x; σI ) ∗ (Lx(x; σD)Lz(x; σD))

s22(x; σI ; σD) = G(x; σI ) ∗ (L y(x; σD)L y(x; σD))

s23(x; σI ; σD) = G(x; σI ) ∗ (L y(x; σD)Lz(x; σD))

s33(x; σI ; σD) = G(x; σI ) ∗ (Lz(x; σD)Lz(x; σD)).

(23)

The new parameterσD denotes the standard deviation of the Gaussian kernel involved in
the differentiation process needed to computew in a well-posed manner (Section 3.3).
The parameterσD is called thedifferentiation scalein opposition toσI which is called
the integration scale. The differentiation scale is tuned to the size of the objects whose
orientation has to be determined, while the integration scale is tuned to the size of the
neighborhood in which an orientation is dominant.

2. Perform the eigensystem analysis ofS. In this analysis, opposite directions are
equally treated. Thus, in order to apply the divergence operator in the next step, we must
assign a proper direction to the dominant gradient orientationw′. To recover such direction
we putw′ in the same quadrant in 2D, octant in 3D, etc., asw. Then, we obtain the new
vector field

w̃ = sign(w′t · w)w′, (24)

where the function sign(x) takes the value+1 if x> 0,−1 if x< 0, and 0 ifx= 0. In this
way, attraction/repulsion of vectors is reinforced. As an example, Fig. 16 compares the
normalized gradient vector field̄w versus the vector field̃w.

3. Compute the new enhanced creaseness measure ˜κd (MLSEC-ST) as the following
definition states:

DEFINITION 4 (MLSEC-ST). According to the divergence operator in Eq. (12), we de-
fine our MLSEC-ST operator for a discrete domain as:

κ̃d = −div(w̃). (25)

We will use the term ˜κe to denote the 2D MLSEC-ST measure based on the 4-adjacency
divergence and ˜κe

M for the 3D analogous.
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FIG. 16. First row: (a) Smoothed CT slice from Fig. 2 with four new ROIs framed. Second row: (b) Vector
field w̄ in the ROIs. Third row: (c) Vector field̃w according to the structure tensor analysis.

4. This is an optional step. Compute a suitable confidence measureC to reduce crease-
ness in the structures we are not interested in. Then we can take ˜κdC as the final creaseness
measure.

Figure 17 shows the results obtained using ˜κe and−κ̃eC to compare withκ, Lvv, andκ̄e

of Figs. 2, 3, and 12. Notice how the MLSEC-ST measure does keep the good properties
of the MLSEC due to the multilocal support of the divergence and exhibits a more homo-
geneous output. Besides, sincew̃ consists of an average direction of gradient vectors, the
MLSEC-ST operator also has the same invariance properties as the MLSEC and the LSEC.

3.3. Computational Aspects

To obtain derivatives of a discrete imageL in a well-posed manner [52, 14], we use the
CFDs (Table I) of a Gaussian smoothed version of the image,

Lα(x; σD) ≈ δα(L(x) ∗ G(x; σD)), α ∈ Xd, (26)

whereσD stands for the standard deviation of the Gaussian andδα for the CFD along theα
axis. We perform the convolution in the spatial domain, taking advantage of the separability
and symmetry properties of the Gaussian kernel to save time.

A method to calculate bothκ in 2D andκM in 3D consists of computing the set of
image derivatives, thereforew, and then applying the respective equations. Analyzing the



132 LÓPEZ ET AL.

FIG. 17. First row from left to right: (a) ˜κe (σI = 4.0 pixels) of the smoothed MR slice in Fig. 2. (b)−κ̃eC
with c= 1000. Second row: (c) ˜κe (σI = 4.0 pixels) of the smoothed CT slice in Fig. 2. (d)−κ̃eC with c= 1000.
Third row: (e) Zoom of the ROIs of ˜κe computed from the MR slice. Fourth row: (f ) The same as for the CT.

computational requirements of ¯κe andκ̄e

M, that is, the 2D and 3D MLSEC measures based
on the smallest neighborhood when computing the divergence, we realize that even though
they are multilocal measures they require less memory and operations than their local
counterpartsκ andκM (Table II). However, in 3D it is convenient to write an algorithm
that scans the image voxel by voxel, computing the respective expression. The reason
for this is that it saves memory: by first computing all the image derivatives involved in
κ̄e

M we need simultaneously seven float 3D images (Table II), which could mean a lot of
memory. Therefore, we have adopted a voxel scanning approach [30] to minimize memory
requirements and therefore disk access. On the other hand, when scanning pixel-by-pixel
and computing ¯κe or κ̄e

M we have to buffer values to avoid the repetition of calculations.
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TABLE II

Number of Operations at Each Pixel/Voxel to Computeκ and κ̄ in 2D,

andκM and κ̄M in 3D

κ κ̄e κM κ̄e
M

Maximum number of images 6 5 9 7
simultaneously in memory

Additions and subtractions 15 6 33 10
Products and divisions 8 4 13 6
Square roots 1 1 1 1
Divisions by a constant 5 4 9 6

In practice this makes ¯κe and κ̄e

M slightly more time-consuming thanκ andκM. Yet, the
difference is small, as shown in Table III.

The computation of ˜κd consumes many more resources thanκd and κ̄d (Table III) due
to the eigensystem analysis and, mainly, the Gaussian averaging of the structure tensor
components. In 2D we compute the eigenvalues of the structure tensor analytically; in 3D
we are currently using the TQL method [46]. Again, to save memory, at the moment we
use an implementation of ˜κe in 2D andκ̃e

M in 3D based on pixel-by-pixel scanning [30]
(implementation available upon request, contact the first author).

When computing either the MLSEC or the MLSEC-ST it is clear that the larger the
neighborhoodW used to implement the divergence operator, the larger the resources needed.
Therefore, whenever it is possible, the best option is to keep on working with the smallest
neighborhood, that is, the one based on the 2d-adjacency.

4. REGISTRATION OF CT AND MR HEAD VOLUMES

Image registration attempts to solve the problem that arises when two images taken at dif-
ferent times by different sensors or from different viewpoints need to be brought into spatial
agreement in order to fuse their information. An upcoming application of image registration
is in the field of medical images, especially after the introduction of 3D modalities.

We have focused on CT-MR registration because these modalities are widely available
and provide partially complementary information (CT depicts bones accurately, while MR

TABLE III

CPU Time in a 200-MHz Pentium Pro PC with 128 MB of RAM Memory under Linux OS

Gaussian smoothing
Image dimensions (σD= 4.0) Lvv κ κ̄e κ̃e (σI = 4.0)

256× 256 0.09 s 0.058 s 0.058 s 0.072 s 0.6 s
512× 512 0.37 s 0.24 s 0.24 s 0.28 s 2.4 s

Lpp or Lqq κM κ̄e
M κ̃e

M (σI = 4.0)

128× 128× 84 2 s 7 s 1.8 s 2.1 s 80 s
250× 250× 180 18 s 75 s 23 s 23.3 s 720 s
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differentiates soft tissues). First, multisensor registration methods used physical markers
visible in both modalities to provide reference points, but they were manual and had the
drawbacks of lacking retrospectiveness and not being patient friendly.

Currently, we are developing an automatic registration method for CT and MR head
volumes, which is similar to that introduced by Dr. van den Elsen in [11]. It is based on the
fact that the skull is visible in both CT and MR brain images. The signal produced by the
bone is strong in CT, but weak in MR, in such a way that the skull forms a ridge structure
in the CT volume and a valley in the MR. Moreover, since the skull is undeformable, only
rigid transformations need to be considered. Thus, only six parameters must be found, three
rotation angles and a 3D translation vector. Scaling factors are known from the acquisition
system settings (image dimensions and field of view).

Let us briefly review the steps of our registration procedure. The first one consists of
scaling the CT and MR images to have voxels of the same size. Second, we must extract the
center of the skull from both the CT and the MR scaled images. Since the skull in the CT
volume appears as a ridge structure, we can use a ridge operator working in 3D to extract
the center of the skull. Let us term asR the response of such an operator. Analogously, we
can use a valley operator working in 3D to extract its center. LetV be its response. The last
step consists of iteratively transformingR until it becomes properly aligned withV. This is
a difficult task due to the huge size of the data and the high dimensionality of the space of
transformations. To overcome the first drawback we use a pyramidal search (R andV are
sampled to generate a multiresolution pyramid), following Dr. van den Elsen’s proposal.
To overcome the second drawback we incorporate an optimized search at each level of the
pyramid, in this case, unlike Dr. van den Elsen who used an exhaustive search which, in
general, is more time-consuming.

If we assume thatR has the same origin of coordinates asV, we can state thatR andV are
perfectly aligned if at any voxeli we haveR(i)=V(i). Obviously, this is an ideal situation.
In practice, a reliable method to evaluate howR resemblesV consists of correlating them.
The higher the correlation the better the alignment. The correlation performs well, but we
have to be careful during the search for the aligning transform to avoid being caught in local
maxima of the correlation betweenR andV.

It has been experimentally seen that, if we use the correlation operator to compareR and
V, a reliable approach consists of working with creaseness measures, that is,R being a 3D
ridgeness measure of the CT volume andV a valleyness measure of the 3D MR volume. Of
course, with this approach good contrast, continuity, and homogeneity are quite desirable
properties to avoid noisy local maxima of the correlation betweenR andV, and to generate
a meaningful multiresolution pyramid of both measures.

In her work, Dr. van den Elsen proposed the pair of 3D operatorsLpp andLqq introduced
in Section 2.1. As can be seen in Fig. 18, both measures present discontinuities along the
skull, and they do not have a homogeneous response. Figure 19 shows the results obtained
with κ̄e

M andCκ̃e

M. We observe that the response of ¯κe

M is continuous and more homogeneous
along the skull of both the CT image and the MR image. Moreover, its computation is less
time-consuming than that ofLpp andLqq (Table III). However, it is clear thatCκ̃e

M is the
best option.

Concerning the way to compare our registration method with other existing ones, we
are currently obtaining results to be evaluated in the framework of the “Evaluation of
Retrospective Image Registration” project conducted by Dr. Fitzpatrick and Dr. West at
Vanderbilt University. This project has as its primary goal the blinded evaluation of a
group of retrospective image registration techniques using as a gold standard a prospective,
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FIG. 18. From the left column to the right one: (a) Transversal, coronal, and sagittal slices of a 250×250×180
CT volume with cubic voxels. (b)−Lpp > 0 from the CT volume. (c)Lqq > 0 from the MR volume. (d) Slices of
a 250× 250× 180 MR image with cubic voxels. The operators were applied after the Gaussian smoothing of the
images, withσD= 4.0 pixels.

marker-based registration method. Its first results have been already published [57, 13].
According to them, it seems that one of the best algorithms is that of Studholme, Hill and
Hawkes [51], and it is based on themutual information(MI) technique [5, 56]. Therefore,
we decided to start by comparing our results directly with those of this algorithm. This

FIG. 19. From the left column to the right one: (a) ¯κe
M > 0 from the CT image in the first column of Fig. 18.

(b)−κ̄e
M > 0 from the MR image in the last column of Fig. 18. (c)Cκ̃e

M > 0 from the same CT image. (d)−Cκ̃e
M > 0

from the same MR image. In both (c) and (d) the same specific parameters were used, namely,σI = 4.0 pixels and
c= 1000. The operators were applied after the Gaussian smoothing of the images, withσD= 4.0 pixels.
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FIG. 20. Top row: (a) Example where the bone of the CT volume has been fused with the MR data after
our registration process. Bottom row: (b) Location of the creases obtained by thresholding the MLSEC-ST-based
ridgeness and valleyness measures from the CT and MR volumes, respectively, at their final positions. The darker
gray indicates ridges from the CT data, the medium gray indicates valleys from the MR data, and white indicates
spatial coincidence of these ridges and valleys.

study is presented in [29], where the comparison indicates that our method is more robust
(reliability under adverse conditions) than the MI with comparable accuracy. Figure 20
shows a fusion example after registering the CT and MR volumes of Fig. 18 using our
method.

5. ANALYSIS OF THE ORIENTATION OF TRABECULAR BONE PATTERNS

Human bone can be classified as cortical or trabecular, depending on its relative density
[18]. Most bones are built of both types; the cortical part forms a dense shell, in contrast with
the mesh appearance of the trabecular part, which covers the inner side of the shell. There
is increasing clinical evidence that measures of architecture in the trabecular bone pattern
play an important role in the loss of bone strength, e.g., in bone diseases like osteoporosis.
Since means of prevention and treatment of osteoporosis are now available [28], tools for
in vivodiagnosis of relevant bone properties are invaluable.

The trabecular pattern is visible at resolutions which can be appreciated from conventional
CT images. A neutron diffraction study by Baconet al. [1] confirmed that there exists a
high correlation between the direction of individual trabeculae and routes of stress, which
are apparent at a larger scale and are related to mechanical loading in the body according
to [18]. Our aim is to determine these stress routes from 3D noninvasively obtained data, in
order to study the relationships between structure, mechanical loading, and, in pathological
cases, malgrowth.
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The routes of stress can be seen as an oriented texture in 3D images. Since they appear at
scales which are considerably higher than the size of individual trabeculae and vary within
the human skeleton, in [43, 42, 41] we used a multiscale texture analysis method based on
the structure tensor. This method, let us call it method 1, consists of the following steps:

1. Analysis of the trabeculae. At each voxeli of the image:
(a) Obtain the eigenvectors and eigenvalues ofS(i; σ trab

I ; σ trab
D ), that is, the structure

tensor with parameters tuned to the trabecular pattern.
(b) Take the dominant orientationv′(i; σ trab

I ; σ trab
D ).

(c) ComputeC(i; σ trab
I ; σ trab

D ; ctrab).
2. The dominant orientationv′(i; σ trab

I ; σ trab
D ) is considered as a meaningful dominant

orientation of the trabecular pattern ifC(i; σ trab
I ; σ trab

D ; ctrab)> t trab, wheret trab is a given
threshold value on [0, 1], which is the range of the confidence measure.

With this method, however, cortical bone and intertrabecular space yield high confidence.
The main problem is the cortical bone influence, which manifests itself in two different ways:

• Pa: Orientations due to cortical bone and intertrabecular space are included in the
orientations of the voxels passing the test of step 2. Therefore, measures that look for a
global preferred orientation, such as a histogram of orientations, are affected by them.
• Pb: If we choose a largeσ trab

I with the purpose of obtaining a more global measure
of the trabeculae orientation, then, since cortical bone is a highly oriented structure, it will
have a high influence in the trabeculae orientations that are “at a distance lower thanσ trab

I .”

In order to overcome these problems we have revised method 1. Our main aim was to
inhibit cortical bone effects without performing a fine segmentation, which in general is a
nontrivial task since trabecular and cortical bone produce a response of similar gray-level,
so they cannot be distinguished from each other by simply thresholding. With this aim, we
observe that cortical bone produces a ridge structure in CT images. Therefore, as in the case
of CT/MR registration, we can approximately segment cortical bone by using the MLSEC-
ST, but with a divergence operator based on a neighborhood of an appropriate size (Fig. 14).
In addition, to avoid intertrabecular space influence, we only consider the orientations at
the center of the trabeculae (this is like saying that the dominant orientation of a cylinder
is that of its central axis). We term the method deriving from this idea as method 2, which
is adapted here from [32] in order to better appreciate the contribution of our MLSEC-ST
operator in this application:

1. Analysis of the cortical bone. At each voxeli of the image, compute the weighted
creaseness measure ˜κM(i; σ cort

I ; σ cort
D )C(i; σ cort

I ; σ cort
D ; ccort) as described in Section 3.2, where

the parameters are tuned to the cortical bone size and contrast. In this case, given a radius
ρ, we will use the points of the boundary of a discrete sphere to discretize the divergence
according to Eq. (12). Let us refer by ˜κ

ρ
M(i; σ cort

I ; σ cort
D ) to the MLSEC-ST operator computed

by using such a spherical neighborhood. Then, as we have already seen in Fig. 14, by taking
a sufficiently largeρ, we can obtain high creaseness values along the whole cortical bone,
not only along its center.

2. Analysis of the trabeculae. At each voxeli of the image:
(a) Obtain the eigenvectors and eigenvalues ofS(i; σ trab

I ; σ trab
D ).

(b) Takev′(i; σ trab
I ; σ trab

D ).
(c) Compute ˜κe

M(i; σ trab
I ; σ trab

D )C(i; σ trab
I ; σ trab

D ; ctrab) as described in Section 3.2.
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3. Combine the trabecular and the cortical bone analysis. Given the threshold values
t trabandtcort running on [0, 3] (ridgeness range of the MLSEC-ST in 3D), if ˜κe

M(i; σ trab
I ; σ trab

D )
C(i; σ trab

I ; σ trab
D ; ctrab)> t trab and κ̃

ρ
M(i; σ cort

I ; σ cort
D )C(i; σ cort

I ; σ cort
D )< tcort, then v′(i; σ trab

I ;
σ trab

D ) is considered as a meaningful dominant orientation of the trabecular pattern.

With this method only trabecular bone is taken into account, that is, the dominant ori-
entation of this pattern is neither artificially reinforced nor disturbed by the intertrabecular

FIG. 21. From top to bottom and left to right: (a) Transversal sagittal and coronal sections of the bottom of
a fibula. (b) In black, voxels taken into account by method 1. (c) Ridges from ˜κe

M C in method 2. (d) Ridges from
κ̃
ρ

MC in method 2. (e) Voxels taken into account by method 2, that is, voxels selected in (c) but not in (d).
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space or the cortical bone, and dominant orientations that do not correspond to trabeculae
are removed providedσ trab

I is kept sufficiently small. Therefore, this scheme solvesPa.
Because in this application we wanted to evaluate the effect ofPa andPb separately, we
started by solving justPa, andPb will be solved in future work.

Now we illustrate the 3D results by concentrating the analysis on the bottom of the fibula
(Fig. 21a), imagedin vitro by means of a CT scanner with realisticin vivo settings, pixel
resolution of 0.25× 0.25 mm and slice thickness of 0.8 mm. To perform this analysis we
first interpolate the data to get cubic voxels. Since the bone is mainly oriented vertically
with respect to the image coordinates we expect to obtain this orientation as the most
significant. We have used the following parameters for method 1:σ trab

D = 0.5, σ trab
I = 3.0,

andctrab= 2500. With method 2 the parameters were:σ cort
I = 4.0, σ cort

D = 3.0, ccort= 1000,
ρ= 5, σ trab

D = 0.5, σ trab
I = 3.0, andctrab= 1000. In these experiments we have taken the

ridges in step 2 of method 2 as the loci where ˜κe

MC> 0.5, and the ridge areas of step 1
as the loci where ˜κMC> 0.4. In method 1 we have taken as relevant orientations those

FIG. 22. From top to bottom and left to right: (a) Orthographic projection of a normalized histogram of 3D
orientations (superior hemisphere discretized into 62× 62 cells) from the trabecular bone in the fibula, according
to method 2. Dark denotes a high incidence. (b) The same as for method 1. (c) Projection only takes into account
the planes framed in Fig. 21a, according to method 2. (d) The same as for method 1.
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placed at points whereC> 0.5. Figure 21b shows the voxels whose orientations will be
taken into account by method 1, and Fig. 21e shows the ones taken into account by method
2. We visualize the 3D anisotropy in the trabecular structure in Figs. 22a, and 22b. Both
methods reveal that the main orientation is slightly off the vertical axis, which runs along the
longitudinal axis of the fibula. Method 1 gives a more noisy result than method 2 because
cortical bone orientations do count. However, in this case the main orientation is still found
by method 1 due to the fact that we analyze a large part of the fibula and the cortical bone
is oriented mainly as the trabeculae, and only more at the bottom of the fibula do these
orientations differ. Instead, taking into account only orientations from the planes marked in
Fig. 21a, we appreciate a major difference between the two methods (Figs. 22c and 22d).

6. SUMMARY

The level-set extrinsic curvature (LSEC) is a creaseness measure ford-dimensional im-
ages that acts as an approximation of medialness for gray-level objects. In this paper we
have first identified two problems that it presents when used as a tool for image analysis,
the badly dynamic range and the discontinuities of the response. Related creaseness mea-
sures, likeLvv in 2D or κM, Lpp, andLqq in 3D, also present discontinuities and lack of
homogeneity. We have analyzed these problems and reached the conclusion that they are
due to the local definition of the LSEC itself. Therefore, we have proposed an alternative
multilocal operator based on the LSEC idea, the MLSEC, which has been directly designed
for the discrete domain. It has been shown that this new operator avoids the problems of
the LSEC. We have also proposed an extension of the MLSEC which adapts the structure
tensor from oriented texture analysis to enhance the response of the MLSEC. This new
operator, the MLSEC-ST, can be combined with its associated confidence measure to give
an even cleaner creaseness measure along the center of the objects of interest.

Results have been shown in the context of two applications on 3D images, namely, the
registration of CT and MR head volumes and the computation of trabecular bone dominant
orientations from CT volumes. In the first case, our MLSEC-ST measure has been shown to
be ideal as a common feature from CT and MR volumes to perform the registration. Current
results indicate that the obtained overall accuracy is in most cases sub-pixel and comparable
to that achieved by the mutual information method. In the second case, we have presented
a new method to define trabecular orientation in a quantitative robust manner. This method
presents as an improvement, with respect to the previously existing operator (also based on
the structure tensor analysis), the use of the MLSEC-ST operator to reduce the influence in
the analysis of both the cortical bone and the intertrabecular space, which are also strongly
oriented structures.

Finally, we have to mention that in this paper we have concentrated on showing results
of the MLSEC-ST in 3D applications. In [30] we show how the MLSEC gives satisfactory
results in the context of other applications.

APPENDIX A

Expression in Terms of Cartesian Coordinates of the LSEC in 2D and 3D

In this appendix we show how to obtain Eqs. (3) and (4) from Eq. (2). According to the
Einstein summation convention (if an index occurs twice in a given term or in multiplicative
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terms, a summation over all possible index values is assumed, in this case, from 1 tod), we
have

LαLβLαβ =
d∑

i=1

d∑
j=1

Lxi Lx j Lxi x j ,

LαLαLββ =
(

d∑
i=1

Lxi Lxi

)(
d∑

j=1

Lx j x j

)
=

d∑
i=1

L2
xi

(
d∑

j=1

Lx j x j

)
,

Lγ Lγ =
d∑

i=1

Lxi Lxi =
d∑

i=1

L2
xi .

Then, using Cartesian coordinates in 2D (x1= x, x2= y), we have

LαLβLαβ = L2
x Lxx + 2Lx L yLxy+ L2

yL yy,

LαLαLββ = L2
x(Lxx + L yy)+ L2

y(Lxx + L yy),

LαLβLαβ − LαLαLββ = 2Lx L yLxy− L2
x L yy− L2

yLxx,

Lγ Lγ = L2
x + L2

y,

and in 3D (x1= x, x2= y, x3= z)

LαLβLαβ = 2(Lx L yLxy+ Lx LzLxz+ L yLzL yz)

+ L2
x Lxx + L2

yL yy+ L2
zLzz,

LαLαLββ = L2
x(Lxx + L yy+ Lzz)+ L2

y(Lxx + L yy+ Lzz)

+ L2
z(Lxx + L yy+ Lzz),

LαLβLαβ − LαLαLββ = 2(Lx L yLxy+ Lx LzLxz+ L yLzL yz)− L2
x(L yy+ Lzz)

− L2
y(Lxx + Lzz)− L2

z(Lxx + L yy),

Lγ Lγ = L2
x + L2

y + L2
z.

Of course, we are always supposing continuity of the partial derivatives, and thereby
Lxi x j = Lx j xi . Finally, by mere substitution in Eq. (2) of the 2D and 3D Cartesian formulae
we obtain Eqs. (3) and (4), respectively.

APPENDIX B

The LSEC in Terms of the Gradient Vector Field

The aim of this appendix is to prove the equality of Eq. (9) given Eqs. (2), (7), and (8).
The normalized gradient vector is expressed in terms of its components asw̄= (Lx1, . . . ,

Lxd )t(
∑d

j=1 L2
x j )−1/2. Therefore, to prove Eq. (9) we have to show that

∑d
i=1

∑d
j=1 Lxi Lx j Lxi x j −∑d

i=1 L2
xi

(∑d
j=1 Lx j x j

)(∑d
i=1 L2

xi

)3/2 = −
d∑

i=1

∂

∂xi

(
Lxi(∑d

j=1 L2
x j

)1/2

)
,
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where the right-hand side of Eq. (2) has been translated into the “summational language”
according to Appendix A. This equality can be proved by developing its right-hand side as
follows:

−
d∑

i=1

∂

∂xi

(
Lxi(∑d

j=1 L2
x j

)1/2

)

= −
d∑

i=1

Lxi xi

(∑d
j=1 L2

x j

)1/2− Lxi
1
2

(∑d
j=1 L2

x j

)−1/2
2
(∑d

j=1 Lx j Lxi x j

)∑d
j=1 L2

x j

=
d∑

i=1

Lxi

(∑d
j=1 Lx j Lxi x j

)− Lxi xi

(∑d
j=1 L2

x j

)(∑d
j=1 L2

x j

)3/2

=
∑d

i=1 Lxi

(∑d
j=1 Lx j Lxi x j

)−∑d
i=1 Lxi xi

(∑d
j=1 L2

x j

)(∑d
i=1 L2

xi

)3/2

=
∑d

i=1

∑d
j=1 Lxi Lx j Lxi x j −∑d

j=1

∑d
i=1 Lx j x j L2

xi(∑d
i=1 L2

xi

)3/2

=
∑d

i=1

∑d
j=1 Lxi Lx j Lxi x j −∑d

i=1 L2
xi

(∑d
j=1 Lx j x j

)(∑d
i=1 L2

xi

)3/2 .
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144 LÓPEZ ET AL.

36. J. Maxwell, On hills and dales,London, Edinburgh Dublin Philos. Mag. J. Sci.40, 1870, 421–425.

37. O. Monga and S. Benayoun, Using partial derivatives of 3D images to extract typical surface features,CVGIP
Image Understanding61, 1995, 171–189.

38. B. Morse, S. Pizer, and A. Liu, Multiscale medial analysis of medical images, inInformation Processing
in Medical Imaging(Barrett and Gmitro, Eds.), Vol. 687 of LNCS, pp. 112–131, Springer-Verlag, Berlin/
New York, 1993.

39. L. Nackman, Two-dimensional critical point configuration graphs,IEEE Trans. Pattern Anal. Machine Intel-
ligence6, 1984, 442–450.

40. L. Najman and M. Schmitt, Watersheds of a continuous function,Signal Process.38, 1994, 99–112.

41. W. Niessen, Ph.D. thesis, Utrecht University, The Netherlands, 1997.

42. W. Niessen, A. L´opez, W. Van Enk, P. Van Roermund, B. ter Haar Romeny, and M. Viergever, In vivo analysis
of trabecular bone architecture, inInformation Processing and Medical Imaging(J. S. Duncan and G. Gindi,
Eds.), Vol. 1230 of Lecture Notes in Computer Science, pp. 435–440, 1997.

43. W. Niessen, A. L´opez, W. Van Enk, P. Van Roermund, B. ter Haar Romeny, and M. Viergever, Multiscale
trabecular bone orientation analysis, in7th Spanish National Symposium on Pattern Recognition and Image
Analysis(A. Sanfeliu, J. Villanueva, and J. Vitri`a, Eds.), Vol. 1, pp. 19–24, Centre de Visi´o per Computador,
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